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Abstract: The enigma of why some premalignant or pre-invasive breast lesions transform and
progress while others do not remains poorly understood. Currently, no radiologic or molecular
biomarkers exist in the clinic that can successfully risk-stratify high-risk lesions for malignant
transformation or tumor progression as well as serve as a minimally cytotoxic actionable target
for at-risk subpopulations. Breast carcinogenesis involves a series of key molecular deregulatory
events that prompt normal cells to bypass tumor-suppressive senescence barriers. Kinesin family
member C1 (KIFC1/HSET), which confers survival of cancer cells burdened with extra centrosomes,
has been observed in premalignant and pre-invasive lesions, and its expression has been shown
to correlate with increasing neoplastic progression. Additionally, KIFC1 has been associated with
aggressive breast tumor molecular subtypes, such as basal-like and triple-negative breast cancers.
However, the role of KIFC1 in malignant transformation and its potential as a predictive biomarker
of neoplastic progression remain elusive. Herein, we review compelling evidence suggesting the
involvement of KIFC1 in enabling pre-neoplastic cells to bypass senescence barriers necessary to
become immortalized and malignant. We also discuss evidence inferring that KIFC1 levels may be
higher in premalignant lesions with a greater inclination to transform and acquire aggressive tumor
intrinsic subtypes. Collectively, this evidence provides a strong impetus for further investigation
into KIFC1 as a potential risk-stratifying biomarker and minimally cytotoxic actionable target for
high-risk patient subpopulations.

Keywords: breast cancer; kinesin family member C1 (KIFC1/HSET); centrosome amplification;
neoplastic progression; tumorigenesis; human mammary epithelial cells (HMECs); high risk; cellular
senescence; basal-like

1. Introduction

Breast cancer is the leading form of cancer diagnosed among women in the United
States [1]. Approximately 1 in 8 American women are expected to develop breast cancer
in their lifetime [1,2]. Among women under the age of 40, Black/African-American
women have higher incidence rates of breast cancer and are more likely to die from breast
cancer overall than non-Hispanic White women [1]. Furthermore, Black/African-American
women disproportionately present in the clinic with the most aggressive breast tumor
subtypes, such as basal-like and triple-negative breast cancers (TNBC) [1,3,4].
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The development of breast cancer has been shown to require a multistep process that
involves a series of key transformative events [5–7]. These stages of progression have been
clinically classified as ductal hyperplasia (DH) and atypical hyperplasia (AH), which reflect
early histologically identifiable neoplastic changes; these stages are believed to progress to
carcinoma in situ (CIS) and invasive carcinoma (IC), which reflect a transition to malignancy
and tumor progression, respectively [8,9]. The critical molecular events underlying the
development of each stage, also known as aging, have been shown to primarily involve the
bypassing of three distinct tumor-suppressive barriers in human mammary epithelial cells
(HMECs), including stress-associated stasis, replicative senescence, and oncogene-induced
senescence [10–12]. Bypassing these crucial barriers, which involves loss of genomic
integrity, cell cycle dysregulation, and telomerase reactivation, allows normal healthy
cells to become immortalized or malignant [6,7]. However, no routinely assessable robust
radiologic, pathologic, or molecular biomarkers currently exist in the clinic to predict the
likelihood of a patient’s lesion progressing to a malignant state and becoming invasive or
bypassing critical tumor-suppressive barriers. Additionally, no such biomarkers exist that
can predict the intrinsic subtype of a transformed lesion.

Kinesin family member C1 (KIFC1/HSET), a microtubule binding protein of the
kinesin-14 family, prevents the death of cells with centrosome amplification (CA), which
is a hallmark of cancer [13,14]. CA (when a cell harbors three or more centrosomes or
abnormally large centrosomes) has been observed in premalignant and pre-invasive le-
sions and postulated to drive pre-neoplastic changes in early stage lesions and tumor
progression [14–17]. In HMECs and stem cells, CA was found to increase with age [18,19].
Specifically, CA has been found to increase from atypical ductal hyperplasia (ADH) to
ductal carcinoma in situ (DCIS), to increase with higher DCIS grade, and to be more
prevalent in TNBC versus non-TNBC tumors [20,21]. CA has also been shown to be associ-
ated with chromosomal instability (CIN) and aneuploidy in early stage breast lesions as
well as being linked to cell cycle deregulation, telomere dysfunction, and cellular senes-
cence [15,16,22–25]. Furthermore, induction of CA in non-transformed cell lines has been
shown to be sufficient to induce tumorigenesis and to mimic oncogene-induced cellular
invasion [26–29]. KIFC1 is upregulated upon induction of CA in cancer cells as a compen-
satory mechanism that assists cancer cells with extra centrosomes to avoid undergoing
cell death [30]. Supernumerary centrosomes promote multipolar mitotic cellular divisions,
which could result in levels of aneuploidy that could prevent the progeny cells from sur-
viving. KIFC1 can circumvent this cell death by clustering extra centrosomes for proper
cell division. Thus, KIFC1 upregulation has been linked to the survival and expansion of
genomically unstable cells. Persistence of cells with loss of genomic integrity may pro-
mote the ability of pre-neoplastic cells to initiate early neoplastic changes, transformation,
and progression.

KIFC1 is overexpressed and confers a poorer prognosis across various cancer types
such as hepatocellular carcinoma, non-small cell lung cancer, ovarian cancer, prostate
cancer, and breast cancer [31–34]. In breast cancer, high nuclear KIFC1 levels at the time
of diagnosis have been associated with shorter overall and progression-free survival [35].
Breast tumors display approximately five-fold higher KIFC1 expression compared to
corresponding normal tissue, and KIFC1 is specifically upregulated in estrogen receptor-
negative breast tumors and TNBC [35,36]. KIFC1 expression was also found to be higher
in breast cancer cell lines compared to premalignant cells, such as the MCF10A series and
HMECs [35,36]. KIFC1 expression was found to be low in normal HMECs and in normal
breast epithelia tissue [35,36]. However, a progressive increase in nuclear KIFC1 expression
was observed from DH to ADH to DCIS and to IC and also correlated with increasing
tumor grade [35].

Since nuclear accumulation of KIFC1 (a) is present in early stage lesions, (b) increases
with progressive stages of neoplastic transformation, (c) is linked to key processes in
malignant transformation, and (d) facilitates the evasion of cell death, we postulate that
nuclear KIFC1 may be a potential biomarker of oncogenic transformation and predict
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the likelihood of a premalignant or pre-invasive lesion progressing in the clinic. KIFC1
can also be more easily assessed than CA among high-risk patients in the clinic through
clinically facile methods such as immunohistochemistry (IHC) since CA is an organellular
abnormality and not a protein like KIFC1. Furthermore, KIFC1 inhibition, which selectively
targets cells harboring CA, has been shown to be an effective minimally cytotoxic anti-
cancer strategy in preclinical studies [37]. This finding suggests that KIFC1 inhibitors may
be a potential treatment option for high-risk patients with premalignant or pre-invasive
lesions to prevent progression. Herein, we present evidence supporting the potential role of
KIFC1 as a risk-stratifying biomarker for identifying high-risk patients and propose KIFC1
inhibition as an alternative, healthier treatment option for patients more likely to progress.
We also encourage future investigation into this role to support the implementation of
KIFC1 into routine clinical practice for high-risk patient subpopulations.

2. From the Beginning: Transition of Pre-Neoplastic Cells to an Oncogenic Phenotype

Why some normal or premalignant cells give rise to ADH, CIS, or IC while others
do not remains an enigma. Answering this central clinical cancer question has required
the study of pure populations of HMECs in vitro and in vivo that reflect each stage of
neoplastic progression [7]. Many groups have analyzed HMEC populations in culture
to increase our understanding of the cellular and molecular processes driving breast
carcinogenesis. Normal HMECs display a finite capacity to divide in vitro. This cellular
mortality is defined by a progressive cessation of cell growth in culture that results in
senescence typically after 10–20 passages (60–70 population doublings) [5,38,39]. Tumor
or transformed cells are able to escape or bypass senescence as a result of genetic changes
(i.e., dysregulation of tumor suppressors and oncogenes) that allow these cells to override
this limited growth potential, thus becoming immortalized or malignant [40]. In vitro,
HMECs overcome three molecularly distinct tumor-suppressive barriers on their pathway
to becoming malignant [10,11,41].

The first barrier is known as stress-associated stasis. This barrier can be regulated by
the master tumor suppressors and cell cycle regulators, retinoblastoma (Rb) and p53. Nor-
mal HMECs that are able to overcome this barrier often exhibit deregulation of cell cycle
control via loss of Rb and p53 function, although loss of p53 function is not required [7,42].
Loss of Rb function can result in aberrant cell proliferation and apoptosis, and loss of
p53 function can result in desensitization of cells to checkpoint signals and apoptosis;
thus, loss of either Rb or p53 function can facilitate bypass of senescence [7,43]. Inacti-
vation of p16, which inhibits cyclin-dependent kinase 4 (CDK4) from phosphorylating
Rb, bypasses Rb phosphorylation, leading to aberrant cell cycling [44]. P53 deregulation
leads to abrogation of transcriptional activation of the G1 CDK inhibitor, p21, stimulating
aberrant cellular growth [45]. Bypassing the stasis barrier has been suggested to corre-
late with hyperplasia/atypical hyperplasia in vivo as these aberrant cells exhibit clonal
growth [12,42].

The second barrier, known as replicative senescence, is characterized by the absence of
sufficient telomerase to continue replicating and is marked by critically shortened telomeres
or telomere dysfunction, genomic instability, and activation of DNA damage response
pathways [11,46,47]. In culture, normal HMECs undergo successive genome replication
that is accompanied by gradual shortening of chromosomal ends, which can lead to cellular
senescence once telomeric ends reach a critically short length [48]. However, normal
or post-stasis HMECs that are able to upregulate or reactivate telomerase and stabilize
telomeric end sequences can bypass this senescence barrier and become immortalized [7,49].
Bypassing telomere dysfunction has been suggested to correlate with DCIS in vivo, which
often displays telomerase reactivation and genomic instability [42].

The third barrier, known as oncogene-induced senescence, is less well-characterized
but known to involve telomerase activity and immortalization [41,50]. HMECs that over-
come this barrier also deregulate critical oncogenes such as c-H-ras and c-myc [7,12].
Resistance to this barrier has been suggested to be critical for acquiring malignant char-
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acteristics and correlates with primary cancer in vivo [42]. When cultured HMECs that
carried genes encoding SV40 large-T antigen, the telomerase catalytic subunit, and H-ras
oncoprotein were xenografted into immunocompromised mice, they developed into tu-
mors that were poorly differentiated and infiltrated adjacent tissue [51]. These findings
suggest that most transformed HMECs have already bypassed this barrier and can acquire
malignant features after the addition of one strong oncogene, which can confer their ability
to invade in vivo or develop into IC.

3. Bypassing the Stress-Associated Stasis Barrier: KIFC1 and Cell Cycle Deregulation

Since the centrosome organizes microtubules for proper cell division, centrosome num-
ber fidelity is critical for equal partitioning of chromosomes into each daughter cell [52,53].
Cells burdened with extra centrosomes will often form three or more spindle poles during
mitoses in lieu of a bipolar spindle [15,16]. This organellar abnormality and microtubule
disorganization can result in cytoarchitectural alterations in tissue, leading to loss of cel-
lular differentiation (anaplasia) [54]. Furthermore, this erroneous multipolar mitosis can
lead to unequal segregation of chromosomes into each daughter cell and subsequently
intolerable levels of aneuploidy. To avoid this error, cells will undergo mitotic arrest or mi-
totic catastrophe and activate apoptotic or necrotic cell death machinery [55,56]. However,
KIFC1, which is a minus-end-directed microtubule binding protein that is activated by
genomic instability signals, associates with the plus ends of microtubules and translocates
to the nucleus, where it crosslinks and slides microtubules in an antiparallel fashion [57,58].
This antiparallel sliding allows extra centrosomes to aggregate at opposite poles of the
cells to still form a “pseudo-bipolar spindle”, which results in the occurrence of lagging
chromosomes [13,59,60]. This “pseudo-bipolar” spindle can thus allow premalignant or
pre-invasive cancer cells to avert mitotic arrest and cell death so they can continue repli-
cating as genomically unstable cells. This phenomenon can increase the genetic diversity
among the cellular population [61]. This phenotypic heterogeneity in lesions can pro-
mote the selection of viable cellular subclones with advantageous traits and precipitate
the expansion of more aggressive cellular phenotypes [61,62]. Hence, KIFC1-mediated
centrosome clustering may be a key factor driving the survival of cells in benign lesions
that are more likely to transform to a malignant state and progress.

CA has been shown to increase in normal HMECs with continued population dou-
blings [63,64]. As previously discussed, normal HMECs that have bypassed the stasis
barrier exhibit significant deregulation of the universal regulators of cell cycle control, Rb
or p53. Centrosomes normally duplicate in the S phase of the cell cycle [65]. Activated
Rb represses the E2F1-mediated gene transcription required for G1 to S phase transition,
and p53 can halt cell division in the G1 phase by inhibiting CDK activity [66]. Centrosome
duplication is tightly coordinated with genome duplication and cell division [16]. Thus,
loss of Rb and p53 function along with downstream p16 and p21 loss has been shown
to generate supernumerary centrosomes [63,67–69]. This induction of CA can lead to
the selection of cells with upregulation of KIFC1 to prevent spindle multipolarity and
death of progeny cells. KIFC1 expression was found to be higher in p53 mutant or null
tumors compared to p53 wild-type tumors [70]. Inhibition of KIFC1 gene expression was
shown to upregulate p21 and downregulate CDK2 to arrest cells in G2–M phases [32].
Furthermore, KIFC1 depletion in primary human fibroblast cells displayed features of
senescence, such as β-galactosidase expression [71]. These findings suggest that KIFC1
may be upregulated as a result of Rb or p53 deregulation to allow genomically unstable
cells to continue replicating and avoid cellular senescence. Thus, KIFC1 may play a key role
in conferring normal HMECs, deregulated in Rb or p53, the ability to continue replicating
and therefore successfully bypass the stasis barrier. An Rb loss-of-function signature was
established in The Cancer Genome Atlas by identifying genes that correlate with E2F1 and
E2F2 expression in breast cancer, and KIFC1 emerged as one of the top genes included in
the signature [72].
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KIFC1 may help pre-neoplastic cells bypass the stasis barrier through alternative
mechanisms. KIFC1 may assist cells with CA that activate p53, as a result of causing mitotic
defects, to avert apoptosis, allowing these cells to persist [61]. Additionally, KIFC1 has
been shown to protect the apoptosis resistance protein survivin from degradation by E3
ligase APC/C [35]. KIFC1 overexpression in cancer cells was found to accelerate cell cycle
kinetics, particularly from G2 to M phase. Specifically, KIFC1 overexpression upregulated
survival signals such as phosphorylated Bcl2, Aurora B kinase, cyclin B1, D1, and A [35].
Cyclin D1 overexpression in particular has been shown to facilitate bypassing of the stasis
barrier in normal HMECs [35,43].

4. Bypassing the Replicative Cellular Senescence Barrier: KIFC1 and Loss of Telomere
Function and Genomic Stability

As previously discussed, the ability of normal or post-stasis HMECs to correct telomere
dysfunction or continue replicating with critically shortened telomeres can allow this
subset of cells to bypass the second and one of the most important senescence barriers to
immortalization. Telomere dysfunction as a result of telomere attrition (critical shortening
of chromosomal telomeres), also known as replicative senescence, has been shown to
elicit genomic instability/CIN and activation of DNA damage response repair pathways.
Specifically, telomere dysfunction can induce breakage–fusion–bridge cycles that can cause
structural and numerical chromosomal aberrations resulting in CIN and aneuploidy [23,73].

However, evidence exists suggesting that centrosomal aberrations precede the emer-
gence of TP53 mutations and end-to-end fusions during early carcinogenesis [16,74]. Telom-
ere dysfunction has been suggested to induce supernumerary centrosomes and shown
to directly correlate with increased levels of CA in HMECs, cancer cell lines, and tumor
tissue. Specifically, genotoxic stress-mediated telomere dysfunction via perturbation of
p16 activity in post-stasis HMECs induced the presence of centriole overduplication [64].
This stimulation of telomere dysfunction via genotoxic stress promoted localization of
telomerase transcriptional elements-interacting factor (TEIF), a transactivator of human
telomerase reverse transcriptase subunit, to the centrosome and induced CA [24]. TEIF
was found to positively correlate with CA in colorectal tumors [75]. Telomere dysfunction
induced in Drosophila oogenesis caused deregulation of centrosome biogenesis, leading
to embryonic lethality [22]. Since CA also elicits CIN and genomic instability, telomere
dysfunction may cause CIN and aneuploidy to arise in pre-neoplastic HMECs or early
stage lesions.

KIFC1 is possibly upregulated upon induction of CA as a result of telomere dysfunc-
tion. This upregulation can confer a survival advantage among cells with dysfunctional
telomeres. Thus, KIFC1 may promote the survival of cells with loss of telomere function.
Therefore, KIFC1 may act as a key player in facilitating pre-neoplastic cells that have
acquired telomere abnormalities to bypass the replicative cellular senescence barrier. In-
hibiting KIFC1, and subsequently declustering extra centrosomes, could potentially induce
apoptosis of telomere-dysfunctional cells. KIFC1 phosphorylation induced upon DNA
damaging agent treatment conferred cancer cell resistance to this therapy, and inhibition of
this KIFC1 phosphorylation repressed centrosome clustering and tumor recurrence [76].
An alternative theory on KIFC1′s potential role in bypassing this senescence barrier is that
through its involvement in promoting phenotypic diversity, it may be fostering the survival
of subcellular clones that selectively reactivate telomerase.

5. Bypassing the Oncogene-Induced Senescence Barrier: KIFC1 and Ras Signaling

The mechanisms underlying oncogene-induced senescence remain poorly elucidated.
However, HMECs that have attained immortality via reactivation of telomerase are not
vulnerable to this senescence barrier but exhibit the acquisition of malignant properties
after overexpression of Raf-1, Ras, or ErbB2 [42]. Induction of K-Ras, alone or co-expressed
with c-Myc (transcription factor downstream of Ras signaling), was shown to induce CA in
premalignant human mammary glands and HMECs via dysregulation of key regulators of
the centrosome duplication cycle, Cyclin D1/CDK4 and Nek2 [77]. Transduction of post-
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stasis HMECs with c-myc was shown to promote bypassing of the replicative senescence
barrier [43]. Thus, KIFC1 may be upregulated upon Ras-induced CA and thereby confer
survival of these cells. Knockdown of KIFC1 was found to inhibit the MAPK signaling
cascade and downstream signaling, suggesting that KIFC1 inhibition may abrogate Ras-
induced CA. These findings suggest that HMECs upregulated in oncogenic Ras signaling
may be bypassing the oncogenic-induced senescence barrier by upregulating KIFC1 as a
mechanism to cope with Ras-stimulated CA.

The epithelial–mesenchymal transition (EMT) process confers mesenchymal charac-
teristics that impart invasive capabilities [78]. The EMT process is marked by loss of the
epithelial cell junction protein E-cadherin and upregulation of the transcriptional factors
N-cadherin, Snail, and ZEB1. Downregulation of E-cadherin is necessary for KIFC1 to
efficiently cluster extra centrosomes by increasing cortical contractility [79]. Thus, low
clustering capacity was found to correlate with high levels of E-cadherin. Knockdown of
KIFC1 increased expression of E-cadherin and decreased expression of N-cadherin, Snail,
and ZEB1 in cancer cells [80]. Thus, the existence of CA and concomitant upregulation of
KIFC1 in pre-invasive lesions may also be accompanied by loss of E-cadherin at cell–cell
junctions, thereby additionally imparting the ability to invade surrounding tissue to these
lesions. Hence, KIFC1-mediated centrosome clustering may impart invasive capabilities to
pre-invasive cells via downregulation of E-cadherin.

6. Luminal or Basal-like: KIFC1 and Intrinsic Subtype Specification

Nuclear KIFC1 levels increase with increasing neoplastic progression and breast tumor
aggressiveness. Specifically, KIFC1 expression has been demonstrated to be higher in basal-
like versus luminal breast cancers and higher in TNBCs versus non-TNBCs [21,36,81–83].
Breast cancers in women of African descent develop at a significantly younger age, display
a more aggressive disease course, and acquire more aggressive intrinsic subtypes, such
as basal-like breast cancer and TNBC, compared to those in women of European descent.
Thus, CA has been suspected to potentially drive this racial health disparity in breast cancer
outcomes [84]. No such racial difference in centrosomal profiles has yet been established.
However, recent evidence suggests that KIFC1, which is upregulated in the presence of CA,
is significantly higher in Black/African-American TNBCs than White TNBCs [85]. Nuclear
KIFC1 was found only in this study to be associated with poor outcomes in Black/African-
American TNBC patients but not in White TNBC patients. Moreover, KIFC1 knockdown
was observed to more significantly impact proliferation and migration in Black/African-
American TNBC cell lines than White TNBC cell lines. Thus, KIFC1 rather than CA may
be more essential to investigate among early stage or pre-invasive lesions as a predictor
of aggressive malignant transformation and progression. It may also be advantageous
to investigate the potential role of KIFC1 in the racial disparity in breast tumorigenesis
and progression.

The route taken to bypass the stasis barrier independently influences the intrinsic
subtype of transformed HMECs [43]. Specifically, bypassing stasis in normal HMECs with
p16 shRNA generated aged strains with basal-like features, whereas overexpression of cy-
clin D1/CDK2 in normal HMECs generated aged strains with luminal-like features. Since
KIFC1 expression is highly associated with basal-like features and TNBC, we postulate
that high KIFC1 levels among premalignant or pre-invasive lesions may also predict the
acquisition of basal-like or more aggressive subtypes in progressed lesions. Furthermore,
we suspect that high levels of KIFC1 in early stage lesions in women of African ances-
try may underlie higher incidence of basal-like and TNBC subtypes among progressed
lesions of African compared to European descent. Further investigation into a potential
racial disparity in KIFC1 levels in premalignant and pre-invasive samples may suggest
a possible explanation for why individuals of African descent are more likely to develop
breast tumors at a younger age and acquire aggressive tumor molecular subtypes. Given
that the Black/African-American subpopulation is highly admixed, we recommend that
genetic ancestry typing of premalignant and pre-invasive lesions for proportions of West
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African, Native American, and European ancestry would be critical to establishing KIFC1
as a potential predictive biomarker of aggressive malignant transformation and disease
progression [86,87].

7. Future of Breast Cancer Risk Management: Evaluating and Targeting KIFC1 in
High-Risk Patient Subpopulations

Current breast cancer risk management and prevention practices are improving but are
still severely lacking in availability of robust risk-stratifying biomarkers and low-cytotoxic
actionable targets for high-risk patients. We discuss evidence suggesting that KIFC1 could
help fulfill this urgent need. However, further investigation into these claims is necessary
to establish KIFC1 as a robust risk-stratifying biomarker for high-risk individuals. We
review evidence for how KIFC1 may be involved in facilitating the bypassing of the three
tumor-suppressive senescence-related barriers to breast carcinogenesis and progression as
well as influencing subtype decisions, as depicted in Figure 1. Our discussion provides
compelling evidence that KIFC1 should be considered as a biomarker of investigation into
why certain lesions possess greater inclination to progress compared to other lesions.
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Figure 1. Proposed model of KIFC1-mediated breast neoplastic progression. KIFC1 may assist pre-neoplastic and pre-
invasive cells to progress by facilitating their bypassing of tumor-suppressive barriers to malignant transformation and
immortalization. To bypass the first barrier (stress-associated stasis), KIFC1 may upregulate cyclin D1 and/or survivin
levels or be upregulated as a result of p16 and p21 loss to facilitate survival of centrosome-amplified cells. To bypass the
second barrier (replicative senescence), in addition to being upregulated as a result of p16 loss, KIFC1 may be upregulated
as a result of telomere dysfunction-mediated induction of TEIF to allow centrosome-amplified cells to persist. Alternatively,
KIFC1 could promote selective survival of cells that can reactivate telomerase. To bypass the last barrier (oncogene-induced
senescence), KIFC1 may induce the survival of cells with Ras signaling-induced CA. In addition, KIFC1 may promote the loss
of E-cadherin as a result of causing cytoarchitectural reorganization, which may impart invasive capabilities to pre-invasive
cells. Abbreviations: KIFC1, Kinesin family member C1; TEIF, telomerase transcriptional elements-interacting factor.

ADH is a common benign lesion diagnosis reported among 5–20% of breast biopsies
and is associated with a higher risk of becoming malignant or progressing to DCIS (4-
to 5-fold) [88]. Owing to an increase in population-based breast cancer screening pro-
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grams, DCIS now represents approximately 20–25% of all breast cancer diagnoses and
is associated with greater risk of progressing into invasive breast cancer [89]. However,
current management of these premalignant and pre-invasive lesions has been tricky with
the administration of harsh, toxic, and invasive treatments such as surgical incisions,
breast-conserving treatments (i.e., lumpectomies), mastectomies, radiation therapies, and
endocrine therapies [88,89]. KIFC1 is not necessary for healthy cells to survive but is
essential for cells with CA to persist. KIFC1 is also a critical mediator of supernumerary
centrosome clustering [37]. In a genome-wide Drosophila screen, KIFC1 was identified
as the top hit among all centrosome-clustering genes [90]. Additionally, malignant cells
were found to be highly dependent on KIFC1 to persist [83]. Thus, KIFC1 inhibition offers
a potentially specific and minimally cytotoxic therapeutic strategy in the clinic that is
currently unavailable for patients harboring high-risk lesions. Conveniently, there are
already rationally designed commercially available KIFC1 inhibitors that decluster super-
numerary centrosomes such as AZ82, CW069, and PJ34 [37,91]. However, the regulatory
mechanisms of centrosome clustering remain poorly understood, suggesting that addi-
tional research on the development of more effective anti-KIFC1 drugs is necessary to
improve its potency and specificity in a clinical setting. It was recently discovered that
blocking KIFC1 phosphorylation may serve as a more efficacious route toward inhibiting
KIFC1-mediated centrosome clustering in patients [76]. However, KIFC1-mediated effects
are not the only variables involved in breast tumorigenesis and progression. Thus, we also
suggest that combining KIFC1 inhibitors with existing targeted therapeutic strategies or
with future specific treatments may be necessary to effectively combat oncogenesis and
tumor progression.

Although CA exists in premalignant and pre-invasive breast lesions, performing
immunofluorescence-based scoring for CA is impractical in formalin-fixed paraffin-embedded
tumor tissue, often utilized in the clinic. This is due to centrosomes often being lost outside
of the plane of histological sections, and thus, they cannot be accurately counted and
assigned to each individual cell [83]. Furthermore, quantitation of CA is time-consuming
and burdensome in a clinical setting. Moreover, IHC is the routine standard method of
evaluating biomarkers in the clinic. Hence, nuclear KIFC1 evaluation through IHC offers
a more efficient and clinically feasible method to assess KIFC1 levels among high-risk
patients. However, the identification of appropriate cut-offs for optimal risk stratification
among early stage lesions warrants further investigation before incorporating KIFC1 into
routine clinical practice as an early stage predictive biomarker. If successful, we assert
that it may be useful to assess nuclear KIFC1 levels during a high-risk patient’s routine
preventative check-up to identify whether the individual is likely to progress or not and
would be an ideal candidate for preventative KIFC1 inhibition therapy.

Several groups have reported that the induction of supernumerary centrosomes is
sufficient to elicit malignant transformation. In esophageal cancer, CA was present in the
premalignant tissue of patients that progressed but nonexistent in the premalignant tissue
of patients that did not progress [17]. However, some groups have recently contradicted
the claim that CA alone is sufficient to induce neoplastic transformation, suggesting other
factors may be necessary to facilitate CA-induced malignant transformation [92,93]. No
linear correlation between CA and KIFC1 has yet been reported. However, a linear corre-
lation was observed between centrosomal aberrations and KIFC1 dependency in TNBC
cells [83]. Thus, among early stage lesions with CA, some lesions may express sufficient
KIFC1 levels to survive and transform while other lesions may not, suggesting that KIFC1
may be more informative of the propensity of a lesion progressing than the magnitude of
CA. Hence, KIFC1 may impart “survival of the fittest” capabilities to centrosome-amplified
cells in high-risk lesions.

Future investigations of KIFC1 in representative HMEC systems that reflect neoplastic
progression will be critical to provide preclinical evidence and rationale for routine clinical
use of KIFC1 as a risk-predictive and pharmacologically targetable biomarker for high-
risk patients. We also encourage additional investigation among patient-derived in vivo
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organoid models as well as among tissue specimens extracted from high-risk patients
that have progressed versus not progressed. We assert that deeper investigation into
this role of KIFC1 could significantly improve estimation of the malignant predisposition
of pre-neoplastic lesions and enable individualized management of high-risk patients
and prevention of disease progression while simultaneously illuminating the molecular
mechanisms of carcinogenic progression.
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