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SUMMARY

Complex cognitive processes require sophisticated
local processing but also interactions between
distant brain regions. It is therefore critical to be
able to study distant interactions between local com-
putations and the neural representations they act on.
Here we report two anatomically and computation-
ally distinct learning signals in lateral orbitofrontal
cortex (lOFC) and the dopaminergic ventral midbrain
(VM) that predict trial-by-trial changes to a basic in-
ternal model in hippocampus. Tomeasure local com-
putations during learning and their interaction with
neural representations, we coupled computational
fMRI with trial-by-trial fMRI suppression. We find
that suppression in a medial temporal lobe network
changes trial-by-trial in proportion to stimulus-
outcome associations. During interleaved choice
trials, we identify learning signals that relate to
outcome type in lOFC and to reward value in VM.
These intervening choice feedback signals predicted
the subsequent change to hippocampal suppres-
sion, suggesting a convergence of signals that up-
date the flexible representation of stimulus-outcome
associations.

INTRODUCTION

Behavioral neuroscience has made recent dramatic strides

through the integration of formal models of behavior with the

measurement of neural signals (Daw et al., 2011; Iglesias et al.,

2013; Takahashi et al., 2011). By designing situations in which

key learning variables change through the experiment and

discovering signals in the brain that fluctuate in the same

manner, scientists have been able to draw deep inferences

about the types of computations that must underlie behavioral

control in different situations. In studies of learning, for example,

scientists have been able to dissect intermediary processes into
distinct computations, such as prediction errors, volatility or un-

certainty estimates, and volatility prediction errors, across

several domains of cognition (Behrens et al., 2007, 2009; Boor-

man et al., 2013a; Cooper et al., 2010; D’Ardenne et al., 2008;

Daw et al., 2011; den Ouden et al., 2009; Hampton et al., 2006;

Hare et al., 2008; Iglesias et al., 2013; Klein-Flügge et al., 2011;

Payzan-LeNestour and Bossaerts, 2011). The identification of

behavioral and neural correlates of such learning signals has

been influential because they imply particular intermediary com-

putations that are performed in the course of learning.

However, despite the computational insight bestowed from

identifying one type of learning signal or another, outside of stria-

tal dopamine (Collins and Frank, 2014; Jocham et al., 2011; Kra-

vitz et al., 2012), little is known about how these different signals

are used in the brain. When a prediction error is signaled, for

example, how does it change the brain’s representations of the

task variables that will determine future behavior? In short,

how do these learning signals cause learning? A major hurdle

to answering such questions is that the brain regions that

generate learning signals are not necessarily the same regions

where the learning occurs. Signals broadcast from projection

neurons in one region may have effects on neural representa-

tions in another.

In order to study this type of question, it is therefore imperative

to develop techniques that act simultaneously at different

scales—capable of recording data across multiple brain regions

simultaneously, but also capable of indexing neural representa-

tions within a brain region and how they change with learning. In

human neuroscience, despite ambiguity concerning the underly-

ing biophysical mechanism, repetition suppression (RS) fMRI is a

well-validated technique that, when combined with careful

experimental design, allows inferences to bemade about the un-

derlying neuronal representations. A recently developed variant

to RS, cross-stimulus suppression (CSS), has been used to

show that blood-oxygen-level-dependent (BOLD) suppression

can be measured not to repetition of a stimulus feature or

percept, but instead to pairs of stimuli related through associa-

tion, when the stimuli have been deterministically paired and

well learned (Klein-Flügge et al., 2013; Meyer and Olson,

2011). If such techniques were combined with the computational

approaches discussed above, it should be possible not only to
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Figure 1. Experimental Timeline and Task

(A) Experimental timeline. Single choice trials and suppression blocks were interleaved 75 times during the experiment.

(B) Left: Choice trial. Potential reward payouts were paired deterministically with either of two gift cards, as indicated by the two numbers’ colors. Subjects were

instructed to select between two abstract stimuli presented on the basis of two pieces of information: the estimated likelihood that a stimulus would lead to either

of the gift card outcomes if selected, which could be learned from choice feedback, and the amount of points (sampled from a uniform distribution with a range

of 1–100) that could be won on each gift card, which changed randomly from trial to trial. Right: Suppression block: stimuli and outcomes were presented in an

interleaved, pseudorandom order, totaling nine items per block (one example block is shown). During suppression blocks, subjects were unpredictably probed

and asked to report which item they had seen last. By deducting £1 from their total earnings for incorrect responses, we incentivized participants to attend to each

item presented. Those outcomes that were preceded by a high-contingency stimulus, based on learning during the choice trials up until that suppression block,

are highlighted by an orange frame, while those preceded by a low-contingency stimulus are highlighted by a purple frame.
measure both the learning signals and the task representations

but also the impact of different learning signals on task

representations.

Here, we develop a task that requires subjects to keep track of

stochastic transitions between particular stimuli and outcome

identities—a basic internal model—in order to maximize reward.

The task induces two learning signals simultaneously, one for

learning from reward value and one for learning reward-size-in-

dependent stimulus-outcome associations that respectively

relate to neural signals in the dopaminergic ventral midbrain

(VM) and lateral orbital frontal cortex (lOFC). We interleave this

task on a trial-by-trial basis with blocks of CSS fMRI to measure

the current neural representation of the internal model and find

its instantiation in the hippocampus, amygdala, and surrounding

and interconnected cortex. Critically, this instantiation changes

on a trial-by-trial basis, and this change is predicted by the inter-

vening lOFC signal at the learning event. Furthermore, the VM

signal also predicts this change, but only in subjects who will

be (inaccurately) influenced by reward in their behavior. This im-

plies that associations that are critical for building internal

models of the world can be stored in the medial temporal lobe

system and reflect computational changes during learning that

are signaled from distant structures.

RESULTS

Task
We hypothesized that we could measure neural updates to stim-

ulus-outcome identity associations and probe those recently up-

dated associations by interleaving CSS blocks with single choice

trials. During choice trials (Figure 1), randomly generated poten-
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tial reward payouts were paired with either of two gift cards.

These potential payouts were manipulated independently from

the likelihood that each of two shape stimuli would lead to either

of two gift cards, if chosen. This manipulation meant that it was

advantageous to learn the transition probabilities from shape

stimuli to gift card outcomes but not about the reward amount

obtained on a gift card, since these changed randomly from

trial-to-trial. The task structure encouraged participants to first

select the more desired gift card goal based on the current po-

tential payouts and then reverse-infer the stimulus they believed

would most likely lead to that desired outcome.

To probe the neural encoding of specific associations as they

were acquired and updated through learning in choice trials, but

in the absence of potential confounds during choice and feed-

back events, choice trials were interleaved with CSS blocks.

During CSS blocks, participants observed individual presenta-

tions of either a stimulus or a gift card, in alternating order, and

were incentivized to attend to each item presented (Figure 1).

In each CSS block, each stimulus-outcome transition was pre-

sented once, in pseudorandom order, totaling nine single-item

presentations. This feature of the design enabled us to compare

gift card presentations preceded by high-contingency (HC) stim-

uli (based on learning during choice trials up to the current CSS

block) with those preceded by low-contingency (LC) stimuli. This

procedure also ensured any incidental learning during CSS

blocks should equate on average, since each possible transition

was presented with equal frequency during a CSS block.

Behavior
Togenerate trial-by-trial predictions of participants’ beliefs about

the stimulus-outcome transition probabilities, and updates to



Figure 2. Model Parameters and Behavior

(A) Heatmap depicts probability mass of each value of the distribution over transition probabilities between a stimulus 1 and outcome 1 on each choice trial. The

true transition probability is shown in white. The mean of the distribution is shown in magenta, which forms our estimate of participants’ current belief in the

association strength. The true probabilities change twice during the experiment.

(B) Frequency of selecting stimulus1 (arbitrarily defined) is plotted against five equally distributed value difference (gs1� gs2) bins for all trials (blue), trials for which

themodel’s estimate in S-O transition probabilities ðabsðrS1/O1 � rS2/O1ÞÞ is larger (green; >60th percentile; i.e., when the magenta line in Figure 2A is either high

or low) and smaller (plotted in red; <40th percentile; i.e., when the magenta line in Figure 2A is close to 0.5). Sigmoidal functions are plotted through the means of

the five bins. The slope of the sigmoidal function is steeper when the difference in estimated transition probabilities is larger but shallower when the difference is

smaller. Circles denote group mean and error bars ± SEM.

(C) Mean ± SEM of regression coefficients resulting from multiple regression analysis of stimulus1 choices based on three explanatory variables defined with

respect to the subject’s more desired outcome on the current trial; left: the previous estimate of the association of the stimulus with that desired outcome

(computed from r, illustrated in magenta in [A]); middle: the update to that association (computed from the latest feedback); right: the reward payout obtained at

the latest feedback on the association between stimulus 1 and the currently desired outcome. All t(21)>5.0, p < 0.001, one-sample t test. See also Figures S1–S3.
those beliefs, to regress against behavior and BOLD responses,

we constructed a normative Bayesian reversal-learning model

(Figure 2A; see Supplemental Information and Figure S1 for a

detailed description and illustration of joint distributions). The

purpose of the model was to generate trial-by-trial predictions

to relate to neural responses duringCSS blocks and choice feed-

back, rather than to optimally capture behavior. Nonetheless, this

model outperformed several alternative models, including an

established, previously described Bayesian volatility model that

has been shown to capture behavior well in tasks with similar

structure (Behrens et al., 2007) (Table 1).

We first examined the relationship between stimulus choices

and their expected values (gs1, Equation 9), as estimated by

the best-fitting Bayesian reversal learning model (Figure 2B).

We observed a relatively steep sigmoidal relationship, suggest-

ing that on average the model accurately captured fluctuations

in subject choices. This relationship was confirmed by logistic

regression analysis of subject choices, using model estimates

of expected value as predictors, without any free parameters

fit to behavior: t(21) = 9.48, p < 0.0001 (one-sample t test). To
further examine the relationship between subject choices and

model estimates of transition probabilities, we have (i) plotted

sigmoidal choice functions when the difference between transi-

tion probabilities was high (> 60th percentile) or low (< 40th

percentile), which revealed an expected reduction in the

sigmoidal function’s slope (Figure 2B), and (ii) plotted choices

over the course of the experiment alongside transition probabil-

ity estimates (Figure S2).

To test which variables at choice feedback drove learning, we

performed an analysis designed to isolate the information con-

tained in individual choice outcome events. In addition to the

previous association strength and new stimulus-outcome up-

date, our paradigm enabled us to test whether especially large

or small reward might additionally influence future choices,

though suboptimal in the context of the task. Multiple linear

regression revealed that the previous estimate of the stimulus-

outcome association strength, the most recent Bayesian update

to that association, and the most recent monetary payout,

defined as the amount of points obtained on the latest choice

outcome, all had a strong and significant positive influence on
Neuron 89, 1343–1354, March 16, 2016 ª2016 The Authors 1345



Table 1. Model Comparison of Behavior

Model

Parameters

(per subject) a t h

NLogL

(sum)

BIC

(sum)

Reversal Model 2 0.94 0.18 NA 555.02 1,448.4

Experience-Weighted

Reversal Model

3 1.03 0.20 1.01 537.07 1,589.7

Volatility Model 2 0.93 0.15 NA 636.43 1,611.2

A comparison of Bayesian reversal, experience-weighted reversal, and

volatility models, including the number of parameters in the model (per

subject), the subject mean maximum likelihood estimate for terms in

the models, the negative log likelihoods (summed over participants),

and the Bayesian Information Criterion (summed over participants). a de-

notes the outcome magnitude-weighting term; t denotes the choice

sensitivity parameter; h denotes the experience/inferred weighting

term; NlogL denotes negative log likelihood; BIC denotes Bayesian infor-

mation criterion. Lower NlogL and BIC values indicate better fits to

behavior.
current stimulus choices (one-sample t test: all t(21)>5.0, p <

0.001; Figure 2C; Supplemental Information, GLM1). Positive

effects of the first two terms show that (i) the more strongly

a stimulus was previously associated with a participant’s

more preferred outcome on the current choice trial and (ii)

the larger the Bayesian update to that association from the

latest feedback, the greater the likelihood of selecting that stim-

ulus on the current choice trial. The positive effect of reward

payout further indicates that especially large reward effectively

‘‘stamped in’’ updates to stimulus-outcome transitions following

a confirmatory outcome, while especially small reward produced

even greater changes to beliefs about stimulus-outcome associ-

ations following a disconfirmatory outcome.

On each choice trial, one stimulus-outcome association

was directly observed, and the other inferred based on the

subject’s knowledge of the inverse relationship between stimuli

and outcomes dictated by the task structure. To test whether

observed and inferred outcomes were differentially weighted

during learning, we constructed a variant of the Bayesian

reversal-learning model with an additional free parameter that

captured the relative weighting of experienced and inferred

choice outcomes (Supplemental Information). Values for this

fitted weighting parameter did not provide evidence for differen-

tial learning from observed or inferred outcomes (mean h = 1.01,

one-sample t test against the null hypothesis of no difference

[i.e., h = 1]: t(21) < 1, p > 0.2), suggesting participants weighed

directly observed and inferred updates similarly.

CSS Reveals Neural Representation of Trial-by-Trial
Stimulus-Outcome Association Strength
To probe the flexible encoding of stimulus-outcome identity asso-

ciations, before and after updating during choice trials, we inter-

leaved CSS blocks and choice trials. In particular, after each

choice trial, we compared presentation of gift cards that followed

stimuli with which they were more strongly associated (high con-

tingency [HC]) to those that followed stimuli with which they were

less strongly associated (low contingency [LC]), based on the as-

sociations acquired during choice trials up until the presented

CSS block (Figure 3A; see Experimental Procedures). This proce-
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dure meant that the BOLD responses evoked by identical gift

cards during CSS blocks were compared, differing only in the

strength of association with the preceding stimulus presented.

Each possible pairing of a stimulus and gift card was presented

twice in eachblock (see Figure 1B), therebyminimizing anypoten-

tial incidental learning of stimulus-outcome associations during

these blocks, since in each block each possible S-O transition

was experiencedwith equal frequency andany incidental learning

should be equated between different pairs on average. Based on

previous demonstrations of increased suppression for associ-

ated, compared to non-associated stimulus-reward or stimulus-

stimulus pairs, albeit in the absence of any online learning

(Klein-Flügge et al., 2013; Meyer and Olson, 2011), we predicted

a reduction in the BOLD response for HC items when compared

to LC items. We made the further quantitative prediction that the

difference in the degree of CSS between LC and HC items should

be proportional to the difference in association strength between

LCandHCstimulus-gift cardpairs, acquiredandupdated through

learning during choice trials (Figure 3B). To test this prediction, we

regressed the current association strength, estimated by the

normative Bayesian reversal-learning model, against the differ-

ence in BOLD suppression between LC and HC items. This

whole-brain analysis identified distributed effects with peaks in

bilateral hippocampus and parahippocamal gyrus, right perirhinal

cortex, inferior/middle temporal gyrus, and right amygdala, and

additional clusters in posterior cingulate cortex and left tem-

poro-parietal junction area (Z > 2.3, p = 0.05 cluster-corrected;

Figure 3C; Table S2). The degree of suppression in between

choices in these regions therefore flexibly tracked the current

on-line associationbetweenparticular stimuli andoutcomes, sug-

gesting a substrate for the online neural representation of a basic

internal model composed of transitions between particular visual

stimuli and reward outcomes.

To explore whether this network depended on whether the

transition observed during CSS blocks was directly experienced

or inferred in the previous choice trial, we constructed a separate

GLM with these two category of CSS item presentations sepa-

rately modeled. Contrasting experienced and inferred transitions

did not reveal any significant differences, consistent with the

absence of any behavioral differences. This null result should

be interpreted with caution because of the large asymmetry

between the frequencies of directly experienced HC and LC

transitions, with far fewer of the latter by design and therefore

low efficiency to test this contrast.

Neural Signatures of Updating during Choice Feedback
Events
Having identified a network that encoded the online associations

during probe CSS trials, we sought to identify learning-related

updating signals at feedback during choice trials and to test

whether these would explain changes to the network. Our

behavioral analysis indicated that both the stimulus-outcome

update and the recent reward size impacted learning, motivating

tests to identify neural correlates of trial-by-trial fluctuations in

these terms at the time participants witnessed choice feed-

back—the critical time for learning to take place. Notably, inter-

ference and recording evidence across species suggests a key

role for lOFC in learning and/or using stimulus-outcome identity



Figure 3. fMRI Results during Cross-Stim-

ulus Suppression Blocks

(A) In each CSS block, participants learned that

one transition probability from stimulus to gift

card was more likely (high) and the other less likely

(low) from trial-and-error feedback. We defined

high-contingency and low-contingency transitions

between stimuli and outcomes based on the

computational model’s current estimate of par-

ticipants’ beliefs in the association strength from

choice trials (r(t)).

(B) We predicted a suppressed BOLD response

when the same outcome presentation was pre-

ceded by a high-contingency stimulus, compared

to a low-contingency stimulus. Further, we

computed the difference between BOLD sup-

pression on low and high contingency outcome

presentations and regressed this difference

against the model-predicted difference in association to produce maps shown in (C). We predicted an increased difference between BOLD responses on low-

contingency and high-contingency presentations as the association strength grew (black traces).

(C) Axial and coronal slices through Z-statistic maps relating to the effect of the current stimulus-outcome identity association at the time of item presentation

during suppression blocks in bilateral hippocampus, parahippocampal gyrus, perirhinal cortex, inferior/middle temporal gyrus, and right amygdala. Activations

survived a cluster-forming threshold across the whole brain of Z > 2.3 and a family-wise error rate of p = 0.05.
associations to guide choice (Buckley et al., 2009; Gremel and

Costa, 2013; Jones et al., 2012; McDannald et al., 2011; Noonan

et al., 2012; Rudebeck and Murray, 2014; Rudebeck et al.,

2013b; Rushworth et al., 2011; Stalnaker et al., 2014; Takahashi

et al., 2011; Walton et al., 2010; Wilson et al., 2014), supporting

the hypothesis that lOFC may be important for updating beliefs

about likely reward outcomes. We defined the stimulus-outcome

belief update as the Kullback-Liebler divergence (DKL) between

posterior and prior beliefs, computed over the distribution

of possible transition probabilities, having witnessed a new

choice-outcome transition. Here, the DKL encodes the informa-

tion contained in the belief update, and has also been termed

‘‘Bayesian surprise’’ (Itti and Baldi, 2009) (see Equation 13 in

Supplemental Information and Figure S1). To identify regions

whose activity reflected both the size of the stimulus-outcome

update and its direction, we signed the DKL based on each sub-

ject’s estimated goal on each trial (where the goal was defined

by estimating subject-specific indifference points between gift

cards; see Equation 12 in Supplemental Information), such that

positive updates corresponded to shifting beliefs toward a sub-

ject’s current goal andnegative updates corresponded to shifting

beliefs away from their goal (Experimental Procedures GLM3).

Consistent with our a priori hypothesis, this whole-brain analysis

revealed stimulus-outcome update effects in lateral OFC/ventro-

lateral prefrontal cortex (VLPFC) and also a distributed network

including anterior cingulate cortex, inferior temporal cortex, and

posterior cingulate cortex (Z > 2.3, p = 0.05 cluster-corrected;

Figures 4A and S3; Table S2). Activity in these regions thus re-

flects how much to update beliefs about the transition probabili-

ties that map stimulus choices to potential outcomes and in

which direction, toward or away from a subject’s goal. Notably,

this activity cannot be explained by a reward prediction error,

because unlike the effect in VM described below, it is unaffected

by the magnitude of the reward (mean group effect: t(21)<2,

p > 0.1; partial correlation between behavioral and neural reward

effects, controlling for the behavioral effects of the previous S-O

association and the S-O update: r = 0.33, p > 0.10; Figure 4A).
Rather, it is a learning signal about the identity of the outcome

but is signedaccording to the subject’s current goal or thecurrent

focus of the subject’s attention. It is also important to note

that these effects cannot simply be explained by increased

BOLD responses to confirmatory relative to disconfirmatory out-

comes, which were modeled separately in the general linear

model (GLM) (see Experimental Procedures, GLM3; Figure S3D).

Conversely, the unsignedDKL term, corresponding to the magni-

tude of the belief update, independent of its direction, instead re-

cruited a dorsal frontoparietal network, consistent with previous

findings related to unsigned state prediction errors during latent

learning (Figure S3A) (Gläscher et al., 2010). Reward payout

explained independent BOLD fluctuations at feedback in dorsal

putamen/insula, hippocampus, posterior cingulate cortex, and

also a dorsal frontoparietal network (Figure S3B).

Motivated by an extensive literature implicating the dopamine-

rich VM in updating beliefs (Klein-Flügge et al., 2011; Montague

et al., 1996), we interrogated the BOLD response in VM (ROIs)

(defined independently using coordinates from Klein-Flügge

et al., 2011). We found that VM activity was best explained

by a GLM that included both the stimulus-outcome update and

the reward payout (unsigned stimulus-outcome update: t(21) =

2.39, p = 0.01; reward magnitude: t(21) = 2.01, p = 0.03; Fig-

ure 4B; see Experimental Procedures and GLM3; see Supple-

mental Information and Figures S4 and S5 for a related analysis

of VM and whole-brain responses in terms of reward prediction

errors). Moreover, those subjects in whom the reward payout

(but not stimulus-outcome update) more strongly drove learning

behaviorally showed stronger neural reward payout effects in VM

(partial correlation between neural and behavioral reward payout

effects [see Figure 2C], controlling for the behavioral effects of

the previous S-O association and the S-O update: r = 0.63,

p < 0.005; Figure 4B). This finding provides a direct link between

the (inaccurate) influence of reward payout on updating behavior

and VM neural response at choice feedback, yet it leaves open

where in the brain these VM signals act to modify stimulus-

outcome associations.
Neuron 89, 1343–1354, March 16, 2016 ª2016 The Authors 1347



Figure 4. Learning Signals during Choice Trials

(A) Top: Axial slice through Z-statistic map displaying effect of signed stimulus-outcome (signed DKL) at feedback of choice trials. Maps display lOFC (crosshairs)

and inferior temporal gyral clusters that survived a cluster-forming threshold across thewhole brain of Z> 2.3, and a family-wise error rate of p= 0.05. Bottom: Time

course of stimulus-outcome identity update and reward payout in independently defined left lOFC region, plotted from feedback onset (for display purposes only).

(B) Upper left: ROIs in VM defined from coordinates in Klein-Flügge et al. (2011). Bottom: Time course of unsigned stimulus-outcome identity update (t(21) = 2.39,

p = 0.01, one-sample t test) and reward payout size (t(21) = 2.01, p < 0.05; one-sample t test) in left VM ROI. Upper right: Scatterplot depicts relationship across

participants of behavioral and neural effects of reward size in left VM (partial Pearson’s correlation controlling for behavioral stimulus-outcome update effect and

previous association before update: r = 0.63, p < 0.005). See also Figures S3–S5.
lOFC and VM Feedback Responses Explain Single-Trial
Change to Hippocampal CSS
Analyses of feedback-related activity during choice trials identi-

fied S-O update effects in lOFC and both S-O update and reward

effects in VM. We predicted these update signals might deter-

mine how much associations change as a result of the most

recent choice feedback. CSS analyses, on the other hand, re-

vealed flexible encoding of trial-by-trial associations in hippo-

campus and interconnected and surrounding regions. We

sought to home in on the neural dynamics underlying learning

by testing whether the feedback-locked signals could predict

the change in hippocampal CSS as a result of single intervening

choice trials. To test this prediction, we extracted the feedback-

locked BOLD response in left lOFC (at 6 s post-feedback onset)

at trial t and regressed this against the (signed) change to hippo-

campal CSS (i.e., the change in the difference between LC and

HC presentations in [ipsilateral] left hippocampus from the pre-

ceding block t � 0.5 to the subsequent block t + 0.5) (Figure 5A;

Experimental Procedures, GLM4). Note that the measurements

of independent and dependent variables for this analysis were

made at different times in the experiment: at choice feedback

and item presentation during CSS blocks. We also included

the local hippocampal feedback response, the model-estimated

stimulus-outcome update, and the reward payout as nuisance

regressors to test whether the lOFC feedback response ex-

plained the change to hippocampal CSS over and above these
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alternative variables (which did not significantly explain changes

to hippocampal CSS). This analysis revealed a significant

positive effect of the lOFC feedback response (t(21) = 2.50,

p = 0.01; Figure 5A), indicating that fluctuations in lOFC re-

sponses at choice feedback predicted changes to the difference

in hippocampal responses to LC and HC item presentations.

Although our a priori hypotheses focused on interactions be-

tween lOFC and hippocampus, based on the co-activation of

these structures when predicting outcome identities in previous

studies (Howard et al., 2015; Klein-Flügge et al., 2013), we also

performed post hoc tests using each region that showed effects

of DKL at feedback (Table S2). For example, the feedback re-

sponses in dorsolateral frontal and posterior parietal cortical re-

gions that showed effects of the unsigned DKL (Figure S3), and

have previously been linked to state prediction errors (Gläscher

et al., 2010), did not explain a significant amount of variance

related to the change in hippocampal CSS (both p > 0.3). In addi-

tion, we tested whether the lOFC feedback response predicted

changes to CSS effects in neighboring peaks in the medial tem-

poral lobe, including in perirhinal cortex, which receives mono-

synaptic projections from OFC in macaques (Kondo et al.,

2005), and provides a major neocortical input into hippocampus

(Bird and Burgess, 2008) and amygdala, which is reciprocally

connected to OFC in macaques (Carmichael and Price, 1995;

Stefanacci and Amaral, 2002) and whose functional interactions

with OFC have been the topic of active investigation across



Figure 5. Feedback Activity during Choice Trials Predicts Changes to CSS Effects

(A) Top: Depiction of multiple linear regression model (nuisance regressors not shown, seemain text). Bottom: Mean ± SEM of group effect (b) shown in gray, and

individual subjects, shown in blue, for lOFC feedback-locked signal (t(21) = 2.5, p = 0.01, one-sample t test). t + 0.5 refers to the suppression block after choice

trial t and t � 0.5 to the block before.

(B) Top: VM signal replaces lOFC in the regression model. Bottom: Scatterplot illustrates positive association across participants between the behavioral reward

payout effect and the neural feedback-locked effect in VM on the single-trial change to hippocampal suppression during suppression blocks (partial Pearson’s

correlation controlling for behavioral stimulus-outcome effect: r = 0.49, p = 0.02).
species (Hampton et al., 2007; Morrison et al., 2011; Rudebeck

et al., 2013a; Stalnaker et al., 2007). These analyses revealed

some evidence that lOFC feedback responses also explained

changes to CSS in perirhinal cortex (t(21) = 1.51, p = 0.07) and

amygdala (t(21) = 1.85, p = 0.04) ROIs that showed CSS group

effects (Tables S1 and S2).

ROI analyses revealed update and reward effects in VM dur-

ing choice trials, and the latter was encoded more strongly in

those subjects whose learning behavior displayed a stronger

reward payout effect. To ascertain whether these VM responses

might likewise update hippocampal associations following espe-

cially influential rewards, we performed the same analysis as

described above, replacing left lOFCwith left VM as the indepen-

dent variable. Although we did not find a significant group mean

effect (p > 0.4), therewas considerable inter-individual variability.

We found that the degree to which reward payout (but not stim-

ulus-outcome update) influenced behavior correlated positively

with the degree to which VM feedback-locked responses ex-

plained the change to hippocampal CSS across participants

(partial correlation: r = 0.49, p = 0.02; Figure 5B). This analysis

demonstrates that fluctuations in VM feedback responses had

a stronger relationship with subsequent hippocampal encoding

of stimulus-outcome associations in those subjects whose

behavior was more strongly and inaccurately influenced by

reward payouts.

DISCUSSION

Flexible decision making in response to changeable internal

states and external circumstances necessitates mechanisms

for acquiring, storing, and deploying an internal model of the

world that maps choices to potential outcomes. By probing

and modifying associations as learning progresses, we have

shown that BOLD suppression in hippocampus, amygdala,
and surrounding association cortex tracks the degree of asso-

ciation between particular stimuli and particular outcome iden-

tities—a basic internal model. Feedback responses in lOFC

(among other brain regions) reflected updating terms important

for acquiring and revising beliefs about associations between

stimulus choices and ensuing outcome identities, whereas re-

sponses in VM additionally reflected updating based on reward

payouts. By isolating single updates to associations during

learning, we could further show that the learning-related signals

in lOFC and VM predicted the subsequent change to CSS

measured in the hippocampus and other medial temporal lobe

structures. Taken together, these findings suggest that lOFC

and VM update beliefs about stimulus-outcome transitions flex-

ibly stored on-line or indexed in hippocampus, amygdala, and

surrounding higher-level sensory and association cortex.

Previous studies have pointed to lOFC involvement in learning

and/or using choice-outcome associations to guide behavior

(Buckley et al., 2009; Gremel and Costa, 2013; Jones et al.,

2012; Noonan et al., 2011; Rudebeck and Murray, 2014; Rude-

beck et al., 2013b; Rushworth et al., 2011; Takahashi et al.,

2011; Walton et al., 2010; Wilson et al., 2014). In animal models,

lesions to lateral portions of macaque OFC produce deficits in

appropriate credit assignment, given the task structure—or the

appropriate attribution of particular reward outcomes to partic-

ular past stimulus choices (Walton et al., 2010)—and OFC inac-

tivation in rats causes abnormal dopaminergic reward prediction

error signals that can be elegantly accounted for by the loss of

choice memory necessary for appropriate credit assignment

(Takahashi et al., 2011). In humans, lOFC BOLD responses are

increased when stimulus-response associations are guided by

consistent rather than inconsistent reward outcomes (Noonan

et al., 2011) and show differential updating signals consistent

with social credit assignment (Boorman et al., 2013a). Here, we

isolate a particular computational role for lOFC in updating
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stimulus-outcome associations at choice feedback that may at

least partly underpin its involvement in some of these previous

studies. Notably, that lOFC signaled stimulus-outcome updates,

but was not sensitive to the online stimulus-outcome association

strength during CSS blocks, suggests that lOFC may utilize an

internal model to update beliefs about, or facilitate decisions be-

tween, rewarding goals (Stalnaker et al., 2015; Wilson et al.,

2014) but may not store the model locally. Importantly, the ros-

trolateral localization of the OFC update signal in our study can

be contrasted with signals in more medial subdivisions of OFC,

and neighboring subdivision within ventromedial PFC, that

have been shown to encode abstract values and comparisons

between goal values during choices (Boorman et al., 2009,

2013b; Chib et al., 2009; Howard et al., 2015; Lim et al., 2011).

lOFC, extending into VLPFC, was one region in a network that

included ACC, inferior temporal gyrus, and posterior cingulate

cortex, which all showed significant effects of theDKL, ameasure

of the information contained in the belief update at choice feed-

back. Notably, these signals were signed based on the subject’s

goal, consistent with a mechanism for determining how much to

update beliefs and in which direction: toward confirmation (pos-

itive) or reconsideration of one’s rewarding goal (negative).

Importantly, unlike the VM signal, the lOFC signal on average

was not additionally sensitive to the reward payout obtained

and so is distinct from a reward prediction error. ACC recruit-

ment is consonant with demonstrations that belief updating

signals can be measured in a slightly more dorsal ACC sulcal

subdivision in the context of instrumental reward value learning

(Behrens et al., 2007) and perceptual choice (O’Reilly et al.,

2013), complementing evidence that lesions to this region in

macaques produce impairments in the appropriate integration

of past reward (Kennerley et al., 2006). Update effects in inferior

temporal gyrus, an area sensitive to the abstract visual stimuli

between which participants selected, may reflect reactivation

of the relevant stimulus representation in order to update the

appropriate association.

The network encoding signed DKL can be contrasted with a

dorsal frontoparietal network that reflected the unsigned DKL,

consistent with a previous demonstration that unsigned state

prediction errors, signaling errors in probabilistic transitions

between states during latent learning in the absence of reward,

recruited a similar network (Gläscher et al., 2010). It remains

unclear whether the distinction between these two networks de-

pends on learning about stimulus–reward outcome transitions,

a subset of state–state transitions, or instead how the update

signals are signed, here with respect to the subject’s reward

goal, which was notably absent from the latent learning blocks

in which state prediction errors were previously measured.

Notably, unlike lOFC, the feedback response in these frontopar-

ietal areas did not predict the subsequent change to hippocam-

pal suppression (all p > 0.3). Although it is unclear precisely what

the contribution of this dorsal frontoparietal network is, it may

nevertheless play a key role in updating such internal models.

Interrogation of the BOLD response in VM revealed effects of

both unsigned stimulus-outcome updates and reward payouts.

Intriguingly, the update effect fits nicely with recent reports of

unsigned precision-weighted prediction errors in VM during an

auditory-visual learning task, where learning was orthogonal to
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reward (Iglesias et al., 2013), and similar measures of belief up-

dating (DKL), but not information-theoretic surprise, about the

relevance of an auditory or visual stimulus modality in predicting

reward (Schwartenbeck et al., 2016). Our results further show

that when learning is inaccurately influenced by reward, VM

BOLD activity is additionally sensitive to the reward outcomes

at choice feedback. Because reward payouts for the two out-

comes were inversely correlated in our task, this unsigned signal

may reflect reward-based updating of the best choice or policy,

given the outcome obtained: the selected option following

preferred outcomes and the counterfactual option following un-

preferred outcomes. Alternatively, it may reflect the extent to

which salient outcomes lead to shifts in beliefs. Further studies

are necessary to experimentally tease apart these and other pos-

sibilities. In either case, the reward effect in VM was tightly

coupled to the influence of reward payout on learning behavior.

Motivated by recent demonstrations that presentation of pairs

of stimuli, or stimuli and reward outcomes, which have previ-

ously been associated deterministically, lead to a reduction in

both neuronal and BOLD responses when compared to unasso-

ciated items (Barron et al., 2013; Klein-Flügge et al., 2013; Meyer

and Olson, 2011), we hypothesized we could exploit CSS to

probe the degree of association acquired on-line during choice

trials, circumventing potential confounds present during choice

and updating. This approach revealed that the BOLD response

in a network including hippocampus, parahippocampal gyrus,

amygdala, perirhinal cortex, inferior/middle temporal gyrus,

temporal parietal junction area, and posterior cingulate cortex

suppressed in proportion to the association strength, estimated

using a Bayesian reversal-learning model. This analysis demon-

strates that activity in these regions was sensitive to the on-line

association strength between stimuli and outcomes, flexibly ac-

quired, and updated during learning, consistent with the flexible

encoding of a basic internal model.

Different mechanistic accounts have been advanced to

explain RS, including fatigue, sparse coding, and predictive

coding (Grill-Spector et al., 2006; Summerfield et al., 2008;

Wiggs and Martin, 1998). Although there is not yet consensus

on the underlying mechanism, our controlled analysis,

comparing the same outcome when it was preceded by a

more or less associated stimulus, means that the only difference

between items was the association with the preceding stimulus,

acquired from choice trials. Plausible mechanisms underlying

the relationship we observed between suppression and associ-

ation strength include predictive coding of outcomes elicited by

stimulus presentation (Summerfield and Egner, 2009) and/or

plasticity between the underlying neuronal populations that

encode a particular stimulus and a particular outcome, which

become increasingly overlapping with learning. In either case,

because the association strength was de-correlated from the

likelihood that a particular stimulus or outcome would be pre-

sented during CSS blocks, the suppression measured must

be related to the association acquired during choice trials, rather

than the statistical sequence of items presented during probe

blocks. It is possible that such CSS measures would also be

sensitive to the statistical transitions observed during CSS

blocks. However, because each possible pairing was presented

with equal frequency during each CSS block, this meant that



any incidental learning about S-O transitions should equate on

average, thereby obviating any attempt to detect this in our

paradigm. It will be important to establish the extent to which

the CSSmeasure is sensitive to such incidental learning in future

experiments.

It can be informative to compare the identification of this

medial temporal lobe network in flexibly encoding the online,

stochastic relationship between particular predictive stimuli

and reward outcomes with other recent findings on stimulus-

outcome associations in the literature. In particular, studies using

simpler prediction tasks involving deterministic and well-learned

pairings between stimuli and reward outcomes have found the

encoding of stimulus-outcome associations in rostrolateral

OFC, and outcome identity or attribute coding, independently

of the predictive stimulus, in hippocampus and caudolateral

OFC (Klein-Flügge et al., 2013) or hippocampus andmore rostro-

lateral OFC (Howard et al., 2015). Two potentially important dif-

ferences between our study and these previous ones concern

the statistical and labile nature of the associations between stim-

uli and outcomes used here, which were stochastic and had to

be updated flexibly throughout the experiment, as opposed to

the deterministic and well-learned associations used in these

previous studies. Understanding precisely when and how the

lOFC and hippocampus contribute to storing or using stimulus-

outcome associations and expectations about outcome identi-

ties or attributes, both important for generating internal models

of the world or a ‘‘task space,’’ is an important question to

address in future studies.

To test whether computational learning signals measured in

one region can impact on task representations measured in

another, we isolated single-trial changes to the CSS index of

association strength in hippocampus and tested whether neural

responses in lOFC and VM at choice feedback predicted these

changes. The feedback-related lOFC response predicted fluctu-

ations in the single-trial change to hippocampal CSS across all

participants, while VM did so to the extent that reward payout

inaccurately shifted participants’ beliefs. Importantly, these ef-

fects remained significant after including the model-derived

update and reward terms and local hippocampal feedback

response in the regression model, indicating that residual feed-

back-related activity in these structures explained variance

in the changes to hippocampal CSS over and above these

additional terms. Although we cannot infer causality from this

analysis, it implies that lOFC and VM updating during choice

feedback shapes the encoding of associations between partic-

ular items in hippocampus and surrounding medial temporal

regions. Such long-range functional interactions could only be

interrogated through the combination of a whole-brain imaging

technology and a technique to probe representation as it evolves

during learning.

lOFC interactions with hippocampus may stem from indirect

connections via interconnected perirhinal cortex, which receives

monosynaptic connections from OFC (Kondo et al., 2005).

Notably, disconnection of rhinal cortex and orbital frontal cortex

in macaques leads to impairments in learning visual stimulus to

reward associations (Clark et al., 2013), although the underlying

mechanism has been unclear. This possibility is hinted at by the

marginal effect of lOFC feedback responses on the change to
perirhinal CSS. It should be noted, however, that the signal

dropout and distortion around this very anterior and ventral

cortical region mean that the data are inherently less robust.

Intriguingly, post hoc tests also revealed a correlation between

lOFC feedback activity and the single-trial change to CSS in

amygdala, complementing and extending previous demonstra-

tions these interconnected structures interact during learning

(Morrison et al., 2011; Stalnaker et al., 2007).

While most previous research has focused on hippocampal

interactions withmedial prefrontal cortex, notably when associa-

tive information is used to evaluate or imagine choices online

(Barron et al., 2013; Kumaran et al., 2009; Peters and Büchel,

2010; Wikenheiser and Redish, 2015), lOFC-hippocampal inter-

actions have been relatively unexplored. Our results suggest

they also play a key role in the context of goal-directed control.

DA neurons in VM, on the other hand, have direct projections

to hippocampus proper (Gasbarri et al., 1994), and learning-

related coupling between these structures has previously been

discovered in the context of facilitating generalization and

long-termmemory formation (Shohamy andWagner, 2008; Witt-

mann et al., 2005). Our findings suggest this relationship extends

to the influence of reward-based updating on the learning of task

structure during decision making.

We have advanced an account of how learning-related sig-

nals impact neural representations of associations between

crucial task variables in distant structures. An important exten-

sion of this work concerns how these associations are then

leveraged to flexibly construct subjective goal values for partic-

ular outcomes that guide flexible choices (Hare et al., 2008;

Jones et al., 2012; Wunderlich et al., 2012). The methodological

approach we present here holds promise to probe the dy-

namics of such representational questions during learning and

choice.
EXPERIMENTAL PROCEDURES

Participants

Twenty-six healthy human volunteers participated in the fMRI experiment.

Four participants were excluded because they failed to reach our threshold cri-

terion of R75% correct performance during the incidental 1-back task during

CSS blocks, resulting in 22 participants included in all subsequent behavioral

and neural analyses. We introduced this criterion because we required assur-

ance that participants attended to each item presented during CSS blocks.

The sample size was based on similar sample sizes in recent fMRI studies of

decision making. Participant identities were anonymized for analyses. Partic-

ipants were aged 22 to 33 (mean age: 25.82), 11 were female, and 18 were

right-handed. We excluded volunteers who had a history of any psychiatric

or neurological condition or those who were on psychotropic medication.

The study was approved by a local University of Oxford ethics committee

(ref: MSD-IDREC-C1-2013-066), and all participants gave written informed

consent.

Experimental Task

Participants first rated each of six gift cards from 1 (minimum desirability) to

100 (maximum desirability) using a track ball. We selected the two gift cards

that were maximally rated, to ensure gift card outcomes were incentivizing

in the fMRI task. Participants then all passed an experimental quiz testing

key concepts about our task, such as full dependence between selected

and unselected stimuli and the ensuing outcomes and the irrelevance of

reward payouts but not stimulus-outcome associations for future behavior.

During training, participants learned associations between different stimuli
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and gift cards from those used in the fMRI task, using a random schedule

of stimulus-outcome transitions and different random payouts (sampled inde-

pendently on each trial from a uniform distribution between 1 and 100). A few

training trials were also conducted in the scanner to familiarize participants

with the button box.

For the fMRI experiment, we counterbalanced the assignment of particular

stimuli to a schedule of gift card outcomes and reward payouts across par-

ticipants. This procedure meant that the particular identity of the HC and LC

pairs at any trial during the experiment was reversed for half of the subject

sample. Participants were informed that one choice trial would be selected

at random at the end of the experiment and that this would constitute their

actual payout on the gift card obtained on that trial, so it was advantageous

for them to treat each choice as if it counted ‘‘for real.’’ At the end of the

experiment, we randomly selected one trial and divided the points obtained

on that outcome by three (we repeated this procedure if this would have re-

sulted in payment less than £10, but this was not known to participants). This

procedure yielded a mean payout of £20.76 on a gift card, which we rounded

to the nearest £5 mark. As shown in Figure 2, the true stimulus-outcome

probabilities changed such that the identity of the more likely outcome

reversed at trial 26, while two new stimuli were introduced at trial 51. The

motivation for including new stimuli at trial 51 was to test whether there

would be any differences between the neural CSS effects when subjects

modified or reversed a learned S-O association and when they learned a

new S-O association. No such differences in neural effects were observed,

even at a reduced threshold of p < 0.05 uncorrected, so we treated these

phases identically in our subsequent neural analyses. In total, this constituted

75 choice trials.

In choice trials, participants saw two abstract stimuli, each randomly pre-

sented on either the left or right side of the screen, and two numbers that

summed to 100. One of these numbers n1 was sampled independently on

each trial from a uniform distribution between 1 and 100, and the other n2

was defined as 100 � n1. A number’s color indicated with which gift card it

was deterministically paired. These numbers represented potential payouts

that could be won on the gift cards, if obtained. Their position on the screen,

either at the very top or just beneath, was determined randomly on each trial.

After a jittered interval, a questionmark appeared that served as a go cue, after

which participants had to select a response with a button press,mapped to the

location of the stimulus on the screen, within 3 s or else the trial aborted. The

selected option was then highlighted for 0.5 s, followed by presentation of the

gift card outcome, and associated payout for another jittered interval. These

jittered choice and outcome periods facilitated dissociation of these events

in time for fMRI analyses, yet they precludedmeaningful analyses of behavioral

reaction times.

With independently drawn transition probability P, choice of stimulus 1 led to

gift card 1, and with probability 1 � P, to gift card 2. The inverse relationship

governed the transitions between stimulus 2 and gift cards 1 and 2 (see Figures

1 and 2). A single schedule of transition probabilities and reward payouts was

selected to de-correlate key variables of interest, and this schedule was used

for each participant (Figure S1). Importantly, subjects did not know the true un-

derlying reward probabilities, or true reversal probability, but had to learn these

model parameters through trial-and-error feedback.

Each choice trial was followed by a jittered ITI before presentation of

the first stimulus of the next CSS block. In CSS blocks, stimuli, and outcomes

(nine items per block) were presented in a pseudorandom and inter-

leaved sequence, ensuring that each stimulus-outcome transition and each

outcome-stimulus transition was presented twice per block. These CSS

blocks were presented after the first choice trial and each choice trial there-

after, totaling 75 CSS blocks. Incidental catch trials were presented once

per CSS block on average and could be presented at any position in the

sequence of nine items. In addition to the reward payout on gift cards, partic-

ipants were endowed with £25 from which £1 was deducted for incorrect re-

sponses during the incidental task in CSS blocks, resulting in a mean payment

of £19.14 (SD = £4.78). On average, the subjects correctly identified 69.14

(SD = 4.78) out of 75 catch trials. For these incidental trials, all four items

(both stimuli and both gift cards) were presented at random locations, and

participants had to press a button corresponding to the location of the last

item presented. Feedback was only delivered for incorrect responses, which
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informed participants they had lost £1 from their endowment. Incorrect CSS

items were excluded from fMRI analyses.

Behavior

In order to generate behavioral and neural predictions, we constructed a

Bayesian reversal learning model (Table 1; Supplemental Information) that

reflected the information communicated to participants—in particular, that

true transition probabilities between stimuli and outcome identities were

inversely related and that the identity of the more likely outcome following

choice of a particular stimulus might reverse unexpectedly. See Table 1 and

Supplemental Experimental Procedures for details of model fit and behavioral

regression analyses, including GLM1.

fMRI

fMRI data acquisition, preprocessing, and ROI analyses are described in detail

in the Supplemental Experimental Procedures.

Genera Linear Model Estimation

Separate GLMs were fit in pre-whitened data space to identify stimulus-

outcome updating during choice feedback and association encoding during

CSS blocks (Woolrich et al., 2001). All regressors were convolved with FSL’s

canonical gamma hemodynamic response function and temporally filtered

with the same high-pass filter applied to the fMRI time series.

We computed GLM2 to probe associations during CSS blocks. We defined

separate explanatory variables (EVs) for each individual gift card outcome

during CSS blocks (300 total EVs). For GLM2, we then defined the following

contrasts of parameter estimates (COPEs):

(1) LC-HC item events, classified as LC or HC based on the Bayesian

model’s current estimate of the mean transition probabilities rt
and 1 � rt, having witnessed the most recent choice feedback at trial

t � 0.5. This COPE is shown in Figure S3.

(2) The difference between LC and HC item events defined above, modu-

lated by the trial-by-trial difference in association strength between HC

and LC items: rtHC � rtLC. In other words, this COPE tested for a differ-

ence between LC and HC item presentations that was proportionate to

the difference between model estimates of HC and LC transition prob-

abilities. This COPE is shown in Figure 3.

We defined a separate GLM3 to identify learning-related update effects at

choice feedback. Specifically, for GLM3, we divided choice outcomes into

preferred (or more expected/common) and non-preferred (or less expected/

rare) transitions, based on our definition of op (see Equation 12 in Supple-

mental Information) and modulated these different outcomes by the stim-

ulus-outcome update DKL and reward payout sizes m:

GLM3

Y = b0 +b1 ip + b2 inp + b3 ipDKL +b4 inpDKL + b5 ipmb�w + b6 inpmb�w + b7DEC+ ε;

where ip = 1 if the preferred outcome op is obtained and 0 otherwise and inp = 1

if the non-preferred outcome onp is obtained and 0 otherwise. The duration of

these feedback events corresponded to their true duration in the experiment

(2–4 s jittered across trials). The term mb�w denotes the difference between

reward magnitudes for best and worst outcomes, once again defined using

individual indifference points. The final term DEC refers to the main effect of

the decision event, with duration 2.5–5.5 s (jittered across trials) + RT. Using

this GLM, we then defined COPEs for signed DKL as b3 � b4 and unsigned

DKL as b3 + b4. Note that because preferred and non-preferred outcomes

were modeled separately, any effects of signed or unsignedDKL cannot simply

be explained by differences between preferred and non-preferred outcomes

(see Figure S2 for the z-statistic map pertaining to preferred versus non-

preferred binary outcomes). We also defined reward for best relative to worst

outcomes as b5 + b6. GLM3 was used to produce the Z-stat map in Figure 4A

and the time course plots from lOFC and VM in Figures 4A and 4B. For GLM3

(but not for GLM2 due to event timings), temporal derivatives of all regressors

were also included to account for variability in the hemodynamic response

function.



For GLM4, we tested whether the feedback-related BOLD response (6 s

post-feedback onset) at trial t in lOFC, VM, DLPFC, or posterior parietal cortex

ROIs predicted the single-trial change in suppression between LC and HC

items from the preceding CSS block at trial t � 0.5 to the subsequent CSS

block at trial t + 0.5:

GLM4

DYLC�HC = b0 + b1ROI6s + b2ROIHC6s
+ b3 ipDKL + b4 inpDKL + b5 ipmb�w

+ b5 inpmb�w + ε;

where DYLC�HC denotes the change in the difference between LC and HC

items from one block to the next, ðLC� HCÞt +0:5 � ðLC� HCÞt�0:5, and

ROI6s and ROIHC6s
denote the BOLD response at 6 s post-feedback from trial

t in the ROI tested (either lOFC or VM, shown in Figure 5) and also for the

nuisance regressor in hippocampus, respectively.

Second-Level GLM and Statistical Inference

For group analyses, we fit a GLM to estimate the group mean effects for the

regressors described above. Ordinary Least-squares in FEAT was used to

perform a mixed effects group analysis. To detect and de-weight outliers,

we performed robust group analysis using outlier inference, applying FEAT’s

outlier de-weighting option (Woolrich, 2008). All reported fMRI Z-statistics

and p values arose from these mixed effects analyses on all 22 subjects.

Unless otherwise stated, we report significant effects at a cluster-forming

threshold across the whole brain of Z > 2.3 and a family-wise error rate of

p = 0.05.
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