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Introduction
Prion disorder (PD) is a neurodegenerative disease attributable 
to structural changes in the cellular Prion protein that results in 
the generation of a pathogenic isoform.1-3 Extensive and grad-
ual brain deterioration causes this disease condition. PD affects 
people all over the world annually, along with a prevalence of 1 
PD case per million populations.4,5 Roughly 350 cases of PD 
are reported in the United States every year,6 and the number 
of instances of PD is gradually increasing.

The specific molecular mechanisms of the development and 
advancement of this neurodegenerative disorder are unknown, 
although they include spongiform degeneration, synaptic 
changes, brain inflammation, neuronal death, and protein 
aggregate accumulation, all of which occur simultaneously and 
synergistically in the brain.7,8 These are the common denomi-
nators in more than half of the neurodegenerative disorders 
induced by growing metal-catalyzed chemical imbalances.9,10 
Hence, scientists believe that an imbalance in metal-catalyzed 
processes causes an adjustment in antioxidant function, which 
is one of the causes of PD.11 Simultaneously, there is evidence 
that the relationship between metal-catalyzed processes and 

oxidative stress is developing in a variety of neurodegenerative 
disorders, including PD.12,13 In case of physiological mecha-
nisms, overproduction of various reactive species, particularly 
reactive oxygen (ROS) and nitrogen (RNS) species, in con-
junction with a breakdown of the body’s antioxidant enzyme 
systems, causes proteins, lipids, other cellular structures, and 
genetic components, such as DNA and RNA, to be destroyed. 
Furthermore, reactive species impacts on cellular structures, 
such as mitochondria and their related metabolic processes, 
result in an increase in ROS/RNS levels, which leads to the 
mitochondrial protein oxidation, DNA, and lipids. Many neu-
ronal diseases, including Parkinson’s disease, Alzheimer’s dis-
ease, Huntington’s disease, Amyotrophic lateral sclerosis, and 
multiple sclerosis, have been associated with oxidative stress. 
Even though these metals are required for most biological 
activities and serve as cofactors for a variety of enzymes, their 
absence in the central nervous system (CNS) might cause 
problems.14 Excessive metal accumulation in tissues can be 
cytotoxic and cause a slew of cellular issues and oxidative stress, 
which can set off the neurodegenerative cascade.15 Other risk 
factors include having a family history of prion illness and 
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eating meat infected with “mad cow disease.”16 All familial PD 
concurrence is caused by prion protein mutations, which 
account for 10% to 15% of PD prevalence.17

Early warning indicators of PD include memory problems, 
poor coordination, behavioral disorders, and vision difficul-
ties.18,19 Later indicators involve blindness, dementia, coma, 
erratic movements, and weakness. Physical concerns include 
speech difficulties, ataxia (such as slurred speech, stumbling, 
falling, and incoordination), gait alterations (unable to walk in 
the usual way due to pathologies of the spinal cord, brain, legs, 
or feet), and rigid posture (decorticate posture is an atypical 
posturing when people suffered from clenched fists, bent arms, 
and legs held out straight) in PD patients.20 These symptoms 
are commonly accompanied by involuntary movements in peo-
ple with PD. More than 70% of patients with PD die within a 
year of diagnosis due to late diagnosis and the inability to 
detect early symptoms.21,22 Although sporadic (non-inherited) 
PD, also known as Creutzfeldt–Jakob disease, can kill in weeks 
or months, the disease course varies.23

Numerous studies have discovered genetic links between 
the risk factors and the progression of PD throughout time.24 
However, it’s difficult to predict when these genetic linkages 
may reveal disease symptoms. Due to the ambiguity of these 
genetic linkages, the disease mechanism cannot be fully under-
stood at the early stage. For this reason, several researchers have 
sought to provide potential biomarkers for PD that will aid in 
the early diagnosis of the disease.25 In several investigations, 
biomarkers such as neuron-specific enolase (NSE), t-tau, and 
S100 have been discovered.26 The use of NSE, t-tau, and S100 
biomarkers for sporadic PD diagnosis is controversial, in part 
because of discrepancies in accuracy among studies and conti-
nents.27 Therefore, it has been found that these biomarkers are 
insufficient for understanding the disease’s mechanism.

Researchers may be able to uncover possible candidate med-
ications using gene expression data gathered from microarray 
analysis and next-generation sequencing (NGS) of mRNA tis-
sue samples, and from potential biomarkers.28 Hence, differen-
tially expressed genes (DEGs), protein–protein interactions 
(PPIs), molecular pathway, and gene ontology (GO) analysis 
could be a significant way to figure out which genes, genetic 
factors, or pathways are involved in PD.

In this study, PD brain tissue samples were employed for 
gene expression data. The microarray datasets were analyzed 
using the GEO2R tool, which provides summary statistics 
generated by the limma topTable function. Limma is an R 
package which analyzes gene expression microarray data, espe-
cially for analyzing and assessing differential expression. 
Limma helps to analyze comparisons between many RNA tar-
gets simultaneously in arbitrary complicated designed experi-
ments. Limma effectively combines a number of statistical 
principles. It works with a matrix of expression levels, where 
each column corresponds to an RNA sample and each row 
relates to a gene or other genomic feature relevant to the 

current investigation. After evaluating the datasets, DEGs 
were predicted from overall PD vs healthy sample. The DEGs 
were identified within the cutoff range (P < .05) and were con-
sidered significant. To adjust the P-values, logFC ⩾ 1 and 
logFC ⩽ −1 were considered significant. These datasets were 
analyzed to predict prospective biomarker transcripts in brain 
tissue to scrutinize their impact on the disease’s expression in 
humans. This study also predicted a list of potential drugs that 
could be useful in treating this deadly disease. This research 
mainly focused on biomarker signatures at transcriptional 
(mRNAs and miRNAs) and translational (hub proteins) levels 
and predicted possible biomarkers for the early detection of 
PD.

Materials and Methods
An overview of the entire analytical bioinformatics and system 
biology techniques to determine molecular biomarkers of PD 
is depicted in Figure 1.

Data retrieval

The data for this study were selected from the National Center 
for Biotechnology Information’s Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/geo2r/),29 which 
is a public data resource that has high-throughput and micro-
array functional genomic data submitted by diverse research 
organizations. After scanning NCBI-GEO for PD data, 499 
datasets were found. Among these, only 15 datasets were for 
humans. In this study, only human PD datasets from brain 
tissue sources were selected. The accession numbers for the 
selected microarray datasets are GSE160208 and GSE124571. 
There are 47 samples in the GSE160208 microarray dataset, 
20 of which are healthy samples and 27 are disease samples. 
Another microarray dataset, GSE124571, has a total of 21 
samples, including 10 healthy samples and 11 disease 
samples.

Identif ication of common DEGs between brain 
tissues

The microarray datasets were analyzed using the GEO2R tool, 
which provides summary statistics generated by the limma 
topTable function. The limma is known as a Bioconductor 
software package for analyzing data using R from gene expres-
sion studies and experiments.30 After evaluating the datasets, 
DEGs were predicted. The DEGs were identified within the 
cutoff range (P < .05, and logFC ⩾ 1, logFC ⩽ −1) and were 
considered significant. The Benjamini–Hochberg (BH) 
approach was used to alter the P-value in this study. The BH 
technique can help reduce the number of erroneous findings. 
BH formula was applied for each P < .05.31 The common 
DEGs of datasets including upregulated and downregulated 
gene sets were expressed by online server Draw Venn diagram 
(http://bioinformatics.psb.ugent.be/webtools/Venn/).32

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Functional gene set enrichment and pathway 
analysis

Gene set enrichment analysis (GSEA) is a method for deter-
mining whether a set of genes is linked to a particular disease. 
GSEA can also assist in overcoming analytical challenges. 
GSEA looks at microarray data to see if individuals from a 
particular gene set tend to be near the top (or bottom) of the 
list, and where the gene set is linked to behavioral class distinc-
tion.33 Significant GO terms regarding biological process, 
molecular function, and cellular component (P < .05) were 
analyzed by performing a GSEA of DEGs using the Enrichr 
server (https://maayanlab.cloud/Enrichr/).34 In addition, path-
way analysis is employed to adjust and enhance the putative 
biomarker with altered experimental genes. In this study, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way and Reactome pathway are used to analyze the results of 
high-throughput experimental experiments, working on novel 
methods for mining knowledge from genomic studies and sys-
tem biologists developing new systems. This pathway analysis 
improves the statistical power of differential expression analy-
sis, which is carried out directly at the route level. These path-
way enrichment studies were performed through the Enrichr 
server where P < .05 has been regarded a standard metric.

PPI network and hub proteins identif ication

A PPI network is a mathematical representation of protein 
interactions in cells. PPI network is crucial to express the 

function of target protein and molecule therapeutic effi-
cacy.35-37 The PPI network in this study was constructed via 
the NetworkAnalyst server (https://www.networkanalyst.
ca/).38 The genes of interest (seeds) or DEGs are mapped to 
the corresponding molecular interaction database 
(STRING).39 The procedure typically produces 1 big subnet-
work (“continent”) with several smaller ones (“islands”). The 
big subnetwork with highest nodes, edges, and seeds was 
selected for visualization. As evidentiary, Degree and 
Betweenness score were considered simultaneously to screen 
the edge or interaction among particular proteins, and short 
edge represents co-expression, co-localization. The so-called 
hubs or hub proteins which are typically described as the 
most highly linked central proteins are crucial in PPI net-
works. The protein hub was discovered using the physical 
interactions of DEG proteins from the NetworkAnalyst 
server. Those protein hub proteins can be a possible bio-
marker that could lead to the development of novel thera-
peutic drugs.

Identif ication of transcriptomic regulators

We have predicted regulatory biomolecules as transcription 
factors (TFs) and miRNAs that may influence DEG expres-
sion through the NetworkAnalyst Server.40 miRNAs have a 
resource in the field of gene control and a prospective new 
therapeutic target class. miRNAs have a developmental role 
and several physiological functions that evolved over time.

Microarray data Analyzed by GEO2R

DEGs

GO Term
Analysis

Pathways 
Enrichment

Network 
Analysis

PPI

Prion disease

Drug 
Prediction

TFs

miRNAs 

Figure 1.  Overall workflow scheme of this study. mRNA expression datasets of PD were analyzed to determine DEGs and related GO terms, KEGG 

pathways, PPI network, transcriptomic signatures, and possible candidate therapeutic drug targets.

https://maayanlab.cloud/Enrichr/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
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Prediction of candidate drugs

Finally, the study employed the drug signature database 
(DsigDB) (http://dsigdb.tanlab.org/)41 to find suitable drug 
molecules using the Enrichr server. The DsigDB dataset is 
used to search gene lists for gene–disease interaction com-
pounds that lead to the use of pharmaceuticals or pharmaco-
logical targets.42 Molecular formula and 3D/2D structure of 
predicted small molecules were extorted from online server 
PubChem (https://pubchem.ncbi.nlm.nih.gov/).43

Potential biomarker validation

Predicted biomarkers: hub proteins, TFs, and miRNAs were 
cross-validated by comparing with the findings of other inde-
pendent studies involving multiple analysts regarding PD in 
various search portals, such as PubMed, Google Scholar, and 
Google.

Results
Determination of DEGs

The datasets having accession number GSE160208 and 
GSE124571 were used to identify upregulated genes (adjusted P 
< .05, logFC > 1) and downregulated genes (adjusted P < .05, 
logFC < −1). A total of 35 common DEGs were identified as 
shown in Figure 2 and Table 1. Among those 35 common DEGs, 
32 were upregulated genes and 3 were downregulated genes.

GSEA of GO terms

GSEA assesses whether the ranked list of genes shares a com-
mon annotation and creates gene sets, decreasing the redun-
dancy that might occur in the analysis due to similar GO. The 
top 10 significant GOs regarding biological processes, molecu-
lar functions, and cellular components based on P < .05 are 
shown in Table 2 and also these components are presented in 
the Bar diagram (Figure 3A-C). From the identified terms, 
DOCK2 downregulated gene was revealed to be most engaged 
in T cell receptor binding and the CD74 downregulated gene 
was revealed to be most engaged in CD4 receptor binding in 
PD. Furthermore, IFITM3, CDKN1A, IFITM2, SYK, EBI3, 
ITGAX, HMOX1, PTPN6, and TIMP1 upregulated genes 
were found active in the regulation of the cytokine-mediated 
signaling pathway, and CDKN1A and HSPB1 upregulated 
genes were found active in protein serine/threonine kinase 
inhibitor activity, which plays a role in the guideline of cell pro-

liferation and differentiation, apoptosis, and embryonic devel-
opment in PD.

GSEA of pathways

The KEGG in the Enrichr server was used for analyzing path-
ways. KEGG is a frequently used database as a knowledge base 
for integrating and interpreting large-scale results produced by 
high-throughput genome sequencing and other technologies. 
The top 10 significant KEGG pathway is listed in Table 3. 
Furthermore, the Reactome pathway is a new route analysis tool 
that is used to perform quantitative pathway analysis (so-called 
gene set analyses). The top 10 significant Reactome pathway is 
listed in Table 4. KEGG and Reactome pathways involved with 
DEGs were evaluated for GSEA using Enrichr server (Figure 4).

PPI network and hub protein prediction

PPI network of significant DEGs was constructed by employ-
ing STRING intercom database of NetworkAnalyst server 
with a confidence score of 500. SPP1, FKBP5, HPRT1, 
CDKN1A, BAG3, HSPB1, SYK, TNFRSF1A, PTPN6, and 
CD44 were identified as the top 10 hub proteins from PPI 
network (Table 5). These identified top 10 hub proteins can 
work as potential biomarkers in PD. The PPI network of 
DEGs is demonstrated in Figure 5.

Transcriptional regulator prediction

TFs and miRNAs associated with DEGs were predicted 
revealing regulatory biomolecules that could control DEG 
expression. The analysis revealed top 10 TFs (EGR1, SSRP1, 
POLR2A, TARDP, NR2F1, HDGF, CBFB, ELF1, HBP1 
and ADNP) as shown in Figure 6A. Also, top 10 miRNAs 
associated with DEGs were estimated (hsa-mir-8485, hsa-
mir-148b-3p, hsa-mir-4295, hsa-mir-26b-5p, hsa-mir-355-5p, 
hsa-mir-34a-5p, hsa-mir-16-5p, hsa-mir-486-3p, hsa-mi-
512-5p and hsa-mir-455-3p) as shown in Figure 6B.

Candidate drug molecule prediction

The DsigDB was used in this study to look for possible medi-
cation interactions with the hub proteins. The most significant 
drug molecules based on P < .05 were selected which are 
shown in Table 6. These potential drugs could be attractive 
pharmaceuticals and therapeutic targets for PD.

Table 1.  Overview of DEGs identified from selected datasets of PD analyzed in this study.

Disease 
name

Accession 
No.

Experiment 
type

Healthy 
sample

Disease 
sample

Total 
DEGs

Upregulated 
genes

Downregulated 
genes

Common 
genes

PD GSE160208 Expression 
profiling by 
microarray

20 27 117 77 40 35

GSE124571 10 11 422 199 223

PD, Prion disorder.

http://dsigdb.tanlab.org/
https://pubchem.ncbi.nlm.nih.gov/
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Potential candidate biomarker

In the case of PD and other diseases, cross-validation research 
was done to justify anticipated biomarkers. These predicted 
hub genes and TFs linked to PD etiology have been identified 
as prospective candidate biomarkers in other research as shown 
in Figures 7A and B, respectively.

Discussion
In the current study, we have used PPI network, molecular key 
pathways, and regulatory pattern analyses to identify signatures 
at the molecular level that may have capacity to use as bio-
markers or possible therapeutic targets against PD. We have 
explored gene expression datasets to determine PD-related 

Figure 2. (Continued)
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Figure 2.  Identification of overlapping DEGs from microarray datasets and diverse distribution level of identified DEGs. (A and B) Mutual 32 upregulated 

and 3 downregulated DEGs, respectively identified from microarray datasets. (C and D) Volcano plot of significant DEGs (P < .05, logFC > 1, and logFC 

< −1) in comparison with insignificant genes. Here, green dots are upregulated genes, red dots are downregulated genes, and ash-colored dots are 

non-significant genes. Box plot (E and F) and expression density plot (G and H) of the GSE160208 and GSE124571 datasets.

Figure 3.  GSEA of DEGs regarding 3 categories of GO terms in PD. (A-C) Bar graph expresses significant GO terms (P < .05) with related DEGs of 

biological process, cellular component, and molecular function, respectively. Where, vertical axis expresses significant GO terms (P < .05) and horizontal 

axis expresses −log10 P-value.
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Table 2.  Identified top 10 significant GO terms associated with DEGs in PD. Here, green color denotes related DEGs are upregulated and red color 
denotes related DEGs are downregulated.

Class Go ID GO term P-value Related genes

Biological 
process

(GO:0032722) Positive regulation of chemokine production 2.16E-06 CD74; SYK

(GO:0032675) Regulation of interleukin-6 production 1.31E-06 CD74; TYROBP

(GO:0008284) Positive regulation of cell population proliferation 1.26E-06 CD74; CDKN1A

(GO:0001819) Positive regulation of cytokine production 9.05E-08 CD74

(GO:0002275) Myeloid cell activation is involved in immune response 2.99E-08 FCER1G

(GO:0002446) Neutrophil-mediated immunity 7.25E-09 SERPINA3; FCER1G; TYROBP

(GO:0071345) Cellular response to cytokine stimulus 6.44E-09 CDKN1A; IFITM2

(GO:0043312) Neutrophil degranulation 6.31E-09 SERPINA3; FCER1G; TYROBP

(GO:0002283) Neutrophil activation involved in immune response 3.76E-10 SERPINA3

(GO:0019221) Cytokine-mediated signaling process 3.14E-10 IFITM3; CDKN1A

Molecular 
function

(GO:0070061) Fructose binding 1.05E-02 SLC2A5

(GO:0016019) Peptidoglycan immune receptor 8.72E-03 CD14

(GO:0016833) Oxo-acid-lyase activity 8.72E-03 NPL

(GO:0043120) Tumor necrosis factor binding 8.72E-03 TNFRSF1A

(GO:0005353) Fructose transmembrane transporter activity 8.72E-03 SLC2A5

(GO:0019864) IgG binding 8.72E-03 FCER1G

(GO:0045309) Protein-phosphorylated amino acid binding 2.45E-03 SYK; PTPN6

(GO:0001784) Phosphotyrosine residue binding 1.91E-03 SYK; PTPN6

(GO:0030291) Protein serine/threonine kinase inhibitor activity 1.26E-03 CDKN1A; HSPB1

(GO:0004896) Cytokine receptor activity 4.87E-04 CD74; EBI3; CD44

Cellular 
component

(GO:0070820) Tertiary granule 2.92E-03 FCER1G; ITGAX

(GO:0042581) Specific granule 2.73E-03 PTPN6; SLC2A5

(GO:0005765) Lysosomal membrane 2.55E-03 IFITM3; CD74

(GO:0010008) Endosome membrane 2.41E-03 IFITM3; IFITM2

(GO:0034774) Specific granule lumen 2.18E-03 SERPINA3; PTPN6

(GO:0005764) Lysosome 1.36E-03 IFITM3; CD74

(GO:0098852) Lytic vacuole membrane 1.17E-03 IFITM3; CD74

(GO:0098588) Bounding membrane of organelle 3.12E-04 CD74; CD163

(GO:0030659) Cytoplasmic vesicle membrane 4.61E-05 CD74; CD163

(GO:0030667) Secretory granule membrane 4.06E-07 FCER1G; TYROBP

transcriptomics, genetics, PPIs, pathways, and GO terms. The 
purpose of this study was to find molecular signatures, path-
ways, and lucrative potential therapeutic compounds from 
public PD data archives through an integrated bioinformatics 
and system biology workflow. This line of research evaluated 
an individual’s vulnerability to plasma Prion protein formation 
using molecular biomarkers of DEGs, PPI level, and metabolic 

pathways. As a result of this research, important genes and bio-
logical processes associated with these genes were uncovered.

In the study, differential gene expression was used to con-
firm the association between PD and altered expression level of 
genes. A total of 35 common DEGs were identified from 2 
microarray datasets of PD. The disparity of mutual gene signa-
ture identification among different meta-analysis studies may 
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be due to the presence of heterogeneous traits for a particular 
disease,44,45 variation in gene expression level, or limited sample 
numbers.46,47 According to the PPI network analysis, PD 
shows a strong link with these 10 hub proteins, which could be 
used as biomarker candidates or therapeutic targets. One of 
these 10 hub proteins, the cluster of differentiation (CD44) 
antigen, is engaged in cell–cell communication, adhesion, and 
migration.48 In PD-affected parts of the CNS, CD44 is signifi-
cantly regulated in a subgroup of reactive astrocytes. CD44 
expression further facilitates strain identification by serving as 
a more reliable selective marker of prion infection with a wider 
range than deposition of misfolded Prion protein.49 The CD44 
protein could also be employed as a novel biomarker for detect-
ing reactive astrocyte heterogeneity in CNS PD and recogniz-
ing various prion agent strains. Another hub protein, FKBP5, 
is thought to help PD patients live longer by minimizing the 

disease’s impact.50 CDKN1A, another hub protein, is believed 
to be engaged in cell proliferation and the response to DNA 
damage.49 It binds to G1 cyclin–CDK complexes and PCNA 
antigen, preventing G1 cell cycle progression and possibly trig-
gering G2 arrest.49 Another centrally positioned hub protein, 
HSPB1, is a protein that has 2 functions: stress resistance and 
actin organization. Its molecular chaperone function may con-
trol a variety of biological processes, including the phospho-
rylation of neurofilament proteins and axonal transport.51 SYK, 
another crucial hub protein, is required for lymphocyte prolif-
eration and immune cell activation.52 The SPP1 gene codes for 
a cytokine that increases interferon-gamma and interleukin-12 
expression while decreasing interleukin-10 synthesis, resulting 
in type I immunity with high phagocytic activity.53 Through 
the c-Fos, protein kinase-C (PKC), and p-extracellular signal 
regulated kinase (p-ERK/ERK) pathways, SPP1 regulates the 

Table 3.  Significant KEGG pathway (P < .05) enriched in Enrichr server. Here, green color denotes related DEGs are upregulated and red color 
denotes related DEGs are downregulated.

KEGG PATHWAY P-value Genes

Tuberculosis .0002 TYROBP; SYK; TNFRSF1A

Natural killer cell-mediated cytotoxicity .0060 FCER1G; TYROBP; SYK; PTPN6

Pertussis .002 CDKN1A; PTPN6; GFAP

Complement and coagulation cascades .04 C1QB; ITGAX; C1QC

Coronavirus disease—COVID-19 .033 SYK; PTPN6

Chagas disease .04 FCER1G; SYK

NF-kappa B signaling pathway .04 SYK; CD14; TNFRSF1A

HIF-1 signaling pathway .0002 CDKN1A; HMOX1; TIMP1

Osteoclast differentiation .0091 SPP1; CD44

Fluid shear stress and atherosclerosis .0003 C1QB; TUBB3; C1QC

Table 4.  Significant Reactome pathway (P < .05) enriched in Enrichr server. Here, green color denotes related DEGs are upregulated and red color 
denotes related DEGs are downregulated.

Reactome pathway P-value Genes

Immune System Homo sapiens R-HSA-168256 .00000012 IFITM3; C1QB; CD74; CDKN1A

Hemostasis Homo sapiens R-HSA-109582 .00000032 SYK; EBI3; PTPN6

Cell surface interactions at the vascular wall Homo sapiens R-HSA-202733 .00000086 C1QB; CDKN1A

Platelet activation, signaling, and aggregation Homo sapiens R-HSA-76002 .00007412 IFITM3; IFITM2; SYK

Cytokine signaling in immune system Homo sapiens R-HSA-128021 .00008395 SYK; PTPN6

GPVI-mediated activation cascade Homo sapiens R-HSA-114604 .0001083 CD74; FCER1G; ITGAX

Dectin-2 family Homo sapiens R-HSA-5621480 .0001327 IFITM3; IFITM2; SYK

Integrin cell surface interactions Homo sapiens R-HSA-216083 .0002178 C1QB; C1QC

Interferon-alpha/beta signaling Homo sapiens R-HSA-909733 .0002276 TYROBP; PTPN6

Signal regulatory protein (SIRP) family interactions Homo sapiens R-HSA-391160 .0002293 FCER1G; TYROBP
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Table 5. L ist of top 10 hub genes from PPI network and their expression level in PD.

Rank Symbol of hub genes Description Regulation

1 SYK Spleen tyrosine kinase Upregulated

2 SPP1 Secreted phosphoprotein 1 Upregulated

3 CD44 Cluster of differentiation CD44 antigen Upregulated

4 HSPB1 Heat shock protein beta-1 Upregulated

5 BAG3 BAG family molecular chaperone regulator 3 Upregulated

6 CDKN1A Cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1 Upregulated

7 FKBP5 FK506 binding protein 5 Upregulated

8 HPRT1 Hypoxanthine phosphoribosyl transferase 1 Downregulated

9 TNPRSF1A Tumor necrosis factor receptor superfamily member 1A Upregulated

10 PTPN6 Protein tyrosine phosphatase non-receptor type 6 Upregulated

Figure 4.  (A and B) illustrates the Bar graphs of significant KEGG and Reactome pathways (P < .05) of PD enriched in Enrichr web-based server. 

Enriched top 10 KEGG and Reactome pathways showed significant correlation (P < .05) with DEGs. Each bar length and its brightness express the 

significance level (P < .05) of the pathways enriched.
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Table 6.  Predicted small drug molecules associated with DEGs identified in DSIGDB server.

Candidate drug molecules P-value Genes involved Molecular formula 3D shape

Resveratrol CTD 00002483 3.00E-04 NQO1; CDKN1A; SPP1; HMOX1; 
CD14

C14H12O3

Hypochlorous acid CTD 
00006135

5.48E-06 NQO1; HMOX1; HPRT1 HClO

Acrylamide CTD 00007343 9.89E-09 CDKN1A; TUBB3; HSPB1; HPRT1; 
GFAP

C3H5NO

Tamibarotene CTD 00002527 1.53E-08 NQO1; CDKN1A; HSPB1; HMOX1; 
PTPN6; TIMP1; CD14; HPRT1; 
CD44

C22H25NO3

Zinc CTD 00007011 1.26E-05 C1QB; NQO1; CDKN1A; BAG3; 
TUBB3; SPP1

Zn

Curcumin CTD 00000663 1.53E-08 SERPINA3; NQO1; CD74; 
CDKN1A; FCER1G; HMOX1

C21H20O6

N-acetyl-L-cysteine CTD 
00005305

1.04E-06 NQO1; CDKN1A; BAG3; HMOX1; 
TIMP1; GFAP; TNFRSF1A

C5H9NO3S

Aspirin CTD 00005447 2.72E-08 SERPINA3; NQO1; CD74; 
CDKN1A; FCER1G; HMOX1

C9H8O4

Troglitazone CTD 00002415 6.25E-08 CD163; ITGAX; HMOX1; NPL; 
CD14; DOCK2; AIF1

C24H27NO5S

Figure 5.  Visualization and prediction of hub proteins in PPI Network. PPI 

network formulated in NetworkAnalyst server demonstrating top 10 hub 

genes related to other DEGs. A confidence score (500) was employed in the 

STRING interactome database to create network. Green nodes express the 

top 10 hub genes, red nodes express DEGs, and blue edges express 

interaction level among DEGs. The size of the large node represents that 

they are hub proteins, whereas small nodes represent, they are DEGs.

degeneration and regeneration of damaged nerves.53-55 In mice 
models of PD, SPP1 was reported to be elevated and to operate 
as an important modifier of macrophage morphologies and 
their capability to remove pathogenic beta-amyloid forms.53,56-

58 Its involvement in PDs, however, has yet to be elucidated. 
Furthermore, the TNFRSF1A protein regulates inflammation 
and can activate NF-B (nuclear factor kappa-light-chain-
enhancer of activated B cells) and mediate apoptosis as a TNF 
(tumor necrosis factor-alpha) receptor.59,60 The gene product of 
PTPN6 (protein tyrosine phosphatase non-receptor type 6), 
commonly known as SHP-1 (Src homology region 2 domain-
containing phosphatase-1), is a protein tyrosine phosphatase 
involved in cell differentiation, particularly in hematopoietic 
cells.61,62

Regulatory molecules are increasingly being scrutinized as 
potential biomarkers for major disorders, such as neurodegen-
erative diseases.61 With this in mind, we looked into the role of 
TFs and miRNAs in the control of DEGs in PD pathogenesis 
via TF-miRNA coregulatory networks. Early growth response 
factor 1 (EGR1) is one of the TFs identified in this study, and 
it controls the transcription of a wide number of target genes to 
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control the response to growth stimuli and DNA damage. This 
TF is in charge of cell survival, proliferation, and death.63-65 
However, another study revealed the TF EGR1 in the inflam-
matory response genes of patients with PD.66 According to 
several studies, activation of the receptor kinase/mitogen-acti-
vated protein kinase (RK/MAPK) produces active EGR1, 
which in turn transcribes cdk5/p35, which can “shut off ” the 
signaling cascade.67 Structure-specific recognition protein-1 
(SSRP1), a FACT (facilitates chromatin transactions) complex 
component, has been identified as an ATP-dependent helicase 
(ATRX) complex member. In the late S-phase, this protein also 
accumulates in heterochromatin.68 It is believed that SSRP1 
accumulates in heterochromatin by the same signaling as 
death-associated protein 6 (Daxx), but with a distinct ATRX 
binding domain or a distinct intermediary protein.69,70 SSRP1 

could be phosphorylated to interact with the ATRX-containing 
heterochromatin complex. These associations in vivo suggest 
the formation of multiprotein complexes in pericentromeric 
regions during or immediately after DNA replication.71,72 
Most recently, the DNA-directed RNA polymerase II 
(POLR2A) variant has been reported in patients with a neuro-
developmental condition marked by significant infantile-onset 
hypertonia.71 This variant of biomarker also encodes the retinol 
binding protein 1 (RBP1) protein, a key component of DNA-
dependent RNA polymerase II.71

miRNAs play an important role in gene regulation, and evi-
dence is mounting that they could be used as biomarkers. miR-
NAs are thought to be involved in the pathogenic mechanism 
that causes PD.73 A study of PD found that has-mir-16-5p is 
involved in the regulation of dendritic remodeling and synaptic 
pruning, which is the first pathogenic hallmark of PD neuronal 
degeneration and Alzheimer’s disease.74 The has-mir-16-5p 
miRNA was also useful in the creation of new PD treatments.75 
Another miRNA, hsa-mir-148b-3p, has been linked to PD 
and could potentially be employed as a biomarker for PD.76

In addition to transcriptome expression, epigenome controls 
and mutations can have an impact on PD. From the foregoing 
explanation, we can deduce that the pathophysiology of this psy-
chiatric condition is influenced by genetic, transcriptomic, post-
transcriptomic, and epigenetic patterns at the architectural 
level. That is one of the reasons scientists were perplexed about 
the origin, diagnosis, prognosis, and pharmacological target for 
prion disease. RESVERATROL (CTD 00002483) is one of 
these pharmaceutical components that activate autophagy, a 
mechanism that protects organelles, cells, and organisms from 
diseases caused by misfolded prion proteins.77 Anti-
inflammatory medication aspirin (CTD 00005447) is a well-
known ERK inhibitor and protects against neurodegenerative 
conditions, including prion diseases.78 HYPOCHLOROUS 
ACID (CTD 00006135) component has outstanding disin-
fectant properties against prions and a variety of other diseases, 
and it does so without causing toxicity.79 When a prion protein 
complex is altered or when cells are infected with prion protein, 
ZINC (CTD 00007011) uptake is impaired, which suggests 
that zinc deficiency contributes to the neurodegeneration that 
is typically linked with prion disease.80 According to studies, 
Troglitazone (CTD 00002415) could be a useful therapeutic 
medication for the treatment of prion diseases. According to the 
study, Troglitazone (CTD 00002415) weakened prion protein.81 
Based on recent research, curcumin (CTD 00000663) have effects 
on a variety of neurological disorders including anxiety, depression, 
Alzheimer’s, Parkinson’s, multiple sclerosis, Huntington’s, and 
Prions disease. Recent improvements in curcumin (CTD 
00000663) formulation’s medicinal effectiveness and the unique 
delivery techniques used to get over its low bioavailability and tox-
icity.82 Anti-inflammatory medication aspirin is a well-known 
ERK inhibitor and protects against neurodegenerative condi-
tions, including prion illnesses. Aspirin (CTD 00005447) have 

Figure 6.  Transcriptomic signature molecules identified from 

NetworkAnalyst server. (A) Top 10 TFs linked to DEGs are demonstrated 

in the network where the red nodes are TFs, ash nodes are DEGs, and 

edges denote interaction among DEGs. (B) Top 10 miRNAs connected 

with DEGs. Here, brown square nodes are miRNAs, red nodes are DEGs, 

and edges denote interaction among DEGs.
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therapeutic impact on controlling cellular prion protein pro-
duction and prion protein-mediated neurotoxicity. Aspirin 
(CTD 00005447) therapy prevented prion protein-induced 
neuronal cell death.83 It also suppressed the prion protein 
which mediated the rise of the cellular prion protein. 
Nevertheless, there is no report on Tamibarotene (CTD 
00002527) and N-Acetyl-L-cysteine (CTD 00005305) as ther-
apeutic agents in PD.

Finally, the development of molecular-based bioinformatics 
approaches is opening up new avenues for medical practition-
ers to improve clinical decision-making in areas, such as disease 
diagnosis, drug therapy, and dose selection, and is a step toward 
fully personalized medicine.84,85 This research may yield vital 
new insights into disease mechanisms and drug therapy, which 
could be useful for future research to develop more effective 
therapeutic targets.

Figure 7.  Potential biomarker validation was performed by extensive exploration of previous related literature using related hub genes and TFs of PD as 

keywords (A and B).
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Conclusions and Future Directions
This study gave a rundown of network-based techniques for iden-
tifying molecular biomarkers and drug prospects. Using bioinfor-
matics techniques, 35 overlapping DEGs were discovered from 2 
human brain PD transcriptomics datasets. Following that, the top 
10 hub proteins were unfolded and transcriptional and post-tran-
scriptional regulators associated with DEGs were found in a slew 
of TFs and miRNAs. Prospective-annotated GO terms and path-
ways were focused to minimize the ambiguous pathophysiology of 
PD. The DsigDB also produced several candidate drug com-
pounds, such as Resveratrol, that could be used as therapeutics 
against PD. These findings imply that bioinformatics techniques 
can be used to identify and investigate the progression of compli-
cated neurodegenerative brain diseases, such as PD. The finding of 
these interactions could lead to new insights into disease-causing 
factors and potential therapeutic targets, which could have clinical 
ramifications. As a result, this study emphasizes the importance of 
using an integrated bioinformatics methodology to identify pos-
sible drug repositioning opportunities. This study now recom-
mends a further in-depth investigation of this strategy to find 
more effective medications through clinical trials.
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