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Abstract

Cancer patients exhibit a broad range of inter-individual variability in response and toxicity to

widely used anticancer drugs, and genetic variation is a major contributor to this variability.

To identify new genes that influence the response of 44 FDA-approved anticancer drug

treatments widely used to treat various types of cancer, we conducted high-throughput

screening and genome-wide association mapping using 680 lymphoblastoid cell lines from

the 1000 Genomes Project. The drug treatments considered in this study represent nine

drug classes widely used in the treatment of cancer in addition to the paclitaxel + epirubicin

combination therapy commonly used for breast cancer patients. Our genome-wide associa-

tion study (GWAS) found several significant and suggestive associations. We prioritized

consistent associations for functional follow-up using gene-expression analyses. The NAD

(P)H quinone dehydrogenase 1 (NQO1) gene was found to be associated with the dose-

response of arsenic trioxide, erlotinib, trametinib, and a combination treatment of paclitaxel

+ epirubicin. NQO1 has previously been shown as a biomarker of epirubicin response, but

our results reveal novel associations with these additional treatments. Baseline gene

expression of NQO1 was positively correlated with response for 43 of the 44 treatments sur-

veyed. By interrogating the functional mechanisms of this association, the results demon-

strate differences in both baseline and drug-exposed induction.
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Author summary

In the burgeoning field of personalized medicine, genetic variation is recognized as a

major contributor to patients’ differential responses to drugs. Lymphoblastoid cell lines

(LCLs) are a consistent and convenient representation of cells used for in vitro research.

Human genome sequencing with LCLs can identify new genes that influence individuals’

drug responses, including the dose-response relationship, which describes the relationship

between physiological response and the amount of exposure to a substance. In this work,

we conduct high-throughput screening and genome-wide association mapping using 680

LCLs from the 1000 Genomes Project to identify new genes that influence individual

response to 44 widely used anticancer drugs. We found the NQO1 gene to be associated

with the dose-response of several drugs, namely arsenic trioxide, erlotinib, trametinib,

and the paclitaxel + epirubicin combination, and performed follow-up analyses to better

understand its functional role in drug response. Our results indicate NQO1 expression is

correlated with increased drug resistance and provide some evidence that SNP rs1800566

influences drug response by altering protein activity for these four treatments. With fur-

ther research, NQO1 has potential use as a therapeutic target, for example, suppressing

NQO1 expression to increase sensitivity to particular drugs.

Introduction

A major goal of precision medicine is improved prediction of response to treatment in cancer

patients, who exhibit inter-individual variability in both drug efficacy and drug toxicity due to

tumor heterogeneity and host genetic variation [1–4]. Adverse drug effects range from mild

reactions such as rash or nausea to severe reactions that can include peripheral neuropathy,

hematotoxicity, or febrile neutropenia [5, 6]. Genetic, epigenetic, and environmental factors,

along with the interactions between these factors, combined with inherent tumor heterogene-

ity, contribute to drug-response variability [1–4]. As detailed in the PharmGKB database [7],

there are a growing number of pharmacogenomic biomarkers. For example, head and neck

cancer patients carrying the A allele at rs2227983 in their epidermal growth factor receptor

(EGFR) gene have greatly increased treatment response and survival after cetuximab (an

EGFR antagonist) treatment. Likewise, dosage titration of mercaptopurine, which is used to

treat acute lymphoblastic leukemia, is recommended in patients with polymorphisms in the

TPMT gene due to increased toxicity [8]. Despite these successes, predictive biomarkers

remain elusive for a large number of anticancer drugs [3, 9], and further elucidation of genetic

contributions to treatment efficacy and toxicity remains a critical goal of pharmacogenomics.

Lymphoblastoid cell line (LCL) experiments of anticancer drug response have demon-

strated that drug response is a heritable trait, leading researchers to identify host genetic vari-

ants associated with dose-response phenotypes in this system [10–12]. As reviewed by Jack

et al. [13], the LCL model offers several advantages. The limited number of confounders and

large sample sizes compared to pharmacogenomics studies in clinical trials and the ready pub-

lic availability of genotyping data make the LCL model a cost-effective and efficient system for

discovering new genetic associations. Previous large-scale studies on in vitro drug response

have focused on cancer cell lines to identify associations between somatic mutations and drug

response [14, 15]. While it has long been established that somatic mutations in a tumor affect

drug efficacy, studies have shown that the contribution of germline variants can be as great or

greater than that of somatic mutations [9, 16, 17]. Hence, in cancer pharmacogenomics, both

somatic and germline variations must be identified to maximize drug efficacy and minimize
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drug toxicity. LCLs, which are typically generated from peripheral blood mononuclear cells,

represent the germline variation in the host genome and thus allow for interrogation of the

effects of germline variants on drug response. While there are limitations to the model (e.g.,

minimal expression of drug transporter enzymes), it has been successfully used in a range of

pharmacogenomics studies [17–21]. The numerous successes in using the LCL model to iden-

tify clinically relevant pharmacological phenotype-genotype associations [17–21] include the

association of single nucleotide polymorphisms (SNPs) in the MGMT gene with temozolomide

response [22], the identification of genetic variants associated with cytotoxicity to platinating

agents across populations [23], and the association of FKBP5 expression levels with cytarabine

cytotoxicity [24, 25].

In the current study, we present the results of the largest LCL screen of anticancer drugs to

date. We assayed 680 cell lines from the 1000 Genomes Project across 44 anticancer drugs at

six doses of each drug, resulting in 179,520 drug-dose-cell line combinations. The LCLs from

the 1000 Genomes Project represent true global ethnic and racial diversity, making the results

of our study applicable to multiple global populations. The drug treatments considered in this

study represent nine drug classes widely used in the treatment of cancer in addition to the pac-

litaxel + epirubicin combination therapy commonly used for breast cancer patients [26–28].

Using genome-wide association studies (GWAS) to find SNPs associated with the cytotoxicity

of 44 anticancer drug treatments, we report several genome-wide significant (p< 10−8) and

suggestive (p < 10−6) associations. We prioritize consistent associations for functional follow-

up using gene-expression analyses. Further, our functional work interrogates the potential

mechanism of action of our findings.

Results

GWAS results

Drug treatment responses in each of the 680 cell lines were assessed with the alamarBlue assay

across six doses of each of the 44 drug treatments. Pilot experiments were conducted to deter-

mine treatment-specific dose ranges to maximize the variability in dose-response across indi-

viduals. Table 1 shows treatments and their drug classes, and Table A in S1 Text shows the six

concentrations used for each treatment. We used a carefully developed quality control pipeline

to process dose-response assays, the details of which are described in Brown et al. [22, 29]. We

downloaded genetic data for each cell line from the 1000 Genomes database [30] (https://

www.internationalgenome.org/data-portal/data-collection/phase-1) and, after routine quality

control, used 1,510,701 SNPs for GWAS. Quality control details can be found in Abdo et al.

[31]. To avoid the assumptions and noise of curve fitting, we ran a multivariate analysis of

covariance (MANCOVA) for each SNP across the genome using previously developed multi-

variate analysis of covariance genome-wide analysis (MAGWAS) software [32]. As described

in detail in Brown et al. [32], we used the viability at each dose point as a vector response in the

MANCOVA model tested principal components, other covariates, and a genotypic-encoded

SNP variable for association. We used this MANCOVA model to test each SNP across the

genome and corrected for multiple comparisons at the significant and suggestive levels based

on the effective number of variants across the genome [33].

Table 2 reports suggestive genome-wide significant associations (p < 10−6) that comprise

40 unique SNPs across 21 anticancer treatments. Further, we report 10 SNP-drug associations

at a genome-wide significance level of p< 10−8. We used the Ensembl Variant Effect Predictor

(VEP) [34] to classify the suggestively significant SNPs. The two largest categories are intron

variants, with 53% of the SNPs, and intergenic variants, with 20% of the SNPs. The SNPs in

these results are annotated across 18 unique genes.
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Table 1. Anticancer drug treatments used for the drug-response assays by drug class.

Drug treatment Drug class

1 Hydroxyurea Anti-metabolite

2 MitomycinC DNA alkylating agent

3 Temozolomide

4 Paclitaxel + Epirubicin Combination treatment

5 Etoposide Epipodophyllotoxins

6 Teniposide

7 Daunorubicin Anthra-cyclines/cendiones (Topoisomerase II inhibitors)

8 Doxorubicin

9 Epirubicin

10 Idarubicin

11 Mitoxantrone

12 Topotecan

13 Docetaxel Microtubule binding agents

14 Paclitaxel

15 Vinblastine

16 Vincristine sulfate

17 Vinorelbine

18 Azacytidine Nucleosides

19 Cladaribine

20 Cytosine beta-D-arabinoside

21 Fludarabine

22 Gemcitabine

23 5-Fluorouracil Fluoropyrimidines

24 Fluoro-deoxyuridine

25 Arsenic trioxide Other

26 Carboplatin Platinum agents

27 Oxaliplatin

28 Apatinib Tyrosine kinase inhibitors

29 Axitinib

30 Cabozantinib

31 Crizotinib

32 Dasatinib

33 Dovitinib

34 Erlotinib

35 Ibrutinib

36 Masatinib

37 Nilotinib

38 Nintedanib

39 Sorafenib

40 Sunitinib

41 Tivantinib

42 Trametinib

43 Vandetanib

44 Vemurafenib

The 44 anticancer drug treatments, listed by drug class, used for the drug-response assays in LCLs in this study.

https://doi.org/10.1371/journal.pgen.1009732.t001
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Table 2. SNPs significantly associated with drug response.

Drug Chr RSID -log10 (pvalue) Most severe consequence Host gene symbol Host gene Ensembl ID

1 Cladaribine 7 rs540157 6.52 regulatory_region_variant - -

2 Cladaribine 9 rs72706422 6.14 intergenic_variant - -

3 Dovitinib 11 rs7480726 6.16 upstream_gene_variant - -

4 Dovitinib 11 rs7930221 6.81 upstream_gene_variant - -

5 Epirubicin 10 rs1125411 7.05 intergenic_variant - -

6 Epirubicin 10 rs7911302 6.97 intergenic_variant - -

7 Gemcitabine 12 rs11043377 6.15 intergenic_variant - -

8 Gemcitabine 12 rs6486806 7.41 intergenic_variant - -

9 Hydroxyurea 2 rs13420950 6.09 intergenic_variant - -

10 Oxaliplatin 10 rs10826348 7.71 intergenic_variant - -

11 Oxaliplatin 10 rs1112962 6.24 intergenic_variant - -

12 Paclitaxel 2 rs1107718 7.95 intergenic_variant - -

13 Paclitaxel 9 rs4740816 6.23 upstream_gene_variant - -

14 Tivantinib 18 rs11662580 6.52 intergenic_variant - -

15 Hydroxyurea 8 rs13261597 6.01 intron_variant ADRA1A ENSG00000120907

16 Vandetanib 7 rs10273337 6.04 intron_variant AGAP3 ENSG00000133612

17 Vemurafenib 2 rs4664521 6.31 intron_variant CACNB4 ENSG00000182389

18 Vemurafenib 2 rs9784082 6.58 intron_variant CACNB4 ENSG00000182389

19 Nintedanib 7 rs798933 6.10 intron_variant CPED1 ENSG00000106034

20 Gemcitabine 7 rs216706 6.29 intron_variant CREB5 ENSG00000146592

21 Vinorelbine 8 rs1478275 6.04 intron_variant CSMD1 ENSG00000183117

22 Vemurafenib 6 rs12191002 6.07 intron_variant GMDS-DT ENSG00000250903

23 Gemcitabine 10 rs17142881 7.10 intron_variant ITIH5 ENSG00000123243

24 Vinblastine 16 rs1693956 6.12 intron_variant LINC01081 ENSG00000268754

25 Oxaliplatin 10 rs11006706 8.91 intron_variant MKX-AS1 ENSG00000230500

26 Carboplatin 20 rs6010746 6.27 intron_variant MRGBP ENSG00000101189

27 Arsenic trioxide 16 rs11641233 6.05 3_prime_UTR_variant NFAT5 ENSG00000102908

28 Erlotinib 16 rs11639947 8.39 intron_variant NFAT5 ENSG00000102908

29 Erlotinib 16 rs11641233 8.16 3_prime_UTR_variant NFAT5 ENSG00000102908

30 Erlotinib 16 rs12232410 9.10 3_prime_UTR_variant NFAT5 ENSG00000102908

31 Erlotinib 16 rs12447326 9.17 intron_variant NFAT5 ENSG00000102908

32 Erlotinib 16 rs2361838 7.91 intron_variant NFAT5 ENSG00000102908

33 Erlotinib 16 rs58643880 8.12 3_prime_UTR_variant NFAT5 ENSG00000102908

34 Paclitaxel + Epirubicin 16 rs11639947 6.18 intron_variant NFAT5 ENSG00000102908

35 Trametinib 16 rs11639947 8.11 intron_variant NFAT5 ENSG00000102908

36 Trametinib 16 rs11641233 6.14 3_prime_UTR_variant NFAT5 ENSG00000102908

37 Trametinib 16 rs12447326 6.08 intron_variant NFAT5 ENSG00000102908

38 Trametinib 16 rs2361838 6.70 intron_variant NFAT5 ENSG00000102908

39 Trametinib 16 rs58643880 7.08 3_prime_UTR_variant NFAT5 ENSG00000102908

40 Arsenic trioxide 16 rs1437135 6.04 intron_variant NQO1 ENSG00000181019

41 Erlotinib 16 rs1437135 8.31 intron_variant NQO1 ENSG00000181019

42 Erlotinib 16 rs1800566 8.69 missense_variant NQO1 ENSG00000181019

43 Paclitaxel + Epirubicin 16 rs1800566 6.15 missense_variant NQO1 ENSG00000181019

44 Trametinib 16 rs1437135 6.64 intron_variant NQO1 ENSG00000181019

45 Trametinib 16 rs1800566 8.07 missense_variant NQO1 ENSG00000181019

46 Erlotinib 8 rs2444306 6.58 intron_variant OXR1 ENSG00000164830

47 Temozolomide 3 rs4470517 6.15 intron_variant RYK ENSG00000163785

(Continued)

PLOS GENETICS High throughput screening and GWAS in anticancer drugs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009732 August 26, 2021 5 / 28

https://doi.org/10.1371/journal.pgen.1009732


Variants in or close to the nuclear factor of activated T-cells 5 (NFAT5) and NAD(P)H qui-

none dehydrogenase 1 (NQO1) genes (located next to each other on chromosome 16) had the

most consistent association with response across 44 anticancer treatments. Six unique SNPs in

or close to the NFAT5 gene were associated with response to erlotinib, trametinib, and the pac-

litaxel + epirubicin combination treatment, and two unique SNPs in the NQO1 gene were

associated with drug response to one or more of arsenic trioxide, erlotinib, trametinib, and the

paclitaxel + epirubicin combination treatment (Table 2).

The most significant association was for SNP rs12447326 (p-value = 6.78e-10) in the NFAT5
gene on chromosome 16 with response to erlotinib. Fig 1 shows a Manhattan plot for associa-

tions of SNPs with response to erlotinib. Manhattan plots for the other drug treatment GWAS

are included in Fig A in S1 Text. The chromosome 16 peak centered on the NFAT5/NQO1
locus has seven SNPs that surpass the genome-wide significance level (the solid black horizon-

tal line), including sentinel SNPs for each gene. Fig 2A and 2B show zoomed-in regional gene

Table 2. (Continued)

Drug Chr RSID -log10 (pvalue) Most severe consequence Host gene symbol Host gene Ensembl ID

48 Temozolomide 3 rs4854617 6.47 intron_variant RYK ENSG00000163785

49 Fluoro-deoxyuridine 4 rs9994654 7.20 intron_variant SLC9B1 ENSG00000164037

50 Fluoro-deoxyuridine 4 rs10516497 6.63 intron_variant SLC9B2 ENSG00000164038

51 Docetaxel 5 rs2304035 6.76 missense_variant SLIT3 ENSG00000184347

SNPs associated with the multivariate response for each drug at the genome-wide suggestive significance level or higher from the genome-wide association mapping

using MAGWAS. The results are sorted by the host gene and drug. Chr: Chromosome, The most severe consequence obtained from Ensembl VEP (Ensembl release 97

–July 2019).

https://doi.org/10.1371/journal.pgen.1009732.t002

Fig 1. Manhattan plot of MAGWAS p-values for the drug erlotinib. Manhattan plot of MAGWAS -log10 (p-value)

over 22 autosomes for the association of genotype and cell viability for the drug erlotinib. The dashed and solid lines

indicate the thresholds for the genome-wide suggestive significance level of 10−6 and the genome-wide significance

level of 10−8, respectively. The peak on chromosome 16 has seven SNPs surpassing the genome-wide significance level

(the solid horizontal line), including the SNPs rs12447326 and rs1800566.

https://doi.org/10.1371/journal.pgen.1009732.g001
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Fig 2. LocusZoom plot of the genes surrounding SNP rs1800566 on chromosome 16 for the drug erlotinib.

LocusZoom plots showing the regional genes surrounding a 1 mega base pair region around SNP rs1800566 on

chromosome 16 for associations with erlotinib. In the top panel, SNPs rs12447326 and rs1800566 are both used as

lead/reference SNPs (shown as diamonds). For all other non-lead SNPs (shown as circles and triangles), their color and

shape are matched to the lead SNP with which it is in the highest linkage disequilibrium (LD), as shown in the legend.

The extent of LD with the lead SNP is shown by the color gradient. In the bottom panel, SNP rs1800566 is used as the

lead SNP, and all other SNPs are colored according to their level of LD with rs1800566, as shown in the legend.

https://doi.org/10.1371/journal.pgen.1009732.g002
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views of this peak for associations with the drug erlotinib. Fig B in S1 Text shows regional gene

plots for the same peak for associations with arsenic trioxide, trametinib, and the paclitaxel

+ epirubicin combination. rs12447326, which has been previously associated with a 40%

reduced risk for rectal cancer [35], in the NFAT5 gene was significantly associated with

response to erlotinib and trametinib. The NFAT5 gene encodes a transcription factor that reg-

ulates the expression of genes induced by osmotic stress [36] and has been implicated in other

biological roles such as embryonic development, cell migration, and cell proliferation [37, 38].

NFAT5 and NFAT5 target genes have been reported to have very high expression in renal car-

cinoma cells and knockout NFAT5 decreased proliferation and migration of these cells [37]. In

addition, NFAT5-deficient lymphocytes have been observed to have decreased proliferation

and viability when exposed to hypertonic stress [39].

We report that SNP rs1800566 is significantly associated with response to three drug treat-

ments (i.e., erlotinib, trametinib, and paclitaxel + epirubicin). This coding SNP is characterized

as a missense mutation, which is a C to T substitution at position 609 of the NQO1 cDNA, and

codes for a proline to serine change at position 187 of the amino acid structure of the enzyme

[40]. This variant of the NQO1 protein is unstable and rapidly degraded by the ubiquitin pro-

teasomal system [41, 42]. Lymphoblastoid cells from individuals with two alternate alleles at

rs1800566 (TT genotype) were more sensitive to erlotinib toxicity compared to heterozygous

individuals (CT genotype) and homozygous reference individuals (CC genotype) (Fig 3). Simi-

lar dose-response profiles were seen for trametinib and paclitaxel + epirubicin combination

treatment for rs1800566 (Figs D and E in S1 Text). Additionally, we conducted a multivariate

GWAS controlling for SNP rs1800566 and did not find any SNPs significantly associated with

response to any of the drugs in this genomic region (Fig C and Table B in S1 Text), motivating

us to pursue functional experiments to further investigate this association.

Fig 3. Dose-response profiles for erlotinib stratified by genotype at SNP rs1800566. C is the reference allele, and T

is the variant allele at SNP rs1800566. Individuals with the TT (alternate) genotype have lower cell viability than those

with the CC (reference) genotype. Heterozygous individuals (i.e., those with the CT genotype) have intermediate cell

viability compared to CC and TT individuals. The numbers of individuals for each genotype are: CC—349, CT—283,

TT—48. Concentrations are on the log10 scale on the X-axis. Bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pgen.1009732.g003
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Gene-expression analyses results

To further interrogate the associations of NFAT5 and NQO1 with drug response, we tested for

association between basal gene expression and cytotoxic drug response. RNA-Seq expression

data is publicly available from the Geuvadis project for 272 of the LCLs in the current study

[43]. We first performed extensive quality control on the RNA-Seq expression data to remove

technical replicates, normalize for library depth, and correct for overdispersion [44, 45]. To

characterize the correlation of baseline (non-drug-exposed) gene expression with cell viability,

we tested for associations between basal gene expression of NFAT5 and NQO1 (using the qual-

ity-controlled RNA-Seq data) and cell viability across all treatment responses, using a two-

stage multivariate linear regression model with the RNA-Seq lab and the sex of the individual,

and the first three principal components as covariates. Table 3 shows significant results after a

Bonferroni correction with a significance level of p< 0.05 applied per drug.

Except for nintedanib, baseline gene expression of NQO1 was positively correlated with

response for all drugs at all concentrations. Thus, individuals with higher baseline NQO1
expression had higher cell viability when exposed to all drugs except nintedanib, (i.e., higher

resistance to the drugs) at all concentrations. To the best of our knowledge, we are the first to

report this positive correlation of baseline NQO1 expression with increased drug resistance for

a wide range of anticancer agents. Thus, we hypothesize that NQO1 may be involved in the

drug-response pathways of multiple anticancer agents.

Additionally, we processed the RNA-Seq data to quantify transcript-level expression. We

repeated the association analysis testing for the relationship between basal expression and

dose-response for each transcript in NFAT5 and NQO1. The results of these analyses align

with our previous results and show that the expression of specific transcripts of NFAT5 and

NQO1 are significantly correlated with the response of some of the drugs with significant

GWAS SNPs in these genes (Table C in S1 Text).

Cancer cell dependency analysis

To investigate whether GWAS-significant genes are essential in human cancer cell lines, we

examined gene essentiality data obtained from genome-scale CRISPR-Cas9 genetic perturba-

tion for 17,395 human genes across more than 900 cell lines, from the Cancer Dependency

Map (DepMap) project [46, 47]. Our analysis showed significant changes in gene expression

for 15 out of the 18 GWAS-significant genes with no data available for MKX-AS1, LINC01081,

and GMDS-DT. Expression changes were split evenly with NFAT5, NQO1, SLC9B2, OXR1,

RYK, MRGBP, and AGAP3 upregulated and SLC9B1, ITIH5, SLIT3, CACNB4, CREB5, CPED1,

Table 3. Significant results from the multivariate linear regression of drug response on the baseline expression of NQO1 and NFAT5 genes.

Gene symbol Drug p-value Bonferroni corrected p-value

NQO1 Arsenic trioxide 0.00066 0.00132

NQO1 Etoposide 0.00283 0.00566

NQO1 Sorafenib 0.00368 0.00737

NQO1 Temozolomide 0.00591 0.01183

NQO1 Cytosine beta-D-arabinoside 0.01173 0.02346

NQO1 Teniposide 0.01907 0.03814

NFAT5 Sorafenib 0.00795 0.01590

Significant correlations between the multivariate drug response and the baseline expression of NQO1 and NFAT5 genes after a Bonferroni correction with a significance

level of p < 0.05 applied per drug.

https://doi.org/10.1371/journal.pgen.1009732.t003
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CSMD1, and ADRA1A downregulated across the cell lines. In addition, we found that only

two genes, SLC9B1 and MRGBP, showed cell line dependence in 402 and 754 cell lines, respec-

tively, while the copy number was one for all genes.

We evaluated the correlation between GWAS-significant gene expression and drug sensi-

tivity patterns across 578 cell lines in the PRISM database [48] and 481 compounds across 823

cell lines in the CTD2 [49, 50]. We found a significant positive relationship between NQO1
and etoposide, and AGAP3 and vandetanib, as well as a significant negative relationship

between NQO1 and trametinib as measured using Pearson correlation coefficients. Results for

NFAT5 were inconsistent between the dataset with no significant relation shown in PRISM

and CTD2 showed a significant negative relationship for trametinib exposure. Interestingly, no

data were available in either of these databases for eight gene-drug combinations (hydroxy-

urea-ADRA1A, vemurafenib-GMDS-DT, vinblastine-LINC01081, oxaliplatin-MKX-AS1, arse-

nic trioxide-NFAT5, arsenic trioxide-NQO1, paclitaxel + epirubicin-NFAT5, paclitaxel +

epirubicin-NQO1).

NQO1 protein quantitative trait locus (QTL) analysis results

SNP rs1800566, the missense variant identified by GWAS mapping, alters the stability of the

NQO1 protein and is associated with drug-response variability to mitomycinC, β-lapachone,

and epirubicin [51–58]. We hypothesize that this is also the mechanism by which rs1800566

influences the dose-response phenotype for the drugs in our assay; to test this, we used a three-

stage protein QTL (pQTL) model. For rs1800566, we analyzed the correlations between geno-

type and NQO1 protein activity (measured from the NQO1 Activity Assay Kit (ab184867)

from Abcam (Cambridge, UK)) and genotype and drug-response data (area under the

curve (AUC)) for the four drug treatments (i.e., arsenic trioxide, erlotinib, trametinib, and pac-

litaxel + epirubicin combination) as well as NQO1 protein activity and drug-response data for

24 LCLs of each genotype (CC (reference) vs. CT vs. TT) (Fig 4). Table D in S1 Text summa-

rizes the results, and Fig 5 displays the arsenic trioxide results as an example.

The first stage of the pQTL model shows that the AUCs for arsenic trioxide and erlotinib

are significantly associated with the genotype at rs1800566 (Fig 5A). Stage 2 reveals that NQO1
activity was highly associated with the genotype (p = 5.27e-10), and individuals with the TT

genotype had markedly decreased NQO1 activity compared to those with the CC (reference)

genotype (Fig 5B). Finally, in Stage 3, NQO1 enzyme activity was associated with the arsenic tri-

oxide AUC (Fig 5C). Associations for the other three drug treatments were not significant. Over-

all, the pQTL analysis provides some evidence that SNP rs1800566 influences drug response by

altering NQO1 protein activity for the four aforementioned drug treatments. The pQTL model

was statistically significant for arsenic trioxide at all three stages (Table D in S1 Text) but may

have been underpowered to detect statistical significance for other drug treatments.

We repeated the third stage of the model stratified by the genotype at rs1800566 (Table E in

S1 Text). Interestingly, this stratified analysis showed that while NQO1 activity was positively

correlated with the AUC for individuals with the CC and CT genotypes, it was negatively cor-

related for individuals with the TT genotype at SNP rs1800566 for all drug treatments. This

suggests a different relationship between drug response and NQO1 protein activity in individ-

uals with different genotypes at rs1800566.

Additional Fine Mapping in NQO1
To further interrogate the GWAS signal, additional sub-threshold SNPs in linkage disequilib-

rium with rs1800566 were tested for association with AUC as described above in the third

stage of analysis. An additional SNP, rs689457, was statistically significant for several of the
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GWAS-flagged drug treatments, with the strongest signal for trametinib. rs689457 is approxi-

mately -870bp from the transcriptional start site of the gene, and follow-up experiments show

that variants affect NQO1 expression (Fig G in S1 Text). To examine the effect of this SNP in a

more controlled, genetically matched background, the NQO1 promoter was placed upstream

of GFP in a reporter plasmid and transfected into the same cell line in parallel with a wild

type-based plasmid, with results shown in Fig G in S1 Text.

Functional assay results

Reactive oxygen species assay results. The recurrence of NQO1 in our analyses suggests

oxidative stress is a pervasive off-target phenomenon. Accordingly, we examined which of the

studied drugs could induce oxidative stress and estimated the relative levels among the various

drug classes. We chose and examined together two immortalized cell lines (LCL NA19119 and

kidney cell line HEK-293) and two solid tumor cell lines (melanoma cell line WM266-4 and

breast carcinoma cell line MDA-MB-436) to develop a generalized picture of oxidative stress

potential across multiple cell types. Each cell line was treated with the maximum concentration

(of each compound) used in the viability screening experiments for 12 h to limit reactive oxy-

gen species (ROS) generation from cell death. The fold change of induction of ROS over the

controls was averaged across the four tested cell types (Table 4). Under these conditions, most

compounds can induce ROS (Fig I in S1 Text). Surprisingly, the strongest ROS signals are

from the tyrosine kinase inhibitors (TKI) class of drugs. While anthracyclines are known

Fig 4. The three-stage protein QTL model used to identify the mechanism by which SNP rs1800566 influences drug

response. Stage 1: the association between SNP rs1800566 and drug response measured as AUC; Stage 2: the association

between SNP rs1800566 and NQO1 protein activity; and Stage 3: the association between NQO1 protein activity and drug

response.

https://doi.org/10.1371/journal.pgen.1009732.g004
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Fig 5. Associations for the pQTL model between genotype at rs1800566, NQO1 protein activity, and arsenic

trioxide response data in 72 LCLs from the 1000 Genomes Project. (A) Stage 1: Association between SNP rs1800566

and AUC for arsenic trioxide. (B) Stage 2: Association between SNP rs1800566 and NQO1 protein activity. (C) Stage 3:

Association between NQO1 protein activity and AUC for arsenic trioxide.

https://doi.org/10.1371/journal.pgen.1009732.g005
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Table 4. Drug-induced oxidative stress results from ROS assays.

Drug class Compound ROS induction

Anti-metabolite Hydroxyurea -

DNA alkylating agent MitomycinC -

Temozolomide +

Combination treatment Paclitaxel + Epirubicin +

Epipodophyllotoxins Teniposide +

Etoposide ++

Anthracyclines/anthracendiones Daunorubicin +

(Topoisomerase II inhibitors) Doxorubicin +

Mitoxantrone +

Idarubicin +

Epirubicin ++

Topotecan ++

Microtubule binding agents Docetaxel -

Vinorelbine ++

Vincristine sulfate ++

Paclitaxel ++

Vinblastine +++

Nucleosides Cytosine beta-D-arabinoside +

Gemcitabine ++

Fludarabine ++

Cladaribine ++

Azacytidine ++

Fluoropyrimidines 5-Fluorouracil +++

Fluoro-deoxyuridine +++

Other Arsenic trioxide ++

Platinum agents Oxaliplatin ++

Carboplatin +++

Tyrosine Kinase inhibitors Sunitinib -

Masatinib -

Dasatinib +

Ibrutinib +

Axitinib +

Dovitinib ++

Cabozantinib +++

Vandetanib +++

Erlotinib +++

Trametinib ++++

Nilotinib ++++

Sorafenib ++++

Crizotinib ++++

Tivantinib ++++

Apatinib +++++

Nintedanib +++++

ROS was measured for each drug in duplicate following 12 h treatment with study compounds, and the fold induction over control was determined. The results for the

four cell-line types (NA19119-lymphoblastoid, WM2664-melanoma, MDA-MB-436-breast carcinoma, and HEK-293-kidney) were then averaged. Data are presented as:

-, 0–1; +,�1.25; ++,�1.5; +++,�1.75; ++++,�2.0, and +++++,�2.0.

https://doi.org/10.1371/journal.pgen.1009732.t004
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inducers of oxidative stress, their signal may be more dependent on cell cycling and would

likely increase given longer treatment times before ROS assessment.

mRNA expression assays results. Since baseline gene expression of NFAT5 and NQO1
was found to be positively correlated with cell viability for the majority of drugs, we examined

whether induced gene expression could distinguish compounds with the strongest GWAS

results from the remaining test drugs. GWAS-flagged compounds were compared against a

subset of compounds representative of the various drug classes studied. We treated cell line

NA19119 with the half-maximal treatment dose and measured gene expression by reverse

transcriptase real-time quantitative polymerase chain reaction (PCR) after 24 h. Expression of

NQO1 tended to be associated with treatments with the highest GWAS significance (Fig 6A

and Table 2). This trend was less evident with NFAT5 (Fig 6B).

We subsequently examined NQO1 and NFAT5 gene expression for groups of sensitive or

resistant cell lines (as determined from the observed cell viability in the drug-response assays)

to determine if gene expression predicts cell response. We ranked cell lines by sensitivity or

resistance based on the AUC of the response to the four GWAS-flagged treatments. We then

compared basal and drug-induced levels of NQO1 and NFAT5 between sensitive and resistant

groups following treatment with either arsenic trioxide or trametinib, a TKI. We chose arsenic

trioxide and trametinib for these functional assays because of the observation of significant

associations for these drugs in more than one of our previous analyses. Using a small sample

size of six cell lines in each group, there was no statistically significant difference in baseline

expression of NQO1 and NFAT5 between sensitive and resistant cell lines, but there were sig-

nificant differences for induced expression, with resistant cell lines expressing significantly

more NQO1 than sensitive cell lines (Fig 6C). Induced NFAT5 expression tended to parallel

the results for NQO1, but induction relative to control was modest and not significant for arse-

nic trioxide (Fig 6D). This differential expression is significantly associated with cell viability,

as shown for arsenic trioxide in Fig 7.

To summarize, drug treatments associated with GWAS hits were also associated with

increased NQO1 expression. Further, NQO1 expression and cell viability were positively corre-

lated in cell lines exposed to the drugs flagged for NQO1 in GWAS. Fig 7 shows the related

results for arsenic trioxide. We also examined NQO1 expression in the most sensitive and

most resistant cell lines in our assays for each drug flagged for NQO1 by GWAS. Resistant cell

lines tended to exhibit increased expression of NQO1 compared to sensitive cell lines (Fig 6C

and 6D). Collectively, these assays confirm our hypothesis that NQO1 plays an important role

in the drug-response pathways of multiple anticancer agents.

Overall results

Collectively, our high-throughput GWAS screening identified a number of potential drug-

gene associations, with 18 total GWAS hits across the drug treatments evaluated. Using exten-

sive gene expression data from CRISPR screens across a number of cancer cell lines, we found

gene expression changes in these GWAS hits are consistently associated with drug response

from PRISM and CTD. This supports further biological plausibility of the associations and

motivates further functional interrogation in future studies.

Within the current study, the results from the genome-wide association analysis, the gene

and transcript expression analyses demonstrated that NQO1 plays an important and consistent

role in response to treatment with arsenic trioxide, erlotinib, trametinib, and the paclitaxel

+ epirubicin combination. We focused our functional follow-up on this top signal. To the best

of our knowledge, NQO1 has not previously been associated with response to arsenic trioxide

or the paclitaxel + epirubicin combination. Through this study, we identified a novel
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association with multiple individual drug responses and with a synergistic drug combination.

Further, the results from the pQTL analysis indicate a possible mechanism by which GWAS-

significant SNP rs1800566 influences the response to these treatments. We identified an addi-

tional novel SNP rs689457 in NQO1 also associated with multiple drug responses. From these

results, we conclude that NQO1, an oxidative stress response gene, is involved in a common

drug-response pathway(s) and plays a role in the inter-individual variation in response to

these drugs, with higher NQO1 expression and protein activity associated with increased resis-

tance to the cytotoxic activity of these drugs.

Fig 6. Drug-induced gene expression of NQO1 and NFAT5. (A) & (B): Transcriptional activity of NQO1 and NFAT5 measured following 24 h treatment

of an LCL (NA19119) with GWAS-flagged compounds (red bars) as well as compounds representative of the various drug classes (grey bars) at the

maximum concentration used in the cell viability screening in this study. Menadione (5uM) and NaCl (90mM) were included as positive controls for NQO1
and NFAT5, respectively. (C) & (D): Comparison of the average NQO1 and NFAT5 gene induction in sensitive versus resistant cell lines: The above

experiment was repeated with the compound, arsenic trioxide (Ars), or the TKI, trametinib (Tra), using groups of six cell lines each, identified as sensitive

(red bars) or resistant (pink bars). Drug treatments: - Ars:Arsen, Carb:Carboplatin, Epi:Epirubicin, Erl:Erlotinib, 5FU:5-Fluorouracil, Gem:Gemcitabine,

Hydrox:Hydroxyurea, Mit:MitomycinC, Pac:Paclitaxel, Tra:Trametinib, Vem:Vemurafenib, Pac+Epi:Paclitaxel+Epirubicin combination treatment, Mend:

Menadione, NaCl:Sodium Chloride.

https://doi.org/10.1371/journal.pgen.1009732.g006
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Discussion

In the current study, we present the results of the largest LCL screen of anticancer drugs to

date. While most studies have assayed two to four drugs [59–62], in the current study, we

assayed 179,520 drug-dose-cell line combinations (29,920 drug-cell line combinations) with a

wide range of anticancer drugs spanning multiple drug classes. In total, we identified 51 sug-

gestively significant SNP-drug associations at the genome-wide level using association map-

ping (Table 2). From these hypothesis-generating results, we followed up on the consistent

signals in NQO1 to better understand the functional role of this gene in drug response. Given

the strong association of NQO1-related variants with multiple drug treatments (arsenic triox-

ide, erlotinib, trametinib, and a combination treatment of paclitaxel + epirubicin), we con-

ducted follow-up experiments to better understand the functional role of this gene in anti-

cancer drug response. Both increased NQO1 expression and NQO1 protein activity were asso-

ciated with increased resistance to these drugs and suggest variation in NQO1 may contribute

to the inter-individual variation in response to the treatments via a common drug-response

pathway(s). This is suggested through the role NQO1 plays in oxidative stress response, and

the stabilization of TNF-α and P53, which are important in tyrosine kinase inhibition and

topoisomerase II inhibition, respectively [63]. These novel associations for NQO1 suggest the

potential use of NQO1 expression levels as a biomarker to predict the variability in response to

the individual anticancer drugs and combination treatment.

rs1800566 has previously been associated with mitomycinC, β-lapachone, and epirubicin

drug response [56–58]. Further, in vitro arsenic trioxide treatment results in increased cell

death and NQO1 protein levels [4]. A lack of NQO1 protein due to SNP rs1800566 is associated

with many cancers, including adenocarcinoma of the gastrointestinal tract, gastric cardiac car-

cinoma, and esophageal, lung, bladder, and colorectal cancers [51–55]. NQO1, an antioxidant

enzyme important in environmental carcinogen detoxification [50, 56], encodes a cytoplasmic

Fig 7. Correlation of NQO1 mRNA expression and cell viability. Increased cell viability was observed with higher

levels of NQO1 mRNA expression as measured in 12 LCLs exposed to 0.5μM arsenic trioxide. The 12 selected LCLs

comprise six sensitive and six resistant cell lines, classified based on their mean viability (AUC values) across the four

drug treatments: arsenic trioxide, erlotinib, trametinib, and the paclitaxel + epirubicin combination. Each cell sample

was measured in triplicate. The replicates were averaged for each cell line.

https://doi.org/10.1371/journal.pgen.1009732.g007
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2-electron reductase and reduces quinones to hydroquinones. Several anticancer agents such

as mitomycinC and β-lapachone are bioactivated by NQO1. Since NQO1 is expressed at higher

levels in many human solid tumors compared to normal tissue, this allows for the selective

activation of these prodrugs in tumor cells [56, 57]. Higher levels of NQO1 have also been

shown to sensitize cells to undergo apoptosis, which is the primary mechanism by which topo-

isomerase II inhibitors like etoposide act and provides mechanistic evidence for the positive

correlation between etoposide exposure and NQO1 gene expression [63, 64].

The overall results of our pQTL analysis provide evidence that SNP rs1800566 influences

drug response by altering protein activity for the four aforementioned drug treatments. Our

results supplement those of prior studies that have shown the phenotypic effect of the missense

variant rs1800566 [46, 47, 56–58, 65, 66] by demonstrating that while the wildtype NQO1 pro-

tein is associated with increased resistance, the variant protein resulting from the TT genotype

is associated with increased sensitivity for the four drug treatments. While only the associa-

tions for arsenic trioxide and erlotinib are statistically significant in this model, power limita-

tions due to reduced sample size (n = 72) in this analysis need to be considered in

interpretation.

We have demonstrated that increased NQO1 activity induces a drug-resistant phenotype,

presumably with the ability to better manage the stress response of the cells. In addition to the

missense variant rs1800566, we also report a novel SNP association in NQO1 because our

results indicate that rs689457 is putatively associated with the regulation of NQO1 and thus

affects drug response (Fig G in S1 Text).

As in any in vitro model, our results require further validation and replication in human

studies [13, 20]. Further, while our integrative analysis methods identified a strong correlation

between higher NQO1 expression levels and resistance to the specified drugs, additional exper-

iments are needed to identify the specific mechanism of action by which NQO1 influences

these responses. The genome-wide mapping identified six unique SNPs in the NFAT5 gene,

which is located in proximity to NQO1 on chromosome 16, that are associated with dose-

response. However, we were unable to conduct knockdown experiments to examine the effects

of NFAT5 on dose-response for two reasons: a) it is a transcription factor that regulates the

expression of a large number of genes, and b) previous investigations of NFAT5 have reported

cell cycle arrest in NFAT5-null T lymphocytes [39] and severe impairment of cell proliferation

in NFAT5-null mice [54] under hyperosmotic culture conditions. There was no significant dif-

ference in induced NFAT5 expression in sensitive vs. resistant LCLs exposed to GWAS-flagged

compounds (Fig 6D) and no significant correlation between NFAT5 gene expression and

GWAS-flagged drug treatments in cancer cell lines using the PRISM and CTD2 databases

from DepMap. Following treatment with the GWAS-flagged drug treatments, qPCR assays

measuring mRNA expression levels of NFAT5 target genes S100 calcium-binding protein A4

(S100A4) and sodium/myo-inositol cotransporter (SMIT) showed no significant differences in

expression of these genes (Fig H in S1 Text), with arsenic trioxide being the only exception.

Thus, we did not conduct further functional assays to validate the role of NFAT5 in the drug-

response assays within the scope of this study.

Further studies are needed to translate to clinical practice our results indicating the possibil-

ity of using NQO1 expression levels as a biomarker to predict drug resistance. Previous studies

have reported that high levels of NQO1 expression are associated with poor prognosis of breast

cancer [67], gastric adenocarcinoma [68], and malignancy in pancreatic cancer [69]. This is

consistent with our finding that higher NQO1 expression is correlated with increased drug

resistance. Altering NQO1 expression potently triggers innate sensing within the tumor micro-

environment, causing NQO1-activated β-lapachone to overcome immunotherapy resistance

[70]. Given our results, we hypothesize that with further research, NQO1 may be an important
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biomarker to guide dual therapies in general, with various drug classes as well as immunother-

apies, to increase sensitivity or overcome drug resistance.

While we focus on the NQO1 results in the current functional follow-up, our high-through-

put screening revealed additional potential associations that should be followed up in future

studies. At the suggestive significance level, 18 genes were identified across treatments, includ-

ing several associated with known cancer pathways. For example, the GWAS results indicated

that SNP rs17142881 was significantly associated with response to gemcitabine, which is used

to treat breast cancer. rs17142881 is in the inter-alpha-trypsin inhibitor heavy chain family

member 5 (ITIH5) gene, which acts as a tumor suppressor in breast cancer cell lines through

epigenetic reprogramming and as a metastasis suppressor in breast and pancreatic cancers [71,

72]. Further, response to temozolomide was associated with rs4854617 and rs4470517 in the

receptor-like tyrosine kinase (RYK) gene on chromosome 3. RYK is one of the receptors for

Wnt family member 5A (WNT5A) and has been reported to be involved in invasive activity in

glioma-derived cells [73–75] and to facilitate the pro-apoptotic and anti-proliferative effects of

WNT5A in prostate cancer cells [76]. Further, response to carboplatin was associated with

rs6010746 in the MRG domain binding protein (MRGBP), which has been identified as a

potential biomarker for malignancy in pancreatic ductal adenocarcinoma [77] and reported to

contribute to colorectal carcinogenesis by promoting cell proliferation in cancer cells [78]. The

DepMap analysis showed a significant correlation between AGAP3 expression and cancer cell

line sensitivity to vandetanib, and that AGAP3 is overexpressed in more than 98% of the 1,376

cancer cell lines in the database merits further investigation.

In this study, we present high-throughput in vitro screening data and genome-wide analyses

results in LCLs for 44 anticancer drug treatments, including the combination paclitaxel + epirubi-

cin treatment. We identify multiple genetic variants associated with the response to several drug

treatments, including the combination paclitaxel + epirubicin treatment, indicating that potential

biomarkers for synergistic drug response can be identified in LCLs. Our integrative analyses show

that NQO1, an oxidative stress response gene, is associated with response to treatment with arse-

nic trioxide, erlotinib, trametinib, and the paclitaxel + epirubicin combination. The large-scale,

systematic results of this study can serve as a valuable resource for future dose-response studies

for a broad range of drugs widely used for the treatment of various types of cancers.

Materials and methods

Cell lines and genotypic data

We used 680 immortalized LCLs derived from the 1000 Genomes Project [30] that represent

nine geographically and ethnically diverse populations: Utah residents with European ancestry

(CEU); Han Chinese in Beijing, China (CHB); Japanese in Tokyo, Japan (JPT); Luhya in

Webuye, Kenya (LWK); Residents of Los Angeles, California with Mexican ancestry (MXL);

Tuscans in Italy (TSI); Yoruban in Ibadan, Nigeria (YRI); British from England and Scotland

(GBR); and Colombian in Medellin, Colombia (CLM). Genotype data from the Illumina

HumanOnmi2.5 platform was downloaded and processed as described in Abdo et al. [32].

Briefly, as part of quality control, we removed the SNPs with a call rate< 95%, minor allele fre-

quency (MAF) < 0.01, or HWE p-value < 1 x 10−6, yielding 1,510,701 SNPs used for GWAS.

We chose the subset of 680 cell lines from the available 1,086 1000 Genomes cell lines, after

removing first-degree relatives using genotypes and sample annotation.

Dose-response assays

Each drug was assayed at six concentrations. Each cell line was seeded on two 384-well plates

with 4,000 cells per well and four replicates per plate. Each plate included a control for

PLOS GENETICS High throughput screening and GWAS in anticancer drugs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009732 August 26, 2021 18 / 28

https://doi.org/10.1371/journal.pgen.1009732


background fluorescence signal, 10% dimethyl sulfoxide (DMSO), and another control for

drug vehicle, either water or DMSO at 0.1%, with the exception of temozolomide, which had

DMSO at 0.08%, 0.20%, 0.41%, 0.62%, 0.82%, and 1.23%. Each cell line was incubated for 72 h

with each of the treatments for all tested concentrations, dyed with alamarBlue (BioSource

International), and incubated for another 24 h. The alamarBlue assay is a fluorometric and col-

orimetric cell viability assay incorporating an oxidation-reduction indicator that responds to

cellular metabolic reduction, with the intensity of fluorescence produced proportional to the

number of living cells. Subsequently, a Tecan Freedom EVO 150 robotics system with a Con-

nect stacker and F200 plate reader, which measures fluorescence intensity in raw fluorescence

units (RFUs), was used for viability measurements. We applied quality control procedures and

calculated cell viability as previously described [1, 22, 29].

Multivariate genome-wide association analyses (MAGWAS)

To identify common genome-wide SNPs associated with variability in drug response, we per-

formed MANCOVA using MAGWAS software [32]. MAGWAS incorporates multivariate

phenotypes, in this case, an entire dose-response profile instead of a univariate dose-response

summary (e.g., IC50). These multivariate methods are more powerful than methods that

employ a univariate response [13, 29, 32]. The model used for the association analysis for each

drug at SNP s is:

Yij ¼ Xijbþ mi þ eij; eij � Nð0;ΣÞ

where Yij is the vector of normalized responses across the six concentrations of the drug for

the jth individual with genotype i at SNP s; Xij is the covariate matrix, which includes tempera-

ture, experimental batch, and the Eigenvalues from the first three principal components calcu-

lated using EigenStrat [79]; and μi is the vector of parameters modeling the effects of genotype

i at SNP s. Further details of this analysis are included in Figs A and F and Table B in S1 Text

[80–82].

Gene-expression analyses

We obtained the RNA-Seq read-count data from the Geuvadis project [43] for 272 individuals

in our assays. We performed extensive quality control to remove technical replicates, normal-

ize for library depth, and correct for overdispersion [44, 45]. We examined the correlation of

baseline gene expression for NQO1 and NFAT5 with dose-response using a two-stage multi-

variate linear regression model specified as follows:

• First stage: Gi = β0 + Li
�β + �i, �i ~ N(0, σ2)

• Second stage: Yij = β0 + β1
�PC1i + β2

�PC2i + β3
�PC3i + β4

�Sexi + β5
��i + eij, eij* N(0,S)

where, in the first stage: Gi is the quality-controlled RNA-Seq read count of gene g for individ-

ual i, Li is a vector of indicator variables for the lab in which the RNA-Seq was conducted for

individual i, β is a vector of the regression parameters, and �i are the residuals = observed read

count for gene g—predicted gene read count for genes for individual i; in the second stage: Yij

is the vector of normalized responses for the six concentrations of the drug for individual i;
PC1, PC2, and PC3 are the Eigenvalues from the first three principal components calculated

using EigenStrat [79]; and sex is an indicator variable denoting the sex of individual i. Further

details of this analysis are included in Figs G and H and the Gene Expression Two-stage

Regression section in S1 Text.
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Additionally, we conducted transcript expression analyses as described for the gene-expres-

sion analyses, using the expression for the multiple transcript isoforms instead of the single

gene.

Cancer cell dependency analysis

To determine which GWAS-significant genes exhibit essentiality, changes in copy number, or

changes in gene expression across multiple human cancer cell lines, we utilized the DepMap

portal (https://depmap.org/portal/). This portal contained the results of CRISPR-Cas9 knock-

out screens for 18,333 genes in 739 cancer cell lines along with RNA sequencing results from

over 1,376 cell lines. In addition, we explored the correlation between gene expression and sen-

sitivity patterns of 4,518 drugs tested across 578 cell lines (PRISM) and 481 compounds tested

across 823 cell lines (CTD2).

NQO1 protein QTL analysis

To identify the mechanism by which our GWAS-significant SNP rs1800566 influences drug

response for the four drug treatments, we conducted a three-stage protein QTL (pQTL) analy-

sis as shown in Fig 4. For this analysis, 24 LCLs for each genotype at rs1800566

(reference = CC, heterozygous = CT, alternate = TT) were randomly selected from the 680

LCLs, for a total of 72 LCLs (sample size based on power calculations). In this analysis, we

used the genotype data (from the 1000 Genomes Project), dose-response data (measured as

described in the Dose-response assays section), and the NQO1 protein activity data (measured

as described in the NQO1 enzyme activity assays section) in the three-stage model specified as

follows:

• Stage 1: AUCi = β0 + β1
�PC1i + β2

�PC2i + β3
�PC3i + β4

�Sexi + β5
� rs1800566i + eij, eij * N(0,

σ2)

• Stage 2: NQO1_protein_activityi = β0 + β1
�Sexi + β2

�rs1800566i + eij, eij * N(0, σ2)

• Stage 3: AUCi = β0 + β1
�PC1i + β2

�PC2i + β3
�PC3i + β4

�Sexi + β5
�NQO1_protein_activityi

+ eij, eij * N(0, σ2)

where AUC is the area under the curve; PC1, PC2, and PC3 are the Eigenvalues from the first

three principal components calculated using EigenStrat [79]; sex is an indicator variable denot-

ing the sex of individual i; rs1800566 is the number of minor alleles at that SNP; and NQO1_-

protein_activity is the baseline NQO1 protein activity measured for each cell line using the

NQO1 Activity Assay Kit (ab184867) from Abcam (Cambridge, UK). Details of this three-

stage analysis are included in Tables D and E and the Protein QTL Analysis section in S1 Text.

Functional assays

ROS assays. We conducted ROS assays in four cell-line types (i.e., NA19119-lymphoblas-

toid, WM2664-melanoma, MDA-MB-436-breast carcinoma, and HEK-293-kidney cell lines).

Cells (2.5x10-5/100μl) were seeded into 96-well plates and treated with the maximum concen-

tration of drug in duplicate for 12 hours. A total of 30μM DCFDA (AdipoGen Life Sciences)

(or 5μM CellROX Green in later experiments) was then added to the wells and fluorescence

was measured at 485ex/535em at 1 h using a Tecan Infinite 200 plate reader (Tecan Group

Ltd.).

mRNA expression assays. LCLs were identified as sensitive or resistant based on their

mean AUC value across the four drug treatments: arsenic trioxide, erlotinib, trametinib, and

the paclitaxel + epirubicin combination, which were flagged by our GWAS. Six cell lines each
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were used in the sensitive and resistant group. Total RNA was isolated from ~1x10-6 cells

using the RNeasy kit (Qiagen) and then reverse-transcribed using the Verso cDNA kit (Ther-

moFisher Scientific). RT-PCR reactions were subsequently run in triplicate on a QuantStudio

6 Flex Real-Time PCR System (ThermoFisher Scientific) using PowerUp Sybr Green Master

Mix (ThermoFisher Scientific). Primers used included human NQO1 (forward: GGTTTGG

AGTCCCTGCCATT, reverse: GCCTTCTTACTCCGGAAGGG); NFAT5 (forward:

GTCAGTGGGAATATATGTAGTG, reverse: GTTTTCATTGCTTTCATGGC); and GAPDH

(forward: CTTTTGCTGCGCCAG, reverse: TTGATGGCAACAATATCCAC). Reactions

were conducted in 10-μl volumes using 500 nmol of each primer. Thermocycler parameters

were: 50˚C for 2 min, 95˚C for 10 min, and then 40 cycles of 95˚C for 15 s followed by 60˚C

for 1 min. The data were analyzed using the delta Ct method normalized against GAPDH.

Each cell sample was measured in triplicate. The means (± standard deviation) for each cell

line were averaged for each group.

NQO1 enzyme activity assays. NQO1 enzymatic activity was measured using the NQO1
Activity Assay Kit (ab184867) from Abcam (Cambridge, UK). Briefly, the NQO1 activity assay

is based on the dicoumarol-sensitive reduction of WST-1 in the presence of menadione using

10 ug of cellular lysate protein in a 96-well plate format. Progress of the reaction was measured

at 1-min intervals by measuring absorbance at 450 nm on an Infinite F200 microplate reader

(Tecan Group Ltd). A 10-min endpoint reading was chosen as a time point within the linear

region of the reaction. Replicates were averaged, and activity was expressed as the OD450nm fol-

lowing subtraction of OD450nm + dicoumarol.

NQO1 GFP reporter plasmid cloning. The NQO1 promoter-reporter plasmid was con-

structed using pTRF.1 udsVenus (a gift from Kevin Janes, Addgene plasmid # 58692; http://

n2t.net/addgene:58692; RRID:Addgene_58692). The JunD promoter was removed by restric-

tion digestion with EcoRI and SpeI, followed by gel purification. The NQO1 promoter inserts

were prepared by PCR of gDNA from either a cell line that was homozygous wildtype for

rs689457 (GM19201) or a homozygous variant (GM01359) using primers AAAAAGAATTC

TAGACCCACCTCGGCCTCCCATATTGC and AAAAACTAGTTATCCTGTCCGG

CCCGTTTGAGG containing EcoRI and SpeI sites in the 5’ ends, respectively. PCR was fol-

lowed by restriction digestion before ligation into the pTRF.1udsVenus plasmid backbone.

The rs689457 SNP was confirmed by sequencing in the resulting plasmids, pNQO1-wt-GFP

and pNQO1-var-GFP.

NQO1 knockdown assays. Stable NQO1 knockdown cell lines were prepared by transduc-

tion with lentivirus-encoding NQO1-specific shRNA sequences (Open Biosystems TRC1

library) obtained through the Lenti-shRNA Core Facility (University of North Carolina). Cor-

responding control cell lines were prepared using a scrambled shRNA sequence. To obtain

virus, low-passage HEK293T cells were transfected with pLKO.1 plasmids encoding five indi-

vidual NQO1 shRNAs, the packaging plasmid pMDG.2, and the envelope plasmid

pCMV-VSV-G at a ratio of 1:0.75:0.25 with Transporter5 transfection reagent (Polysciences

Inc., Warrington, PA, USA). The media was replaced with fresh media 18 h after transfection,

and viral particles were collected twice at 24-h intervals thereafter. Viral supernatants from the

five transfections and two collection times were then pooled and filtered through a 0.45-μm

cellulose acetate filter. Virus was concentrated ~50-fold by adding PEG-8000 and NaCl to a

final concentration of 40% (w/v) and 1.2M, respectively, in PBS at pH7.0 and then storing

overnight at 4˚C. Virus was then centrifuged at 1600xg for 45 min, and the pellet was resus-

pended in cell culture media. Cells were subsequently transduced with viral supernatant sup-

plemented with polybrene (4 μg/ml; Sigma-Aldrich, St. Louis, MO, USA). After 48 h, positive

selection for transduced cells was conducted using 1 μg/ml puromycin for 10 days. The level of

knockdown was determined by western blotting performed using a mouse anti-NQO1
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antibody (Thermo Scientific, Waltham, MA, USA). Anti-GAPDH (Proteintech, Rosemont, IL,

USA) was used as a load control. Anti-fluor-conjugated secondary antibodies from LiCOR

were used as needed, and detection was carried out on a LiCOR Odyssey to visualize immuno-

reactive bands (LI-COR Biosciences, Lincoln, NE, USA).

Supporting information

S1 Text. Fig A. Manhattan plots of MAGWAS p-values for the 44 drug treatments used in

this study. Manhattan plots of MAGWAS -log10 (p-value) over 22 autosomes for the associa-

tion of genotype and cell viability for the 44 drug treatments used in this study. The dashed

and solid lines indicate the thresholds for the genome-wide suggestive significance level of

10−6 and the genome-wide significance level of 10−8, respectively. Drug treatments: - APA:

Apatinib, ARSEN:Arsen, AXI:Axitinib, AZA:Azacytidine, CAB:Cabozantinib, CARBO:Carbo-

platin, CLAD:Cladaribine, CRIZ:Crizotinib, CYTAR:Cytosine beta d’arabinoside, DAS:Dasati-

nib, DAUN:Daunorubicin, DOC:Docetaxel, DOV:Dovitinib, DOX:Doxorubicin, EPI:

Epirubicin, ERL:Erlotinib, ETOP:Etoposide, FLOX:Fluoro-deoxyuridine, FLUD:Fludarabine,

5FU:5-Fluorouracil, GEM:Gemcitabine, HYDROX:Hydroxyurea, IBRU:Ibrutinib, IDA:Idaru-

bicin, MAS:Masatinib, MIT:MitomycinC, MOX:Mitoxantrone, NIL:Nilotinib, NIN:Ninteda-

nib, OXAL:Oxaliplatin, PAC:Paclitaxel, SOR:Sorafenib, SUN:Sunitinib, TEMO:

Temozolomide, TENI:Teniposide, TIV:Tivantinib, TOPO:Topotecan, TRA:Trametinib, VAN:

Vandetanib, VEM:Vemurafenib, VINB:Vinblastine, VINC:Vincristine sulfate, VINO:Vinorel-

bine, SYN:Paclitaxel+Epirubicin combination treatment. Fig B. LocusZoom plots of the

genes surrounding SNP rs1800566 on chromosome 16. LocusZoom plots showing the

regional genes surrounding a 1 mega base pair region around SNP rs1800566 on chromosome

16 for associations with the drug treatments (A) arsenic trioxide, (B) paclitaxel + epirubicin,

and (C) trametinib. Multiple SNPs are used as lead/reference SNPs (shown as diamonds). For

all other non-lead SNPs (shown as circles and triangles), their color and shape are matched to

the lead SNP with which it is in the highest linkage disequilibrium (LD), as shown in the leg-

end. The extent of LD with the lead SNP is shown by the color gradient. Fig C. Regional genes

plot of chromosome 16 near the NFAT5 and NQO1 genes for erlotinib from the genome-

wide association analysis after controlling for SNP rs1800566. A LocusZoom plot showing

the regional genes surrounding a 1 mega base pair region near the NFAT5 and NQO1 genes on

chromosome 16 for associations with the drug erlotinib, after controlling for the effects of SNP

rs1800566 in the NQO1 gene. The peak previously seen in this region, shown in Fig 2, is absent,

and no SNPs in this genomic region were significantly associated with drug response in this

controlled analysis, indicating that SNP rs1800566 is almost exclusively responsible for the

association signal in our study and is likely the functional SNP. The extent of LD with the low-

est p-value SNP, rs12447326, is shown by the color gradient. Fig D. Dose-response profiles

for trametinib stratified by genotype at SNP rs1800566. C is the reference allele, and T is the

variant allele at SNP rs1800566. At lower concentrations, individuals with the CC genotype

have lower cell viability than others, while at higher concentrations, they have higher cell via-

bility than others. Individuals with the CT genotype have intermediate cell viability compared

to CC and TT individuals. The numbers of individuals for each genotype are: CC—349, CT—

283, and TT—48. Concentrations are on the log10 scale on the X-axis. The bars represent the

standard error of the mean. Fig E. Dose-response profiles for paclitaxel + epirubicin combi-

nation treatment stratified by genotype at SNP rs1800566. C is the reference allele, and T is

the variant allele at SNP rs1800566. The numbers of individuals for each genotype are: CC—

349, CT—283, and TT—48. Concentrations are on the log10 scale on the X-axis. The bars rep-

resent the standard error of the mean. Fig F. Quantile-quantile plots of MAGWAS p-values.
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Quantile-quantile plots showing the deviation of the observed MAGWAS -log10 (p-values)

from the null hypothesis for the drug treatments: (A) arsenic trioxide, (B) erlotinib, (C) pacli-

taxel + epirubicin, and (D) trametinib. Fig G. Drug-induced gene expression and enzymatic

activity of NQO1. The genotype at SNP rs689457 influences both NQO1 mRNA expression

and NQO1 enzymatic activity in LCLs. (A) NQO1 protein activity measured using the NQO1
Activity Assay Kit (ab184867) from Abcam (Cambridge, UK) in three homozygous reference

and three homozygous variant LCLs treated with the GWAS-flagged compounds at the half-

maximal concentration used in the study at a 10-min endpoint. (B) NQO1 mRNA expression

measured by qPCR in three homozygous reference and three homozygous variant LCLs

treated with the GWAS-flagged compounds at the half-maximal concentration used in the

study following 24 h treatment. (C) qPCR of NQO1 with an NQO1 promoter GFP reporter

plasmid transiently transfected into the HEK-293 cell lines treated with the GWAS-flagged

compounds at the half-maximal concentration used in this study following 24 h treatment.

The bars show the mean of the cell lines per genotype, and the vertical lines represent the stan-

dard error of the mean. Drug treatments: Ars: Arsenic, Erl: Erlotinib, Tra: Trametinib, Syn:

Paclitaxel+Epirubicin combination treatment. Statistical significance symbols: ns: p> 0.05, �:

p< = 0.05, ��: p< = 0.01, ���: p< = 0.001, ����: p< = 0.0001. Fig H. Drug-induced gene

expression of NFAT5 target genes–S100A4 and SMIT. Minimal drug-induced transcrip-

tional activation of NFAT5 measured by expression of its target genes was observed. Transcrip-

tional activity of NFAT5 target genes (A) S100A4 and (B) SMIT was measured by qPCR

following 24 h treatment of an LCL (NA19119) with GWAS-flagged compounds (red bars) as

well as compounds representative of the various drug classes (grey bars) at the maximum con-

centration used in the cell viability screening in this study. NaCl (90mM) was included as a

positive control. Drug treatments: Ars: Arsenic, Epi: Epirubicin, Erl: Erlotinib, Gem: Gemcita-

bine, Hydrox: Hydroxyurea, Mit: MitomycinC, Pac: Paclitaxel, Tra: Trametinib, NaCl: Sodium

Chloride. Statistical significance symbols: ns: p> 0.05, �: p< = 0.05, ��: p< = 0.01, ���: p< =

0.001, ����: p< = 0.0001. Fig I. Drug-induced cell viability and cellular ROS assays in

NQO1 knockdown cells. Knockdown of NQO1 resulted in increased reactive oxygen species

(ROS) and increased sensitivity to several drug treatments used in this study. We measured

cell viability using the alamarBlue assay in empty vector and NQO1 knockdown. (A) LCL

NA19119, (B) kidney cell line HEK-293, and (C) melanoma cell line WM2664 after a 48h treat-

ment at half-maximal concentration in the cell viability screening of GWAS-flagged com-

pounds (red/pink bars) as well as compounds representative of the various drug classes in this

study (dark grey/light grey bars). We measured ROS production using a DCFDA cellular ROS

assay kit in empty vector and NQO1 knockdown. (D) LCL NA19119, (E) kidney cell line

HEK-293, and (F) melanoma cell line WM2664 after an 18h treatment at the half-maximal

concentration used in the viability screening of GWAS-flagged compounds (red/pink bars) as

well as compounds representative of the various drug classes in this study (dark grey/light grey

bars). Drug treatments: 5FU: 5-Fluorouracil, Ars: Arsen, Epi: Epirubicin, Erl: Erlotinib,

Hydrox: Hydroxyurea, Mit: MitomycinC, Syn: Paclitaxel+Epirubicin combination treatment,

Teni: Teniposide, Tra: Trametinib, Vinc: Vincristine. Statistical significance symbols: ns:

p> 0.05, �: p< = 0.05, ��: p< = 0.01, ���: p< = 0.001, ����: p< = 0.0001. Table A. Antican-

cer drug treatments and their concentrations used for the drug-response assays. The 44

anticancer drug treatments and their six associated concentrations used for the drug-response

assays in LCLs in this study. Concentrations are in mM. Table B. SNPs significantly associ-

ated with drug response from MAGWAS after controlling for SNP rs1800566. SNPs associ-

ated with the multivariate response for each drug at the genome-wide suggestive significance

level or higher from the genome-wide association using MAGWAS when controlling for the

effects of SNP rs1800566 in the NQO1 gene. The results are sorted by the host gene and drug.

PLOS GENETICS High throughput screening and GWAS in anticancer drugs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009732 August 26, 2021 23 / 28

https://doi.org/10.1371/journal.pgen.1009732


The SNPs that were not suggestively significant in the original genome-wide association map-

ping reported in Table 2 are shown in bold. Chr: Chromosome, The most severe consequences

were obtained from Ensembl VEP (Ensembl release 97 –July 2019). Table C. Significant

results from multivariate linear regression of drug response on the baseline expression of

NQO1 and NFAT5 transcripts. Significant correlations between drug response and baseline

expression of NQO1 and NFAT5 transcripts after multiple testing correction with a false dis-

covery rate of q< 0.25 applied per drug. Table D. p-values for rs1800566 at each stage of the

pQTL model. The Stage 1 column shows the p-values for the association of rs1800566 with the

AUC for each drug treatment. The Stage 2 column shows the p-value for the association of

rs1800566 with NQO1 protein activity. The Stage 3 column shows the p-values for the associa-

tion of NQO1 protein activity with the AUC for each drug treatment. ‘�’ indicates statistical

significance at p-value< 0.05. Table E. Estimates and p-values for the covariate ‘NQO1_-

protein_activity’ from Stage 3 of the pQTL model for the linear regression of AUC on the

NQO1 protein activity stratified by genotype at SNP rs1800566. CC = reference genotype,

CT = heterozygous genotype, TT = homozygous alternate genotype.
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