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Abstract

Total cholesterol, low-density lipoprotein cholesterol, triglyceride, and high-density lipoprotein cholesterol (HDL-C) levels
are among the most important risk factors for coronary artery disease. We tested for gene–gene interactions affecting the
level of these four lipids based on prior knowledge of established genome-wide association study (GWAS) hits, protein–
protein interactions, and pathway information. Using genotype data from 9,713 European Americans from the
Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and a locus near LIPC in
their effect on HDL-C levels (Bonferroni corrected Pc = 0.002). Using an adaptive locus-based validation procedure, we
successfully validated this gene–gene interaction in the European American cohorts from the Framingham Heart Study
(Pc = 0.002) and the Multi-Ethnic Study of Atherosclerosis (MESA; Pc = 0.006). The interaction between these two loci is also
significant in the African American sample from ARIC (Pc = 0.004) and in the Hispanic American sample from MESA
(Pc = 0.04). Both HMGCR and LIPC are involved in the metabolism of lipids, and genome-wide association studies have
previously identified LIPC as associated with levels of HDL-C. However, the effect on HDL-C of the novel gene–gene
interaction reported here is twice as pronounced as that predicted by the sum of the marginal effects of the two loci. In
conclusion, based on a knowledge-driven analysis of epistasis, together with a new locus-based validation method, we
successfully identified and validated an interaction affecting a complex trait in multi-ethnic populations.
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Introduction

The catalog of genome-wide association studies (GWAS) [1] has

collected to date over 1,194 publications since the end of 2008, for

a total of over 5,697 single nucleotide polymorphisms (SNPs) that

are associated with complex human diseases and other complex

traits. However, most these associated SNPs exhibit a small effect

size, and collectively only explain a relatively small fraction of

additive variance [2,3,4,5]. Specifically, a recent meta-analysis of

several GWAS, studying a combined sample size between

,20,000 to ,100,000 individuals, identified 95 loci associated

with the level of one of total cholesterol (TC), low-density

lipoprotein cholesterol (LDL-C), triglyceride (TG), and high-

density lipoprotein cholesterol (HDL-C) [6]. In aggregate, these

loci explain only 25–30% of heritable variation for each trait [6].

Many hypotheses aiming to explain the missing heritability of

GWAS have been proposed, including structural variants, rare

variants, gene-environment interactions, epigenetics, and complex

inheritance [2,3,4,5]. Because gene-gene (epistatic) interactions

may contribute to missing heritability to some extent [7,8,9], here

we seek to find examples of pairs of loci that interact in their effects

on any of the four lipid levels, which are important risk factors of

coronary artery disease [10].

Epistasis has been investigated in order to understand the

relationship between genotype and phenotype since Bateson [11]

discovered in 1905 that some genes can suppress the effects of

others. Thereafter, a number of epistatic interactions have been

identified in QTL mapping studies or GWAS in humans [12,13]

and other organisms [14,15,16]. Studies of model organisms

suggest that gene-gene interactions are a common phenomenon

[17,18,19,20]. However, they have proven difficult to detect in

humans, chiefly due to the limited statistical power associated with

the large combinatorial number of tests and the skew towards low

minor allele frequencies [18,21]. Hence, in order to increase

power to detect gene-gene interactions in GWAS, a series of

methods have been developed to prioritize candidate SNPs using

prior knowledge of established GWAS hits [22], and recently also

using knowledge of protein-protein interactions (PPIs) [23,24] and

pathway information [25].
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Although some interactions affecting complex diseases and traits

have been reported in humans [12,26], replication of these

interactions in independent samples has proven difficult [13]. He

et al. [27] showed that this low replication is in part attributable to

low power and small effect sizes of tag SNPs in GWAS. For two

interacting causal loci, the observed interaction effect between two

respective tag SNPs (each tagging one of the causal loci) is

proportional to the underlying causal interaction effect multiplied

by the product of the two linkage disequilibrium (LD) coefficients

between each tag SNP and the respective causal variant. This

decrease in the measured interaction effect reduces the statistical

power of the interaction test and it also reduces the probability of

replication of significantly identified interactions. This reduction is

further exacerbated by heterogeneity in the LD structure between

different populations and among population samples. These are

the same problems that plague the power of single-marker GWAS

tests, but they are exacerbated in interaction testing, with a

quadratic dependence on LD between markers and causal loci,

which lead to a much greater reduction in power. Motivated by

this problem, Liu et al. [28] proposed a local validation analysis

and successfully replicated the loci of a few interactions underlying

common human diseases.

In this study, we aim to improve the power to detect gene-gene

interactions in existing large-scale GWAS data sets by consider-

ing for interaction testing only a highly focused set of candidate

SNPs extracted from prior information of known GWAS hits,

PPIs, and pathway information. To improve the power of

replicating gene-gene interaction signals in independent samples,

we introduce an adaptive locus-based validation procedure that

follows an approach similar to Liu et al. [28]. Applying these

procedures for testing for gene-gene interactions underlying lipid

levels, we discovered a significant interaction affecting HDL-C

levels, which provides new insights into the genetic architecture

of this complex trait. Using the adaptive locus-based validation

procedure, we also successfully replicated this novel interaction in

four independent cohorts, including two cohorts of different

ethnicity.

Results

Knowledge-driven identification of gene–gene
interactions

We tested the statistical significance of gene-gene interaction

between each pair of SNPs among 125 SNPs from 95 loci that

have been previously individually associated with any of the four

lipid levels [6] for a total of 7,750 tests, out of ,3 trillion possible

tests between each pair of SNPs in our data. Tests of interaction

were conducted using genotype data or imputed genotypes in a

sample of 9,713 European Americans (EAs) from the Atheroscle-

rosis Risk in Communities (ARIC) study [29] (Materials and

Methods). We used an F-test with four degrees of freedom within a

linear model framework for interaction testing [30,31]. This test

considers the 363 table of genotype pairs for two SNPs and tests

for significant interaction between the two SNPs on top of any

additive or dominance effects that each of the SNPs might exhibit

by itself. For consideration of statistical power and robustness, we

discarded from testing pairs of SNPs for which one or more of the

9 genotype-by-genotype combinations appeared in fewer than 20

individuals in our sample (Materials and Methods).

Testing for interaction between 7,750 pairs of SNPs for each of

four quantitative traits, we identified one significant interaction

underlying each of LDL-C level and HDL-C level (Figure 1a). The

interaction underlying LDL-C level is between rs2247056 and

rs1030431 (Bonferroni corrected Pc = 0.003; Figure 1a). To

explore the interaction between the two loci with better resolution,

we tested for interaction between each SNP in the 100 kb

surrounding rs2247056 and each SNP in the 100 kb surrounding

rs1030431 and found that the interaction signal peaked between

rs2853928 and rs1993453 (Pc = 0.01 after accounting for all

additional pairs of SNPs tested; Figure S1). The discovery SNP

pairs are in high LD with the fine-mapped SNP pairs, with an r2

value of 0.997 between rs2247056 and rs2853928 and 0.999

between rs1030431 and rs1993453. The former two reside near a

pseudogene, LOC100133383, and the latter two are located near

and in gene UBXN2B, respectively. However, this suggestive

interaction underlying LDL-C did not replicate in independent

cohorts.

Henceforth, we focus on the interaction between rs12916 and

rs1532085 on HDL-C levels (Pc = 0.008), since its validation in

additional cohorts is highly significant, as described below. We

first tested for interaction between each SNP in the 100 kb

surrounding rs12916 and each SNP in the 100 kb surrounding

rs1532085. While many of these pairs show significant interac-

tions (Figure 1b), as expected from LD, we observed the strongest

signal between rs3846662 and rs2043085 (Pc = 0.002). The fine-

mapped pair of SNPs is in high LD with the original pair of

SNPs, with an r2 value of 0.88 between rs3846662 and rs12916

and an r2 value of 0.93 between rs2043085 and rs1532085

(Figure S2). rs3846662 is intronic in HMGCR (Table 1), which has

not been previously associated with HDL-C, but has been

associated with both TC and LDL-C levels [6]. rs2043085 is

upstream of LIPC (Table 1), which has been previously found to

be associated with HDL-C [6].

The interaction between rs3846662 and rs2043085 affects

HDL-C twice as much as the effect of the polymorphism in LIPC

alone: While individuals with TT genotype at rs2043085 already

exhibit an average increase of 2.63 mg/ml in HDL-C (standard

error (SE) = 0.014; Figure 2a), this genotype in combination with

an AA genotype at rs3846662 leads to an average increase of

5.72 mg/ml (SE = 0.041; Figure 2b). The linear model with these

two SNPs has an R-square value of 0.5% and the linear model

with the two SNPs and their interaction has an R-square value of

Author Summary

Genome-wide association studies (GWAS) have identified
many loci associated with complex human traits or
diseases. However, the fraction of heritable variation
explained by these loci is often relatively low. Gene–gene
interactions might play a significant role in complex traits
or diseases and are one of the many possible factors
contributing to the missing heritability. However, to date
only a few interactions have been found and validated in
GWAS due to the limited power caused by the need for
multiple-testing correction for the very large number of
tests conducted. Here, we used three types of prior
knowledge, known GWAS hits, protein–protein interac-
tions, and pathway information, to guide our search for
gene–gene interactions affecting four lipid levels. We
identified an interaction between HMGCR and a locus near
LIPC in their effect on high-density lipoprotein cholesterol
(HDL-C) and another pair of loci that interact in their effect
on low-density lipoprotein cholesterol (LDL-C). We validat-
ed the interaction on HDL-C in a number of independent
multiple-ethnic populations, while the interaction under-
lying LDL-C did not validate. The prior knowledge-driven
searching approach and a locus-based validation proce-
dure show the potential for dissecting and validating
gene–gene interactions in current and future GWAS.

Interaction Affects HDL-C in Multiple Populations
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0.8%, which indicates that the interaction explains additional

0.3% of the overall variation in HDL-C levels (Materials and

Methods; Table S1). We tested whether rs3846662 and rs2043085

exhibit gene-gene interactions underlying any of the other lipid

levels, and found a nominally significant interaction underlying

LDL-C (P = 0.028), and almost significant interaction underlying

TG (P = 0.08) in ARIC.

We performed a larger scale interaction analysis between all

pairs of SNPs that (i) are found in interacting genes according to a

curated human protein-protein interaction network (,6 million

Figure 1. QQ plots for gene–gene interaction tests. A) Discovery in ARIC EA cohort by testing all possible pairs of SNPs among the 125
previously associated SNPs [6], for each of the four traits, showing deviation from expectation for two of them, and pointing in each of these two
cases to a single pair of interacting SNPs (Table 1). B) Fine mapping in ARIC EA by testing all possible pairs of SNPs in the 100 kb surrounding rs12916
and rs1532085 that were found from panel A (HDL-C). C) Validation by testing SNP pairs surrounding rs3846662 and rs2043085 (found from panel B;
see also Table 1) in four additional cohorts, each pointing to significant gene-gene interaction between the two regions. For all, stage (iii) of the
adaptive locus-based validation procedure is shown, though replication has already been successful in stage (ii) in the MESA EA cohort.
doi:10.1371/journal.pgen.1002714.g001

Table 1. Significant interactions on HDL-C in multi-ethnic cohorts.

Test Stage Cohorta SNP 1 SNP 2 Pc
d

chr posb rsID Genec chr posb rsID Genec

Discovery ARIC EA 5 74656539 rs12916 HMGCR (39 UTR) 15 58683366 rs1532085 40.8 k U LIPC 0.008

Fine Mapping ARIC EA 5 74651084 rs3846662 HMGCR (Intron) 15 58680954 rs2043085 43.2 k U LIPC 0.002

Validation MESA EA 5 74651084 rs3846662 HMGCR (Intron) 15 58582540 rs1973688 141.6 k U LIPC 0.006

Validation FHS EA 5 74651864 rs55727654 HMGCR (Intron) 15 58666341 rs473422 57.8 k U LIPC 0.002

Validation MESA HA 5 74602699 rs1423527 30.3 k U HMGCR 15 58718340 rs7163280 5.8 k U LIPC 0.04

Validation ARIC AA 5 74685520 rs3761743 27.6 k D HMGCR 15 58736623 rs567838 LIPC (Intron) 0.004

aEA denotes European American; HA denotes Hispanic American; AA denotes African American.
bBuild 37.1 (GRCh37).
cU indicates upstream of; D indicates downstream of.
dP-value after Bonferroni correction.
doi:10.1371/journal.pgen.1002714.t001

Interaction Affects HDL-C in Multiple Populations
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pairs), or (ii) are involved in the pathway of metabolism of lipids

and lipoproteins (,27 million pairs). All SNPs in a gene were

considered, as well as in the 5 kb regions upstream and

downstream. This analysis detected no significant gene-gene

interactions following Bonferroni correction (Pc$0.58 for PPIs;

Figure S3; Pc$0.14 for pathway; Figure S4).

Validation of gene–gene interaction in pairs of loci
Considering the quadratic reduction in replication power as a

function of LD between tag SNPs and causal loci, we aimed to

increase power via an adaptive locus-based validation procedure

that is related to that of Liu et al. [28]. In considering a replication

dataset, the procedure follows three sequential stages that leverage

the signals of proxy markers: (i) test for interaction between the

original SNP pair between which gene-gene interaction has been

detected; (ii) test for interactions between each of the two original

SNPs and each SNP in the proximate region containing the other

original SNP; (iii) test for interactions between each pair of SNPs

in each of the two respective proximate regions containing the two

original SNPs. This validation procedure proceeds sequentially

and stops at any stage when significant interactions were detected

after multiple-testing correction. Both the method of Liu et al. and

our adaptive locus-based validation method focus on replicating

the interaction between a pair of loci, rather than between a pair

of SNPs, due to the power limitations of replicating an interaction

between SNPs. The null hypothesis of the entire three-stage

procedure is that there is no interaction between the pair of loci,

rather than just between the pair of SNPs, thus the procedure

continues sequentially as described to consider proxy SNPs from

the loci containing each original SNP. Replication is successful if

an interaction between any SNP pair from the two loci is

significant after multiple-testing correction. Similar locus-based

approach has also been used in the context of gene-based GWAS

tests for single-marker association, which use an entire gene or

locus as the testing unit of association, rather than a single SNP

[27,32].

To validate the gene-gene interaction affecting HDL-C, we

performed replication analyses in two additional GWAS datasets

from the Framingham Heart Study (FHS) [33] and the Multi-

Ethnic Study of Atherosclerosis (MESA) [34], as well as in the

African American (AA) cohort from the ARIC study [29]. Using

our adaptive locus-based procedure, we tested for interaction

sequentially between SNPs surrounding rs3846662 and SNPs

surrounding rs2043085. We observed significant interactions in

the two additional EA cohorts from FHS and MESA (Figure 1c),

with Pc = 0.002 and Pc = 0.006 for the most significantly interact-

ing SNP pair (Table 1). Replication was also significant in

Hispanic Americans (HA) from MESA and AAs from ARIC

(Figure 1c; Table 1). The R-square of linear model with the two

interacting SNPs varies between 0.2–0.5% across the four

replication cohorts, with the interaction term between the two

explaining an additional 0.2–1.1% of the overall variation in

HDL-C levels (Table S1). The replication procedure failed in a

sample of AAs from MESA (Figure S5).

None of the successful replications were replicated at stage (i) of

the adaptive locus-based validation procedure, which means that

an interaction between the same SNP pair is not observed

significantly in the additional samples. The interaction was

successfully validated in stage (ii) of the three stages in the MESA

EAs, with the same SNP in HMGCR (rs3846662) and a proxy SNP

near LIPC exhibiting a significant gene-gene interaction after

multiple-testing correction. The other three successful replications

occurred at stage (iii) (Table 1), emphasizing the importance of a

locus-based replication approach. The combined evidence from

the discovery and four different validation cohorts for a gene-gene

interaction between the two loci under study is overwhelmingly

significant, even following a conservative Bonferroni correction

(Pc = 9.061028).

While the gene-gene interaction signal peaks for different pairs

of SNPs across the different cohorts (Table 1), the type of

interaction and effect patterns appear consistent across several

sample sets (Figure S6). To test this formally, we partitioned the

Figure 2. Marginal and interaction effect sizes on HDL-C level in ARIC EA cohort. A) Boxplot of the effect sizes of rs2043085. Allele T of
rs2043085 leads to increased HDL-C, with median levels of 45.8, 46.9 and 49.3 mg/ml for CC, CT, and TT (difference in mean levels reported in main
text). B) Boxplot of the effect sizes of the SNP pair, rs3846662:rs2043085. The genotype AA:TT leads to a considerable increase of HDL-C. The median
HDL-C level in the entire sample is 46.7 mg/ml, while the median level for AA:TT is 52.7 mg/ml (rs2043085 is the only one of the two that is associated
by itself with HDL-C, hence shown in panel A).
doi:10.1371/journal.pgen.1002714.g002

Interaction Affects HDL-C in Multiple Populations
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significant SNP-SNP interactions into the four possible interaction

components on top of the marginal SNP effects, namely additive

by additive (A6A), additive by dominance (A6D), dominance by

additive (D6A), and dominance by dominance (D6D) compo-

nents (Materials and Methods). Considering a nominal signifi-

cance level of 0.01, D6A and D6D components are significant

and underlie the significant interaction in the ARIC EA discovery

set, between rs12916 and rs1532085 (Table S1). All four terms are

significant between the pair of SNPs, rs3846662 and rs2043085,

that resulted from fine mapping in the same discovery set, with

D6A and D6D being of the same effect direction (sign) and

similar effect sizes as between rs12916 and rs1532085 (Table S1).

Examining the two replication cohorts of a similar (EA) ancestry,

the interaction in the MESA cohort similarly shows significant

D6A and D6D components, with same effect direction, though

with larger effect sizes and a higher proportion of phenotypic

variance explained (Table S1). None of the four terms is significant

by itself in the EA FHS cohort. These results of consistent patterns

of interaction across the EA cohorts support the possibility that

they are all governed by the same (unobserved or partially

unobserved) interacting variants.

Validation of imputation accuracy
To verify that our results are not an artifact of imputation

errors, we compared imputed genotypes of the two SNPs (rs12916

and rs3846662) that were involved in significant interactions and

for which we could obtain measured genotype data from an

independent source, using the ITMAT/Broad/CARE (IBC)

Vascular Disease 50 k SNP Array chip [35]. For these two SNPs,

r2 between imputed and actual genotypes is 0.914 and 0.921 and

the genotype concordance rate is 94.5% and 94.7%, respectively.

Although the imputation is not perfect, the two interaction tests

involving these two SNPs are at least as significant when replacing

imputed genotypes with measured IBC genotypes, consistent with

imputation errors adding noise and masking some of the signal,

rather than biasing the statistical test.

Discussion

Tests of gene-gene interactions are not as powerful as tests of

single-marker association, so a judicious strategy is essential for

successful interaction analysis in GWAS [9,36]. The first step is to

determine the size of the analysis, genome-wide or focusing on

candidate SNPs. This step should consider the sample size,

possible effect size of the underlying interaction, and the desired

statistical power. Current single-marker GWAS have been

successful in detection of single-marker associations for many

complex diseases or traits using a stringent genome-wide

significance level (P,561028). To achieve a similar success for

interaction analysis, we are limited to performing ,1 million tests

even if the interaction test and single-marker test had the same

statistical power. This limitation means that we are not able to

conduct an inclusive all-by-all pair-wise interaction analysis in

current GWAS. Thus, in this study we only tested for interactions

between candidate SNPs based on prior knowledge.

We used three types of prior knowledge, known GWAS hits,

protein-protein interaction networks, and known functional

pathways. These three analyses might be different in the

enrichment of epistasis signals and are also different in the

number of interaction tests, 7,750 based on known GWAS hits,

,6.2 million using PPI, and ,27 million with pathway

information. We found significant interactions from the 7,750

interaction tests using known GWAS hits. As the sample size of

,10,000 individuals is relatively large among existing GWAS, this

indicates that the observed (tagged) effect size of any other

underlying interactions is no larger than the marginal effects of

single SNPs. It is also likely that the epistasis signals are better

enriched between markers that are marginally associated with lipid

traits such that testing interactions among known GWAS hits is

more powerful in our study. Therefore, our results suggest that a

small-scale interaction analysis of candidate SNPs driven by

known marginal associations might be a good choice for detecting

epistatic interactions in current GWAS.

Recently, the Population Architecture using Genomics and

Epidemiology Study [37] found only ,50% of the 125 reported

associations with lipid levels [6] to replicate in three non-

European cohorts. Due to the quadratic decrease in the

interaction effect of tagged markers, gene-gene interactions are

even less likely to replicate in diverse populations. Leveraging

signals from proximate linked SNPs, our adaptive locus-based

method successfully validated gene-gene interactions between

HMGCR and LIPC in four additional, independent cohorts,

including two of non-European ancestry. Although the most

significant interaction in each cohort involves different SNPs,

they are proximate across the cohorts, with stronger LD and

smaller distances amongst the three EA cohorts and weaker LD

and larger distances between them and the HA and AA cohorts

(Figure S2 and Table 1). The differences in distance and LD

between ethnicities could be due to differences in genetic

background, demographic history, and natural selection, even if

the different SNP pairs capture the same underlying causal

interaction. However, the interaction shows similar patterns

among some, but not all cohorts (Figure S6 and Table S1), while

the different SNPs around HMGCR are in strong LD, and those

around LIPC show weak LD (Figure S2). These results suggest

that the five SNP pairs either capture separate causal interactions

or are only in weak LD with the same pair of interacting,

unobserved variants.

Another possibility is that the interaction is between relatively

rare causal variants: Much like rare causal variants can lead to

multiple independent associations of common variants, dubbed

‘‘synthetic associations’’ [38], an interaction between two rare

causal variants can produce an even larger number of independent

‘‘synthetic interactions’’, which can in principle explain almost-

independent, yet proximate gene-gene interactions. Another

possibility is that the underlying interaction is more complex and

involves more than a pair of SNPs. In that case, in our analysis of

pairs of SNPs, each pair might tag only certain aspects of the

underlying interaction.

Both HMGCR and LIPC are involved in metabolism of lipids

and lipoproteins. HMGCR, which has been associated with TC

and LDL-C [6], regulates the rate of cholesterol synthesis via a

negative feedback mechanism mediated by sterols and non-sterol

metabolites [39]. LIPC encodes hepatic lipase which is an

important enzyme in HDL metabolism [40] and has been

previously associated with HDL-C levels [6]. The interaction

between variants in these genes as discovered in this study can be

possibly explained by an indirect interaction between cholesterol

synthesis and the metabolism of LDL and HDL particles. HGMCR

is the rate-controlling enzyme in the mevalonate pathway for

cholesterol synthesis [41]. Much of this cholesterol will form

cholesteryl esters that will be packaged into various lipoproteins

including LDL, HDL, and TG-rich lipoproteins. There are a

number of known lipoprotein interactions that result in the flow of

cholesterol in the form of cholesteryl esters from LDL and VLDL

to HDL-C [42]. This cholesterol is later processed with the HDL

particle by either reabsorbing into the liver or excretion in the

urine [43].

Interaction Affects HDL-C in Multiple Populations
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The rs2043085 SNP in the LIPC gene region, where our

strongest signal has been observed in fine mapping in the discovery

panel, was recently associated with elevated HDL-C in an

additional cohort of individuals with mixed dyslipidemia [44].

Increased HDL-C may be related to modest inhibition of TG

hydrolysis in the HDL particle by hepatic lipase, slowing its

excretion in the urine along with its cholesterol content. Because

HMGCR has a major effect on cholesterol synthesis, it will also

indirectly affect the cholesterol content in the HDL particle

through its interaction with LDL and TG-rich particles. In

addition, LIPC has been reported to exhibit gene-gene interaction

with other genes associated with lipid traits [45,46], and HMGCR

has been reported to interact with ABCA1 in Alzheimer’s disease

risk [47]. While these results increase the plausibility of a biological

interaction between these two genes, we note that a statistical

gene-gene interaction does not necessarily entail an underlying

epistatic interaction in the biological sense [7]. We also note that

while we refer to the interaction as being between HMGCR and

LIPC, these two genes are implicated only by genomic proximity,

and we presented no direct evidence that these genes are the

interacting functional units.

We conclude that a focused study with higher enrichment of

putative signals might have improved power to detect gene-gene

interactions underlying complex diseases or traits. By focusing only

on SNPs that were previously associated with the studied trait,

HDL-C level, or any of a handful of related traits (other lipid

levels), we successfully identified an interaction between SNPs in or

near HMGCR and SNPs upstream of LIPC in European American

samples. By using a locus-wide validation procedure to overcome

the quadratic impact of partial SNP tagging on the observed

interaction effect size, we further replicated the interaction

between these loci in additional European American samples, as

well as in African American and Hispanic American samples.

Materials and Methods

Study descriptions
All work done in this paper was approved by local institutional

review boards or equivalent committees.

Atherosclerosis Risk in Communities (ARIC) Study. The

ARIC Study is a multi-center prospective investigation of

atherosclerotic disease [29]. EA and AA individuals aged 45–64

years at baseline were recruited from four communities: Forsyth

County, North Carolina; Jackson, Mississippi; suburban areas of

Minneapolis, Minnesota; and Washington County, Maryland. A

total of 15,792 individuals participated in the baseline examination

in 1987–1989, with three triennial follow-up examinations. We

conducted a discovery interaction analysis using 9,713 EAs from

this study, for whom phenotype and genotype data were available,

and considered 3,207 AAs from this study as one of the replication

cohorts.

Framingham Heart Study (FHS). The FHS is a three

generational prospective cohort [33]. 5,209 EAs were initially

recruited in 1948 in Framingham, Massachusetts to evaluate

cardiovascular disease risk factors. The second generation cohort

(5,124 offspring of the original cohort) was recruited between 1971

and 1975, and lipid measurements were obtained multiple times.

The third generation cohort (4,095 grandchildren of the original

cohort) was collected between 2002 and 2005, and one lipid

measurement was obtained. We considered as one of the

replication cohorts a sample of 6,575 individuals from FHS for

whom genotypes and lipid measurements were available, while

accounting for their relatedness (see Population stratification and

relatedness).

Multi-Ethnic Study of Atherosclerosis (MESA). MESA is

a prospective cohort study of 8,296 men and women aged 45–84

years recruited from 6 US communities (Baltimore, MD; Chicago,

IL; Forsyth County, NC; Los Angeles County, CA; northern

Manhattan, NY; and St. Paul, MN) [34]. MESA was designed to

determine the characteristics of subclinical cardiovascular disease

and its progression, hence adults were considered and individuals

with symptoms or history of medical or surgical treatment for

cardiovascular disease were excluded. Participants were enrolled

between July 2000 and August 2002 and self-reported their race/

ethnicity group as Caucasian or white, African American or black,

Spanish/Hispanic/Latino, or Chinese American. We attempted

replication in three cohorts from the first three of these ethnicities,

with 2,685, 2,588, and 2,174 individuals, respectively, for which

genotypes and lipid measurements were available. We discarded

777 Chinese Americans from our replication analysis because of

the small sample size.

Genotype data
We obtained Affymetrix 6.0 SNP array genotyping of samples

from the ARIC study [29]. We obtained Affymetrix 6.0 SNP array

genotyping of MESA samples and Affymetrix 500 K SNP array

genotyping of FHS samples from the database of Genotypes and

Phenotypes (dbGaP; MESA SHARe, downloaded in May 2011 and

Framingham Cohort, downloaded in April 2010) [48,49]. Genotype

quality control (QC) steps included the exclusion of individuals

with .10% missing data, and the exclusion of SNPs with call rates

,90%, minor allele frequencies (MAF)#1%, or Hardy-Weinberg

Equilibrium (HWE) test with P,1026. For the pairwise interaction

test of each pair of SNPs we also required (i) sample size of each of

the nine possible genotype-by-genotype combinations of the two

SNPs being .20 in the discovery analysis and .10 in the

validation analysis; and (ii) LD of r2,0.1 between the two SNPs

between which interaction is tested. The first requirement is a

generalization of the MAF requirement in single-marker analysis.

We used IMPUTE2 [50] with HapMap3 [51] and 1000

Genomes [52] reference haplotypes to impute untyped SNPs,

resulting in the same set of SNPs across cohorts. We did not

impute untyped SNPs in MESA HA samples since no appropriate

reference panel was available at the time we conducted our

analysis. We discarded imputed SNPs with information score less

than 0.6. Following this QC stage, we considered the genotype

with the maximum posterior probability, and discarded SNPs for

which this probability is ,0.8.

Lipid level measurements
We considered four lipid measurements: TC, LDL-C, TG, and

HDL-C. All measurements were done in the fasting state using

standard enzymatic methods. In all three studies, each lipid level is

measured at multiple time points and we considered the average

level per individual of each lipid in all our analyses. We applied a

log transformation to TG levels to normalize them in face of the

skewness in the original distribution, as previously proposed [6].

We excluded individuals known to be taking lipid-lowering

medications.

Gender, age, age squared, and body mass index (BMI) were

included as covariates in all analyses, similarly to GWAS based on

these phenotypes [6,26]. We averaged values for age and BMI

whenever multiple measurements were available, in line with the

averaging of lipid levels [6]. The average age was also squared and

included as a covariate. Plate is also included as a covariate in the

ARIC data since it is correlated with some of the lipid levels (‘‘plate

effect’’; data not shown).
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Population stratification and relatedness
Principal component (PC) analysis was conducted using

EIGENSOFT [53]. Top 10 PCs were included in the analysis as

covariates to account for potential population stratification in each

of the ARIC and MESA cohorts. For FHS, we applied a mixed

model method to account for relatedness by performing the

interaction test on the residuals after removing familial structure

[26,54].

Gene–gene interaction test
As described in [30,31], we tested for interaction between two

SNPs on a quantitative trait as follows. Assume Y is the trait of

interest and Gi is the genotype of SNP i (i = 1, 2). Gi denotes the

number of copies of the reference allele (0, 1, or 2). Two indicator

variables xi and zi are defined for each SNP as

xi~

1, Gi~0

0, Gi~1

{1, Gi~2

8><
>:

zi~

{0:5, Gi~0

0:5, Gi~1

{0:5, Gi~2

8><
>:

Two linear models were fitted. The first, model (1), allows for

additive and dominance effects at each SNP, but is strictly additive

(i.e. no interaction) over the two SNPs. The second, model (2),

allows for the four possible forms of genotype-by-genotype

interaction (additive6additive, additive6dominance, dominan-

ce6additive, and dominance6dominance) [55], as follows:

Y~Z0b0zx1a1zz1d1zx2a2zz2d2ze ð1Þ

Y~Z0b0zx1a1zz1d1zx2a2zz2d2z

x1x2iaazx1z2iadzz1x2idazz1z2iddze
ð2Þ

Here, b0 denotes a vector of intercept and covariates as described

above. ai and di denote the additive and dominance effects of SNP

i, and iaa, iad, ida, and idd are the four interaction effects between the

two SNPs.

We tested for the existence of an epistatic interaction of any type

by an F-test with four degrees of freedom between models (1) and

(2) [18]. The F-test with four degrees of freedom tends to be more

powerful when little is known about the underlying epistatic effect

in terms of the possible directions of the deviation from

independence of the additive effects. This test is similar to the

‘‘–epistasis’’ option in PLINK [56], except that only additive

effects and their interaction are considered in PLINK, and an F-

test with one degree of freedom is hence applied. We also

considered a test for ‘‘physiological epistasis’’ [7] under the same

model and obtained very similar results (data not shown).

Throughout the results, we report P values following a conserva-

tive Bonferroni correction. To compare the effects of the different

SNP pairs detected in our discovery and validation analyses, we

also estimated and tested the four interaction terms in model (2) for

each pair of SNPs from different cohorts using a t-test.

Prior knowledge driven searching strategy
Although we only focus on pairwise interaction analysis, the

total number of potential pairwise interaction tests across 2.5

million SNPs is still huge, about 3 trillion tests. Due to the huge

reduction in power entailed by multiple-testing correction for such

a large number of tests, it is crucial to restrict the number of tests a

priori. We aimed to enrich possible interaction signals in the

limited number of tests we considered through the following three

strategies.

GWAS hits. In total 95 loci were recently associated with TC,

HDL-C, LDL-C, or TG in a GWAS meta-analysis [6]. We

exhaustively tested the pairwise interactions among all the

significantly (P,561028) associated SNPs in these 95 loci, for a

total of 125 significant SNPs. For this approach, the total number

of interaction tests is 7,750 for each trait.

PPI. We assembled over 3000 high-confidence human PPIs

and for each exhaustively tested the pairwise interactions between

each SNP in the first gene and each SNP in the second gene. For

n1 and n2 being the numbers of SNPs in the first and second gene,

respectively, the number of interaction tests is n16n2 for this PPI.

Repeating this process for the 3000 PPIs, we tested a total of ,6.2

million SNP-SNP interactions. We obtained gene information

(hg18) from UCSC genome browser (http://genome.ucsc.edu/) to

map SNPs to genes, considering for each gene all SNPs from 5 kb

upstream to 5 kb downstream of the gene. These PPIs, however,

have no specific implications to lipid levels as they are not context-

based, and were collected under different physiological conditions.

Functional pathways. We tested for gene enrichment of the

96 genes reported in ref. 6 as associated with lipid levels. As

expected, the metabolism of lipids and lipoproteins pathway (www.

reactome.org) is the most significant pathway (P,10220). There

are a total of 228 genes in this pathway, to which we mapped a

total of 12,716 SNPs similarly to above. We tested for pairwise

interactions between each pair of these 12,716 SNPs, yielding a

total of ,27 million tests.

Adaptive locus-based validation method
Liu et al. [28] developed a local validation strategy and validated

a few interactions affecting common human diseases. This strategy

attempts to replicate the interaction between two loci rather than

the interaction between the original pair of SNPs. To further

improve power, we extended this local validation strategy to an

adaptive locus-based validation procedure: For a detected

interaction between SNP A and SNP B in the discovery panel

we followed three stages in each of the validation panels. (i) First,

test for interaction between SNP A and SNP B; (ii) Second, if the

interaction in (i) is not significant by itself, test for interaction

between A and each SNP,200 kb away from B, and similarly

between B and each SNP surrounding A; (iii) Last, if no test in the

second stage is significant following multiple-hypothesis correction,

test for interaction between each SNP,100 kb away from A and

each SNP,100 kb away from B. Assuming n1 and n2 SNPs in the

locus surrounding A and B, respectively, the number of interaction

tests performed is 1, n1+n2, and n16n2 in the three stages,

respectively, with n1 and n2 in stage (iii) being smaller than those in

stage (ii) due to considering only 100 kb. To maintain power in

light of multiple-testing correction, the validation process proceeds

sequentially and stops once we find significant results after

multiple-testing correction. The interaction between rs3846662

and rs2043085 on HDL-C was successfully validated in stage (ii)

for MESA EA samples and in stage (iii) for the MESA HA, FHS

EA, ARIC AA cohorts. It did not validate significantly after

multiple-testing correction in any of the three stages in the MESA

AA samples. We used the same procedure as in step (iii) for fine

mapping within the discovery panel.

Supporting Information

Figure S1 Quantile–quantile (QQ) plots for gene–gene interac-

tion tests of LDL-C in ARIC EA cohort. (A) Discovery analysis

(reproduced from Figure 1a in main text); (B) Fine mapping by
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testing all possible pairs of SNPs in the 100 kb surrounding each of

rs2853928 and rs1993453.

(TIF)

Figure S2 Linkage disequilibrium in data from the 1000

Genomes Project of all SNPs involving in significant interactions

underlying HDL-C in any of the cohorts (i.e. all SNPs from

Table 1). (A) and (C) are for SNPs in the locus on chromosome 5 in

the CEU (European American) and YRI (West African) 1000

Genomes samples, respectively; similarly, (B) and (D) for SNPs on

the interacting locus on chromosome 15. These figures were

produced by Haploview [57]. The numbers shown are R-square

values with zeroes and dots omitted.

(TIF)

Figure S3 QQ plots for gene–gene interaction tests in ARIC EA

cohort based on the PPI-based strategy for considering pairs of

SNPs. (A) TC; (B) LDL-C; (C) TG; (D) HDL-C.

(TIF)

Figure S4 QQ plots for gene–gene interaction tests in ARIC EA

cohort based on the pathway-based strategy for considering pairs

of SNPs. (A) TC; (B) LDL-C; (C) TG; (D) HDL-C. We found a

deviation in the QQ plot of the P values for interactions

underlying TC levels and the strongest interaction signal appears

between rs4804546 and rs914196, though it is not significant

following correction for the ,27 million tests (Pc = 0.14). The two

genes from the pathway of metabolism of lipids and lipoproteins

associated with this interaction are CARM1 and AGPAT3. AGPAT3

was previously found to be associated with the level of

phospholipid [58], while CARM1 has not been associated to the

best of our knowledge with any lipid levels.

(TIF)

Figure S5 QQ plots for stage (iii) of the adaptive locus-based

validation tests in MESA African American cohort, which show no

significant results.

(TIF)

Figure S6 Effect sizes on HDL-C level of the six SNP pairs from

Table 1 in main text in the respective cohorts. The ARIC EA fine

mapping panel is reproduced from Figure 2B in main text.

(TIF)

Table S1 Effect estimates for significant interactions between

SNPs surrounding HMGCR and LIPC on HDL-C in EA, AA, and

HA cohorts.

(DOC)
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