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Abstract
Background: Natural products isolated from marine environments are well known for their pharmacodynamic potential in diverse 
disease treatments, such as for cancer or inflammatory conditions. Sea cucumbers are marine animals of the phylum Echinoderm and the 
class Holothuroidea, with leathery skin and gelatinous bodies. Sponges are important components of Persian Gulf animal communities, 
and the marine sponges of the genus Haliclona have been known to display broad-spectrum biological activity. Many studies have shown 
that sea cucumbers and sponges contain antioxidants and anti-cancer compounds.
Objectives: This study was designed to determine the selective toxicity of Persian Gulf sea cucumber (Holothuria parva) and sponge 
(Haliclona oculata) methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma, as part of a 
national project that hopes to identify novel potential anticancer candidates among Iranian Persian Gulf flora and fauna.
Materials and Methods: To induce hepatocarcinogenesis, rats were given diethylnitrosamine (DEN) injections (200 mg/kg i.p. by a single 
dose), and then the cancer was promoted with 2-acetylaminofluorene (2-AAF) (0.02 w/w) for two weeks. Histopathological evaluations were 
performed, and levels of liver injury markers and a specific liver cancer marker (alpha-fetoprotein), were determined for confirmation of 
hepatocellular carcinoma induction. Finally, mitochondria were isolated from cancerous and non-cancerous hepatocytes.
Results: Our results showed that H. parva methanolic extracts (250, 500, and 1000 µg/mL) and H. oculata methanolic extracts (200, 400, and 
800 µg/mL) increased reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), mitochondrial swelling, and 
cytochrome c release in the mitochondria obtained from cancerous hepatocytes, but not in mitochondria obtained from non-cancerous 
liver hepatocytes. These extracts also induced caspase-3 activation, which is known as a final mediator of apoptosis, in the hepatocytes 
obtained only from cancerous, not non-cancerous, rat livers.
Conclusions: Our results suggest that H. parva and H. oculata may be promising therapeutic candidates for the treatment of HCC, 
following further confirmatory in vivo experiments and clinical trials.
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1. Background
The liver carries out several complex and important 

functions, and liver diseases are considered potential 
threats to human life (1). Liver cancer is a complicated 
disease resulting from a several-phase process that 
includes the deregulation of a number of various sig-
naling cascades (2). Hepatocellular carcinoma (HCC) 
is the most common liver cancer worldwide, the most 
common early cancer of hepatocytes, and the fifth 
most common deadly malignant tumor worldwide (3, 
4). The important risk factors for HCC are environmen-
tal agents (such as hepatitis C virus, hepatitis B virus, 
and chemical carcinogen exposure). Several other risk 

factors, including food additives, non-alcoholic fatty 
liver disease, obesity, industrial and environmental 
toxic chemicals, and water and air pollutants are also 
involved in the etiology of HCC (5, 6). HCC is rarely de-
tected at the primary phase, and once detected, there 
is a poor prognosis in most cases (7). HCC treatment 
methods, including chemotherapy, liver transplanta-
tion, and resection, show poor tolerance, low efficacy, 
and poor subsequent survival with a high recurrence 
rate (8). The diet contains several biologically active 
substances, nutrients, and non-nutritive compounds 
that may be changed into metabolites and isomers 
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with various abilities, resulting in different bioavail-
ability profiles (2). Natural products have made impor-
tant contributions to therapies for various cancers (for 
example, breast cancer). In the past 40 years, more than 
300 patents have been issued for potential anticancer 
candidates from the sea, and at least 10 compounds are 
in various phases of clinical trials (9).

Sea cucumbers, belonging to the Holothuroids (Holo-
thuroidea), are marine invertebrates that exist in benthic 
areas and deep seas. They are one of several marine ani-
mals that are underutilized as food, particularly among 
Asian populations (for example, China, Korea, and Tai-
wan). Sea cucumbers are well known to exert useful ef-
fects on human health, and are used for medicinal pur-
poses (10, 11). In developed countries, such as the United 
States and Canada, sea cucumber tissues are dried, pul-
verized and encapsulated as nutraceuticals for over-the-
counter dietary health supplements that are primar-
ily directed at inflammatory conditions in humans and 
companion animals (9).

Natural marine products (especially sponges) have at-
tracted the notice of chemists and biologists around the 
world over the last five decades, as the ocean is consid-
ered to be a source of potential drugs (12). The marine 
sponge genus Haliclona (of the Chalinidae family) has 
been extensively examined, and about 190 metabolites 
that exhibit cytotoxic, antifungal, antimalarial, antimi-
crobial, and anti-fouling activities have been isolated 
(13). Haliclona oculata, a marine demospongiae belonging 
to order Haplosclerida, family Chalinidae, is a soft rosy-
brown to yellow-brown branching sponge with small 
mouth-like openings that cigar-shaped oxeas, mammi-
form elevations, stylote or strongylote forms, and lateral-
ly compressed branches (14). H. oculata reportedly shows 
pharmacological activity against several diseases, such as 
cancer, fungal and microbial infections, neurodegenera-
tion, and type 2 diabetes (14-17).

2. Objectives
Despite several worldwide studies that have revealed 

the efficacy of some sea cucumber and sponge species as 
potential sources of cytotoxic compounds, there is still a 
shortage of information about levels of this activity, espe-
cially in Persian Gulf species, including Holothuria parva 
and H. oculata. Hence, we aimed to investigate the selec-
tive toxicity of Persian Gulf sea cucumber (H. parva) and 
sponge (H. oculata) extracts on liver mitochondria iso-
lated from an animal model of hepatocellular carcinoma 
as part of a national project that hopes to identify novel 
potential anticancer candidates among Iranian Persian 
Gulf flora and fauna.

3. Materials and Methods

3.1. Sea Cucumber Samples
Sea cucumber samples, including H. parva (10 speci-

mens), were collected during low tide from the Bandar-
e Lengeh coast in southern Iran. They were kept in iced 
boxes and transported to the laboratory, where they were 
washed with cold water, weighed, and measured.

3.2. Extraction of Samples and Isolation of H. parva
Bioactive compounds were extracted based on their po-

larity, using water and organic solvents according to the 
method described by Sarhadizadeh et al. (18). The samples 
from the gonad (G), respiration tree (RT), Cuvierian organ 
(CO), and body wall (BW) were defrosted before use. The 
recovered body wall was cut into small pieces and the 
samples were homogenized with a blender, then sus-
pended. This was followed by successive extractions with 
methanol (50%) by percolation (72 h for each solvent) at 
room temperature. After filtration and centrifugation (15 
minutes, 30,000 ×g, 4°C), the extracts were evaporated 
under a vacuum at 45°C with a rotary evaporator. The 
powdered extracts of each sample were obtained with a 
freeze dryer and stored at -20°C.

3.3. Sponge Samples
H. oculata was collected from tidal and subtidal habitats 

via scuba diving at depths between 0 - 20 m, near Larak 
Island in the mouth of the Strait of Hormuz of the Persian 
Gulf. The samples were cleaned and washed with distilled 
water, then immediately frozen and maintained at -20°C 
prior to extraction. They were transferred to the labora-
tory as soon as possible.

3.4. Extraction, Fractionation, and Isolation Procedure 
of H. oculata

Freshly collected H. oculata (2.0 kg) was cut into small 
pieces and extracted with methanol (4 × 4 L) at room tem-
perature. The combined extract was filtered, then concen-
trated into a viscous mass (45.0 g) under reduced pres-
sure, below 45°C, in a Rotavapor®. The animal residue 
was further extracted with 50% methanol-chloroform (4 
× 4 L) and the combined extract was filtered and concen-
trated under reduced pressure as described above, into a 
green viscous mass (35.0 g). The remaining residue was 
rejected. The dried residue was stored at -20°C, to be used 
in anticancer assays.

For standardization of methanolic extracts, the total 
phenolic (TP) determination was performed as follows: 
2.5 g of the oil samples were diluted with 2.5 mL of n-hex-
ane, and extracted three times by 5 minutes of centrifu-
gation (5000 rpm) with CH3OH/H2O (80:20 v/v) extract. 
The extract was added to 2.5 mL of Folin-Ciocalteu re-
agent and 5 mL of Na2CO3 (7.5%) in a 50 mL volume flask, 
reaching the final volume with deionized water. The sam-
ples were stored overnight and the spectrophotometric 
analysis was performed at λ = 765 nm. The methanolic 
extracts of H. parva and H. oculata consisted of 1045 ± 73 
mg/g and 785 ± 42 mg/g of TPs, respectively.



Seydi E et al.

3Hepat Mon. 2015;15(12):e33073

3.5. Animals
Male Sprague-Dawley rats (120 - 130 g), fed a standard 

chow diet and given water ad libitum, were used in all 
experiments. They were purchased from Institute Pasteur 
(Tehran, Iran) and were kept in individual cages under con-
trolled room temperature (20 - 25°C) and humidity (50% - 
60%), and exposed to 12 hours light/dark cycles. All experi-
ments were conducted according to the ethical standards 
and protocols approved by the Committee of Animal Ex-
perimentation of Shahid Beheshti University of Medical 
Sciences in Tehran, Iran. All efforts were made to minimize 
the number of animals used, and their suffering.

3.6. Experimental Design
The rats were divided into two groups of ten animals 

each. Group A, was untreated and served as the normal 
control. Hepatocarcinogenesis was induced in each rat 
of Group B, by a single intraperitoneal (i.p.) injection of 
DEN dissolved in corn oil, at a dose of 200 mg/kg body 
wt. Two weeks after DEN administration, cancer develop-
ment was promoted with dietary 2-AAF (0.02%, w/w) for 
two weeks (19).

3.7. Serum Alpha-Fetoprotein
Serum alpha-fetoprotein (AFP) concentrations were 

determined using the ADVIA Centaur AFP bioassay (Sie-
mens, Germany) (19).

3.8. Liver Function Tests
Serum alanine transaminase (ALT), aspartate transami-

nase (AST), and alkaline phosphatase (ALP) determina-
tions were done spectrophotometrically using the Hi-
tachi-912 Chemistry Analyser (Mannheim, Germany) and 
standard diagnostic kits (Roche Diagnostics) (19).

3.9. Histopathological Evaluation
Pieces of liver tissue were formalin-fixed and paraffin-

embedded (FFPE), then stained with hematoxylin and eo-
sin (H and E) according to the standard method. They were 
then examined for lesions under light microscopy (19).

3.10. Isolation of Mitochondria From rat Hepatocytes
Preparation of isolated rat liver cells is usually per-

formed using the two-step collagenase liver perfusion 
technique (20, 21). In order to evaluate cellular integrity 
(or viability), the trypan blue exclusion test was per-
formed (22, 23). The mitochondria were prepared from 
hepatocytes (30 × 106 cells); 1 × 106 cells/mL were resus-
pended in Krebs-Henseleit medium (pH 7.4), supple-
mented with 5 mM of glucose, and incubated under an 
atmosphere of 95% O2/5% CO2 in a shaking bath at 37°C 
for 2 hours (24). The cells were then pelleted (300 g for 3 
minutes) and resuspended in 10 mL of Solution A (0.25 

M of sucrose, 0.01 M of tricine, 1 mM of EDTA, 10 mM of 
NaH2PO4, and 2 mM of MgCl2; pH = 8). Next, they were 
supplemented with 0.4% BSA and frozen at -80°C for 10 
minutes to break the plasma membrane, then centri-
fuged at 760 g for 5 minutes. The supernatant was kept 
while the pellet was homogenized, using Ultra-Turrax® 
homogenizer for 10 minutes, followed by centrifugation 
at 760 g for 5 minutes. The supernatants from the pre-
vious two steps were combined and centrifuged for 20 
minutes at 8,000 g. With the exception of the mitochon-
dria used to assess ROS production, MMP, and swelling, 
the final mitochondrial pellets were suspended in Tris 
buffer ( 0.05 M of Tris-HCl, 0.25 M of sucrose, 20 mM of 
KCl, 2.0 mM of MgCl2, and 1.0 mM of Na2HPO4; pH = 7.4) 
at 4°C. The mitochondria used to assess ROS production, 
MMP, and swelling were suspended in respiration buffer 
(0.32 mM of sucrose, 10 mM of Tris, 20 mM of Mops, 50 
μM of EGTA, 0.5 mM of MgCl2, 0.1 mM of KH2PO4, and 5 
mM of sodium succinate), MMP assay buffer (220 mM of 
sucrose, 68 mM of D-mannitol, 10 mM of KCl, 5 mM of 
KH2PO4, 2 mM of MgCl2, 50 μM of EGTA, 5 mM of sodium 
succinate, 10 mM of HEPES, and 2 μM of rotenone), and 
swelling buffer (70 mM of sucrose, 230 mM of mannitol, 
3 mM of HEPES, 2 mM of Tris-phosphate, 5 mM of suc-
cinate, and 1 μM of rotenone). Protein concentrations 
were determined with the Coomassie blue protein-bind-
ing method as explained by Bradford (25). The isolation 
of mitochondria was confirmed by the measurement of 
mitochondrial complex II (succinate dehydrogenase) 
activity (25).

3.11. Complex II Activity Assay Using the MTT Test
The activity of mitochondrial complex II (succinate de-

hydrogenase) was assayed by measuring the reduction 
of MTT (3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyltetrazo-
lium bromide). Briefly, 100 μL of mitochondrial suspen-
sion was incubated with different concentrations of H. 
parva (0 - 1000 μg/mL) at 37°C for 60 minutes, then 0.4% 
of MTT was added to the medium and incubated at 37°C 
for 30 minutes. The product of formazan crystals was dis-
solved in 100 μL DMSO and the absorbance at 570 nm was 
measured with an ELISA reader (Tecan, Rainbow Thermo, 
Austria) (26).

3.12. Determination of Mitochondrial ROS Levels
Mitochondrial ROS measurements were performed 

using the fluorescent probe dichlorodihydrofluoresce-
in-diacetate (DCFH-DA). Briefly, isolated mitochondria 
from hepatocytes were placed in respiration buffer, then 
DCFH-DA was added (final concentration, 10 μM) to the 
mitochondria, which were then incubated for 10 min-
utes at 37°C. For the next step, the fluorescence intensity 
of dichlorofluorescein (DCF) was measured using the Shi-
madzu RF-5000 U fluorescence spectrophotometer at an 
excitation wavelength of 488 nm and an emission wave-
length of 527 nm (21).
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3.13. Determination of MMP
Rhodamine 123 (Rh 123) (10 μM) was added to the mito-

chondrial suspensions (1000 µg mitochondrial protein/
mL) in MMP assay buffer. The cytosolic Rh 123 fluorescence 
intensity, which represents the redistribution of the dye 
from the mitochondria into the cytosol, was determined 
using the Shimadzu RF-5000U fluorescence spectropho-
tometer at an excitation wavelength of 490 nm and an 
emission wavelength of 535 nm (21).

3.14. Determination of Mitochondrial Swelling
The isolated mitochondria from the hepatocytes were 

suspended in swelling buffer and incubated at 30°C with 
250, 500, and 1000 µg/mL of H. parva and 200, 400, and 800 
µg/mL of H. oculata. The absorbance was then measured at 
549 nm at 10-min intervals with an ELISA reader (Tecan, 
Rainbow Thermo, Austria). A decrease in absorbance indi-
cated an increase in mitochondrial swelling (21).

3.15. Measurement of Cytochrome c Expulsion
The cytochrome c expulsion was assayed with a Quan-

tikine Rat/Mouse Cytochrome c Immunoassay kit (R&D 
Systems, Inc., Minneapolis, MN, USA).

3.16. Determination of Caspase-3 Activity
Caspase-3 activity was determined in the cell lysates of 

hepatocytes from different groups with a caspase-3 assay 
kit (CASP-3-C; Sigma-Aldrich, Taufkirchen, Germany). In 
brief, this colorimetric assay is based on the hydrolysis 
of substrate peptide by caspase-3. The released moiety (p-
nitroaniline) had a high absorbance at 405 nm. The con-
centration of the p-nitroaniline released from the sub-
strate was calculated from the absorbance values at 405 
nm, and a calibration curve was prepared with defined 
p-nitroaniline solutions.

3.17. Statistical Analysis
Results are presented as mean ± SD. All statistical anal-

yses were performed using SPSS software, version 20. 
The assays were performed five times, and the mean was 
used for statistical analysis. Statistical significance was 
determined using the one-way ANOVA test, followed by 
the post hoc Tukey test. In some experiments, the two-
way ANOVA test, followed by the post hoc Bonferroni 
test, was also performed. Statistical significance was set 
at P < 0.05.

4. Results

4.1. Effect of DEN/2-AAF on Body Weight and Liver 
Weight

There was difference in food and water consumption 
between the two groups of rats during the entire period 
of this study. In general, the HCC-induced rats ate and 
drank less than those of the normal group. Table 1 shows 
the final body weights and liver weights of the control 
and HCC-induced rats. According to this table, the aver-
age weight of the control rats was 282.33 ± 13.65 g, which 
was significantly higher than that of the HCC rats (215.33 
± 4.72 g; P < 0.05). Moreover, in the HCC rats, the average 
liver weight was significantly increased compared to the 
controls (13.58 ± 0.62 g versus 9.66 ± 1.04 g, respectively; 
P < 0.05).

4.2. Effect of DEN/2-AAF on Serum Markers of Liver 
Damage and Hepatocarcinogenesis

Rats treated with DEN/2-AAF to develop the induced he-
patocellular carcinoma showed a significant (P < 0.05) 
increase in serum ALT, AST, and ALP, as well as in serum 
AFP concentrations (Table 2).

4.3. Histopathology
The histopathological findings in the liver sections from 

both groups of animals are illustrated in Figure 1, the he-
patic sections from the untreated control animals showed 
normal liver parenchyma, with the typical architecture

Table 1. Effect of DEN/2-AAF on Initial and Final Body Weight and Liver Weighta,b

Group Initial Body Weight, g Final Body Weight, g Liver Weight, g
Normal group (A) 128.33 ± 5.85 282.33 ± 13.65 9.66 ± 1.04
DEN/2-AAF (B) 128.66 ± 5.55 215.33 ± 4.72 c 13.58 ± 0.62 c
aValues are presented as mean ± SD of data determined from five separate rats in each group.
bRats were administered a single i.p. injection of DEN (200 mg/kg) and dietary AAF (0.02%) for two weeks.
cP < 0.05 compared with group A.

Table 2. Effects of the HCC-promoting DEN/AAF Regimen on Serum ALP, ALT, AST, and AFP Levels of the Test and Control Animalsa,b

Group ALT, IU/L AST, IU/L ALP, IU/L AFP, IU/L
Normal group (A) 97 ± 15 86 ± 17 628 ± 10 0.46 ± 0.05
DEN/2-AAF (B) c 789 ± 54 680 ± 67 772 ± 38 2.86 ± 0.32
Abbreviations: AFP, Serum alpha-fetoprotein; ALP, alkaline phosphatase; ALT, Serum alanine transaminase; AST, aspartate transaminase.
aValues are presented as mean ± SD of data determined from five separate rats in each group.
bThe HCC rats were administered a single i.p. injection of DEN (200 mg/kg) and were given dietary AAF (0.02%) for 2 weeks.
cP < 0.05 compared with group A.
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characterized by granulated cytoplasm, a central vein, 
and small uniform nuclei (Figure 1A). The hepatic sections 
from the HCC rats following DEN/2AAF treatment showed 
abnormal architecture, with irregular-shaped cytoplasm 
and enlarged, hyperchromatic nuclei. A large number of 
abnormal hepatocytes containing irregular lipid droplets 
and with significant variations in nuclear size, even in-
cluding binucleation, were also observed (Figure 1B and C)

4.4. Effect of H. parva Extract Concentrations on 
Mitochondrial Complex II

The effects of different concentrations of H. parva ex-

tract (0 - 2000 μg/mL) on the collapse of mitochondrial 
succinate dehydrogenase activity (determined as % of en-
zyme activity) after 1 hour of incubation were measured 
with the MTT assay, using mitochondria isolated from 
hepatocytes of both the untreated control group and the 
HCC group. Statistical analysis showed a significant con-
centration-dependent decrease in the mitochondrial me-
tabolism of MTT to formazan in the HCC group, but not 
in the untreated control group (P < 0.05) (Figure 1E). Only 
the highest concentration of H. parva extract (2000 μg/
mL) induced a significant decrease in the mitochondrial 
metabolism of MTT to formazan in the control group (P < 
0.05) (Figure 1D).

Figure 1. Histopathological Analysis and Complex II Activity
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A, liver section from the control group shows normal cellular architecture (H and E; 40 × magnification); B and C, liver sections from the HCC group show 
areas of aberrant hepatocellular phenotype with variation in nuclear size, hyperchromatism, binucleation, and irregular sinusoids (H and E, 40 × mag-
nification). The effect of H. parva concentrations on complex II (succinate dehydrogenase) activity in the liver mitochondria obtained from hepatocytes 
of untreated control D, and HCC groups E, values are represented as mean ± SD (n = 3). ** and *** indicate significant differences in comparison with the 
corresponding control mitochondria (P < 0.01 and P < 0.001, respectively).
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Figure 2. Complex II Activity and ROS Measurement

The effect of H. oculata concentrations on complex II (succinate dehydrogenase) activity in the liver mitochondria obtained from hepatocytes of both the 
untreated control A, and HCC B, groups. Values are represented as mean ± SD (n = 3). ** and *** indicate a significant difference in comparison with the 
corresponding control mitochondria (P < 0.01 and P < 0.001, respectively). Measurement of mitochondrial ROS formation showing increases after addi-
tion of various concentrations of C, H. parva (250, 500, and 1000 µg/mL) and D, H. oculata (200, 400, and 800 µg/mL) extracts at different time intervals 
within 60 min of incubation, in the mitochondria obtained from hepatocytes of the HCC group but not the control group. Values are presented as mean 
± SD (n = 3). *, **, *** and **** indicate significant differences between the control and HCC groups (P < 0.05, P < 0.01, P < 0.001, and P < 0.0001, respectively).
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4.5. Effects of H. oculata Extract Concentrations on 
Mitochondrial Complex II Activity
The effect of H. oculata (0, 50, 100, 200, 400, and 1600 μg/
mL) on the collapse of mitochondrial succinate dehydro-
genase activity (determined as % of enzyme activity) after 
1 h of incubation was measured with the MTT assay, using 
mitochondria isolated from liver hepatocytes of groups 
A and B. Statistical analysis showed a significant concen-
tration-dependent decrease in the succinate dehydroge-
nase activity (P < 0.05) (Figure 2B) in the mitochondria 
isolated from hepatocytes of the HCC rats, but not from 
those of the control group (Figure 2A).

4.6. Effects of H. parva and H. oculata Extract 
Concentrations on Mitochondrial ROS Production

As shown in Figure 2C and D, different concentrations 
of H. parva (250, 500, and 1000 µg/mL) and H. oculata 
(200, 400, and 800 µg/mL) extracts induced significant 
(P < 0.05) H2O2 formation, demonstrated as fluores-
cence intensity units emitted from highly fluorescent 
DCF, in the mitochondria obtained from hepatocytes of 
the HCC group but not of the control group. This activ-
ity occurred in a concentration- and time-dependent 
manner.

4.7. Effects of H. parva and H. oculata Extract 
Concentrations on Mitochondrial Membrane 
Potential (MMP)

As shown in Figure 3A, H. parva concentrations of 250, 
500, and 1000 μg/mL significantly (P < 0.05) decreased 
the MMP (demonstrated as fluorescence intensity units 
emitted from Rh 123, redistributed from damaged mito-
chondria into the cytosol) in a time- and concentration-
dependent manner in the mitochondria obtained from 
hepatocytes of the HCC rats compared to the controls. 
As shown in Figure 3B, H. oculata extract concentrations 
(400 and 800 µg/mL) significantly decreased the MMP 
in a time- and concentration-dependent manner (P < 
0.05) in the mitochondria obtained from hepatocytes 
of the HCC rats, but not of the untreated control rats. 
A low concentration of H. oculata extract (200 µg/mL) 
did not significantly decrease MMP within 60 min of 
incubation in the above-referenced HCC mitochondria. 
On the other hand, all of the applied concentrations of 
both H. parva and H. oculata did not induce significantly 
decreased MMP (P < 0.05) within 60 min of incubation 
in the mitochondria isolated from hepatocytes of the 
control rats (group A).

4.8. Effect of H. parva and H. oculata on 
Mitochondrial Swelling

We measured the decrease of absorbance in the mi-

tochondrial samples at 540 nm in order to assay mi-
tochondrial swelling, another indicator of the mito-
chondrial permeability transition (MPT). The addition 
of different concentrations of H. parva extract (250, 
500, and 1000 µg/mL) to mitochondrial suspensions 
obtained from liver hepatocytes of the HCC group 
led to significant mitochondrial swelling in a time-
dependent manner (P < 0.05) (Figure 3C). The results 
in Figure 3D also show that H. oculata extract (400 and 
800 µg/mL) induced significant swelling in a time- and 
concentration-dependent manner (P < 0.05) in the 
mitochondria obtained from hepatocytes of the HCC 
group. Only a low concentration of H. oculata extract 
(200 µg/mL) did not significantly increase mitochon-
drial swelling within 60 min of incubation. The ad-
dition of the same concentrations of H. parva and H. 
oculata to the mitochondria obtained from liver hepa-
tocytes of the control group did not induce any mito-
chondrial swelling.

4.9. Effects of H. parva and H. oculata extract 
Concentrations on Cytochrome c Release

Our previous results showed that H. parva and H. ocu-
lata extracts significantly (P < 0.05) decreased MMP and 
induced mitochondrial swelling. Consequently, it is ex-
pected that H. parva and H. oculata extracts induce the 
release of cytochrome c from the mitochondria into 
the cytosolic fraction. As shown in Figure 4A and B, H. 
parva (500 µg/mL) and H. oculata (400 µg/mL) extracts 
induced a significant (P < 0.05) release of cytochrome c 
(ng/mg mitochondrial protein) in the mitochondria iso-
lated from liver hepatocytes of the HCC group, but not 
from the untreated control group. Pretreatment of both 
H. parva (500 µg/mL) and H. oculata (400 µg/mL)-treated 
mitochondria with MPT inhibitors, such as cyclosporine 
A (CsA), and antioxidants, such as butylated hydroxyl 
toluene (BHT), caused inhibition of cytochrome c re-
lease (P < 0.05). These results confirm the direct role of 
oxidative stress and MPT pore-opening in cytochrome c 
release resulting from exposure to H. parva and H. ocu-
lata extract.

4.10. Effects of H. parva and H. oculata Extract 
Concentrations on Caspase-3 Activation

The caspases are the most important effector mol-
ecules in the execution of apoptosis, and the progres-
sion of the caspase activation cascade ends in the acti-
vation of caspase-3, the final mediator of apoptosis. In 
this study, caspase-3 activity (mM pNA/mL/min) was sig-
nificantly (P < 0.05) increased in hepatocytes obtained 
from only the HCC rats (group B) when incubated with 
H. parva (500 µg/mL) and H. oculata extracts (400 µg/
mL), but not in hepatocytes from the control rats (group 
A) (Figure 4C).
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Figure 3. Determination of the Mitochondrial Membrane Potential (MMP) and Mitochondrial Swelling

Determination of the collapse of mitochondrial membrane potential (MMP). Decreased MMP after the addition of various concentrations of A, H. parva 
(250, 500, and 1000 µg/mL) and B, H. oculata (200, 400, and 800 µg/mL) extracts at different time intervals within 60 min of incubation in the mitochon-
dria obtained from hepatocytes of the HCC group but not the control group. Values are presented as mean ± SD (n = 3). *, **, *** and **** indicate significant 
differences in the comparison with the control group (P < 0.05, P < 0.01, P < 0.001 and P < 0.0001, respectively). Determination of mitochondrial swelling 
showed an increase after the addition of various concentrations of C, H. parva (250, 500, and 1000 µg/mL) and D, H. oculata (200, 400, and 800 µg/mL) 
extracts at different time intervals within 60 min of incubation in the mitochondria obtained from hepatocytes of the HCC group but not of the control 
group. Values are presented as mean ± SD (n = 3). ** and **** indicate significant differences in the comparison with the control group (P < 0.01 and P < 
0.0001).
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Figure 4. Measurement of Cytochrome c Expulsion and Caspase 3 Activity
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Measurement of cytochrome c expulsion. Increased cytochrome c release after addition of A, H. parva (500 µg/mL) and B, H. oculata (400 µg/mL) to the 
mitochondria obtained from hepatocytes of the HCC group but not from the control group. Pretreatment with BHT or CsA significantly inhibited cyto-
chrome c release in the HCC liver mitochondria. The amount of expelled cytochrome c from the mitochondrial fraction into the suspension buffer was 
determined using a rat/mouse cytochrome c ELISA kit. Values are presented as mean ± SD (n = 3). *** indicates significant difference in comparison with 
the untreated group (P < 0.001). * and ** indicate significant differences in comparison with H. oculata (400 µg/mL) and H. parva (500 µg/mL)-treated HCC 
group (P < 0.05). C, Determination of caspase-3 activity. Caspase-3 activation was measured in the HCC and control hepatocytes following exposure to H. 
parva (500 µg/mL) and H. oculata (400 µg/mL) extracts, using a Sigma-Aldrich kit. The kit measures pNA released from the interaction between caspase-3 
and AC-DEVD-pNA (peptide substrate). Values are expressed as mean ± SD from three separate experiments (n = 3). *** indicates a significant difference in 
comparison with the untreated HCC group (P < 0.001).

5. Discussion
Cancer is a disease with tremendous negative implica-

tions at the personal, health care, social, and economic 
levels. The alarming increase in the worldwide death toll 

from cancer combined with alternative approaches to 
cancer therapy have fueled the search for novel effective 
anti-tumor drugs through biological testing of both ma-
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rine and terrestrial organisms (11, 27). Natural products 
are a main source of new, complex chemicals, many of 
which show potent cytotoxic activity and are currently 
being used in cancer therapies (28). There is increasing 
evidence suggesting that the marine environment con-
tains various classes of biologically active compounds 
with strong anticancer properties, in particular marine 
sponges, from which multiple potent cytotoxic com-
pounds containing alkaloids, steroids, terpenes, pep-
tides, macrolides, and polyketides have been isolated 
(29).

Sea cucumbers are one of the marine animals. The 
therapeutic properties of these animals are related to 
the presence of functional components with numerous 
anticipated biological activities (11, 18). Multiple unique 
pharmacological and biological activities, including 
anticancer, anti-angiogenic, antitumor, anticoagulant, 
anti-inflammatory, and anti-hypertensive effects, are re-
lated to chemical compounds extracted from various sea 
cucumber species. These therapeutic benefits and health 
applications may be attributed to the presence of numer-
ous arrays of bioactive compounds, including triterpene 
glycosides (saponins), phenolics, cerebrosides, sulfated 
polysaccharides, chondroitin sulfate, glycoprotein, gly-
cosaminoglycan, sterols, peptides, and lectins (11, 18, 30).

The results of the present study seem to provide sup-
port for the effects of DEN/2-AAF on induced liver can-
cer in rats. There was a significant reduction in body 
weight and an increase in liver weight in the HCC group 
compared to the control group. An in vivo study also 
confirmed this fact and reported that rats treated with 
DEN/2-AAF showed marked loss of body weight and in-
creased liver weight (31, 32).

In comparison with the control rats, serum markers 
such as ALT, AST, and ALP showed significant increases in 
the cancer group (P < 0.05). These serum enzymes are in-
dicators of hepatic function and their increased levels in 
the blood indicate liver damage. AFP is a cancer marker 
that can be produced by regenerating hepatic tumors. In-
creased serum AFP in the HCC-induced rats in our study 
may have resulted from DEN/AAF intoxication, which 
caused genetic alterations in the hepatocytes (33).

The histopathological findings in our study were sup-
ported by biochemical results obtained in experimental 
animals. The histopathological observations of the livers 
of DEN-treated rats revealed well-differentiated HCC he-
patocytes with disorganized hepatic lobular architecture 
and obvious cellular damage.

Mitochondria play important roles in cellular metabo-
lism and apoptosis pathways. Multiple significant dif-
ferences in the function and structure of mitochondria 
between cancerous and normal cells have been reported. 
For example, there are alterations in the size, number, 
and shape of the mitochondria in cancerous liver cells 
compared to corresponding normal cells. In addition to 
structural and functional changes, genomic mitochon-
drial alterations have also been correlated with cancer. It 

has been reported that mitochondria in liver cancer cells 
are more fragile than normal liver mitochondria (21, 34, 
35).

H. parva and H. oculata at concentrations of 0 - 2000 µg/
mL and 0 - 1600 µg/mL, respectively, significantly reduced 
the activity of complex II (succinate dehydrogenase) in 
the mitochondria isolated from the HCC rats, but not in 
the untreated control-rat hepatocytes.

In this report, H. parva and H. oculata extracts signifi-
cantly increased ROS production in a time- and concen-
tration-dependent manner in mitochondria obtained 
from the HCC group compared to the untreated normal 
group. ROS are intracellular second messengers that af-
fect numerous cellular processes, including metabo-
lism, differentiation, and cell proliferation and death by 
regulating critical signaling pathways. It has been rec-
ognized that ROS bring about complex and irreversible 
damage to the cellular constituents that impair cellular 
homoeostasis, and elevated levels of ROS can influence 
central cellular processes, including apoptosis and pro-
liferation (36).

Our results showed that all of the applied concentra-
tions of H. parva and H. oculata extracts significantly in-
duced decreased levels of ΔΨm in mitochondria isolated 
from cancerous, but not normal, hepatocytes.

Alteration of mitochondrial swelling as an indicator of 
MPT was also monitored in our study. H. parva and H. ocu-
lata extracts induced significant mitochondrial swelling 
in the mitochondria obtained from cancerous, but not 
normal, hepatocytes.

MMP is a necessary factor in the regulation of mito-
chondrial activity, and MMP collapse is the major stimuli 
for apoptosis and necrosis. Briefly, mitochondrial mem-
brane damage results in MPT pore-opening and the re-
lease of cytochrome c into the cytosol. Once released into 
the cytosol, cytochrome c, along with apoptotic prote-
ase activating factor 1 (Apaf-1) protein and procaspase-9, 
forms the apoptosome. In the presence of ATP, caspase-9 
is activated, leading to activation of the downstream ef-
fector caspase-3, which ultimately leads to the degrada-
tion of cell components and the final steps of apoptosis 
(37, 38).

Our results showed that the applied concentrations of 
H. parva and H. oculata extracts induced significant dis-
missal of cytochrome c from the mitochondria. More-
over, pretreatment with both CsA (the MPT pore-sealing 
agent) and BHT (an ROS scavenger) completely blocked 
the H. parva- and H. oculata-induced release of cyto-
chrome c from the mitochondria, which supports our hy-
pothesis that apoptosis induction via H. parva and H. ocu-
lata is due to oxidative stress and depends on the opening 
of the MPT pore.

It was reported that frondoside A (from Cucumaria fron-
dosa) induced significant morphological changes consis-
tent with apoptosis. The results indicated that frondoside 
A induced apoptosis of AsPC-1 human pancreatic cancer 
cells via the mitochondrial pathway and activation of the 
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caspase cascade (39).
Another study also showed that stichoposide C (isolated 

from the holothurian Thelenota anax) caused apoptosis 
in A549, HCT-116, and MCF-7 cells in a dose-dependent 
manner due to the activation of Fas and caspase-8, cleav-
age of Bid, mitochondrial damage, and caspase-3 activa-
tion (40).

As suggested by many other investigators, the regula-
tion of apoptosis involves, in particular, the decreased ex-
pression of proteins such as Bcl-2 and Mcl-1, increased Bax 
expression, and enhanced mitochondrial cytochrome c 
release, which ends in the induction of apoptosis (41-43).

We obtained consistent and relevant mitochondrial data 
that could be used as supporting evidence for the initiation 
of apoptosis signaling in cancerous hepatocytes through 
mitochondrial dysfunction. Following the addition of two 
natural extracts, from H. parva and H. oculata, to determine 
whether we could selectively induce apoptosis in the can-
cerous hepatocytes, we decided to measure caspase-3 ac-
tivity. Our results showed that H. parva (500 µg/mL) and H. 
oculata (400 µg/mL) extracts induced significant caspase-3 
activation in hepatocytes obtained from cancerous, but 
not normal, rats. It has been reported that the apoptosis-
inducing lead compounds isolated from marine sponges, 
divided by putative biogenetic origin, include alkaloids, 
terpenoids, lipids, and macrolides. Because of the pressing 
need to develop non-cytotoxic anticancer treatments, nov-
el apoptosis-inducing drug candidates with the potential 
to be developed into effective targeted cancer therapies 
are of interest to the cancer research community. In this 
regard, marine sponge-derived bioactive metabolites will 
continue to be some of the most promising sources of new 
drug leads (44).

Gupta et al. reported that H. oculata is a main source of 
alkaloids, steroids, terpenoids, unsaturated fatty acids, 
and cyclic peptides. Some of these compounds have been 
reported to possess diverse biological activities (14).

In conclusion, as an outcome of this comprehensive 
investigation, we can recommend H. parva and H. oculata 
as new anti-HCC drug candidates. This study provides evi-
dence that mitochondrial targeting is the critical mecha-
nism by which H. parva and H. oculata could potentially 
and selectively induce apoptosis in HCC hepatocytes, and 
could inhibit tumor growth.
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