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Introduction
Major depressive disorder (MDD) remains a sig-
nificant contributor to the global burden of dis-
ease and has been reported to place second for 
causes of worldwide disability.1 In a 2012 epide-
miological study of mental health in Canada, the 
lifetime prevalence of MDD was noted at 11.3%.2 
Unfortunately, the pathophysiology of depression 
remains largely unknown. While the monoamine 
hypothesis, postulating that depression is the 
result of a functional deficiency of serotonin and/
or noradrenaline neurotransmitters in the central 
nervous system,3,4 has been useful for explaining 
the pharmacology of many antidepressant drugs, 
it is overly simplistic and does not seem to fully 

encompass the pathways underlying depression. 
One significant limitation is the discrepancy in 
the time frame of antidepressant drugs’ effects on 
monoamine neurotransmitters (hours to days) 
and on clinical symptoms (several weeks).3–5 
Following treatment with antidepressant drugs, 
only half of patients are noted to have a significant 
clinical response.6,7 Furthermore, up to one-third 
of patients are considered to have treatment-
resistant depression (TRD), defined as a lack of 
response to two or more adequate trials of antide-
pressant medications.8 Given this large popula-
tion of patients with TRD, there is a significant 
need for development of novel and more effica-
cious antidepressant treatments.
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Ketamine is a non-competitive antagonist at 
 glutamate N-methyl-D-aspartate (NMDA) 
receptors and has been traditionally used as a dis-
sociative anesthetic. It was first reported to have 
antidepressant properties in 2000, when it was 
demonstrated that an intravenous (IV) adminis-
tration of a sub-anesthetic ketamine dose resulted 
in a reduction of MDD symptoms rapidly and 
continuing to 72 h after treatment.9 Subsequent 
randomized controlled trials (RCTs) replicated 
this finding, demonstrating a 60–70% response 
rate of ketamine in TRD  populations.10–14 Of 
specific interest is the finding that ketamine has a 
rapid clinical effect within 2–4 h after administra-
tion. However, ketamine’s antidepressant prop-
erties are also transient, lasting an average of 1 week 
following a single infusion10–14 and 18–19 days fol-
lowing repeated infusions.15,16 Retrospective, 
real-world clinical data demonstrated a response 
rate of 44% after six intravenous ketamine treat-
ments in a population of complex patients with 
multiple comorbidities and ultra-resistant depres-
sion.17,18 Furthermore, ketamine has been 
reported to also have anti-suicidal and anti-anhe-
donic actions.14,19,20 Not only does ketamine exert 
a rapid clinical effect within several hours and 
demonstrate efficacy in patients unresponsive to 
other antidepressants, it appears to have a novel 
mechanism of action that is distinct from con-
ventional anti depressant drugs. This paper is a 
review of the current state of knowledge on the 
pharmacology/pharmacokinetics, status of clini-
cal trials, adverse effects and postulated mecha-
nisms of action of ketamine as an antidepressant. 
In addition, biomarkers including sleep, cogni-
tion, inflam mation and metabolism and neuro-
imaging will be discussed.

As preparation for this review, the authors per-
formed a literature search on each specific topic of 
interest using PubMed/MEDLINE and the Web 
of Science Core Collection, including papers in 
English produced from 2000 to 2019. Search top-
ics included ‘ketamine as an antidepressant’, 
‘mechanisms of action of ketamine as an antide-
pressant’, ‘biomarkers for antidepressant response 
to ketamine’, ‘enantiomers and metabolites of ket-
amine as antidepressants’, ‘inflammation and anti-
depressant actions of ketamine’, ‘ketamine and 
metabolism’, ‘sleep and antidepressant actions of 
ketamine’, ‘adverse effects of ketamine as an anti-
depressant’, ‘effects of ketamine on cognition’ and 
‘neuroimaging studies on antidepressant effects of 
ketamine’.

Basic chemistry, pharmacology and 
pharmacokinetics of ketamine
Ketamine, an arylcyclohexylamine derivative (see 
Figure 1), is a racemate, that is a mixture of R and 
S enantiomers. Chiral forms (enantiomers) of a 
drug have the same number and type of atom 
groupings, but have different arrangements in 
space, analogous to right and left hands. Usually 
the chiral center consists of four different groups 
attached to a carbon atom, and when the com-
pounds are synthesized there are often nearly 
equal quantities of the two enantiomers; that mix-
ture is called a racemate or racemic mixture. Pairs 
of enantiomers differ in their optical activity, and 
rotate plane polarized light to the left (–, or levo-
rotatory enantiomer) or the right (+, or dextrorota-
tory). Thus the prefixes (+)- and (–)-, dextro- and 
levo-, or d- or l- are used. The terms R (rectus) and 
S (sinister) are also often used, and describe the 
enantiomers based on their absolute configura-
tion. While optical activity can be influenced by 
temperature and light wavelength, the absolute 
configuration can be modified only by breaking 
and reforming chemical bonds, and there is no 
relationship between absolute configuration and 
optical activity; for example, some drugs are 
R(+), S(–) while others are R(–), S(+).21,22

There are many examples of antidepressants that 
contain a chiral center,21 and often these drugs 
have been used as racemates. However, often the 
two enantiomers may differ from one another sig-
nificantly with regard to pharmacokinetics and 
pharmacodynamics. Racemates have often been 
used instead of individual enantiomers because of 
the difficulty and expense involved in separating 

Figure 1. Chemical structure of ketamine, with the 
chiral center indicated by an asterisk.
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the enantiomers from each other. Often the phar-
macological activity may reside primarily in one 
enantiomer, and the two enantiomers may influ-
ence each other’s pharmacokinetics. Complicating 
factors that may arise when using racemates 
include: (1) association of therapeutic actions 
and/or adverse effects with one enantiomer; (2) 
differences in absorption, protein binding and/or 
renal clearance between the enantiomers; (3) 
preferential metabolism of one enantiomer over 
the other by enzymes; (4) one enantiomer having 
an effect on the pharmacokinetics of the other 
enantiomer; and (5) differing extents of the enan-
tiomers interacting with co-administered drugs.21 
However, there may also be cases in which the 
enantiomers produce complementary therapeutic 
effects or where one of the enantiomers counter-
acts adverse effects associated with the other 
enantiomer. Readers are referred to several review 
articles on this topic.21,23–25

Ketamine has been used for many years as an 
intravenous anesthetic, but has been the subject 
of intense interest in recent years in psychiatry 
after reports of its rapid-acting antidepressant and 
anti-suicidal effects.9,11,26 It contains a chiral 
center, and its R(–)- and S(+)-enantiomers have 
both been studied to varying extents. The 
S-enantiomer of ketamine (esketamine) is a more 
potent antagonist than R-ketamine at the phency-
clidine site on the glutamate NMDA recep-
tor,27–31 and has stronger analgesic potency than 
either R-ketamine or racemic ketamine.32 
Esketamine is now being investigated as an anti-
depressant by several research groups.33 There is 
disagreement in the literature about the occur-
rence of adverse effects such as dissociation, psy-
choses and cognitive effects with the two 
enantiomers of ketamine.20,27,34 In animal studies, 
R-ketamine has been reported to have a rapid 
onset of antidepressant effects and a better side-
effect profile than esketamine34–41; it has also been 
reported that R-ketamine improves phencycli-
dine-induced cognitive deficits in mice and that 
esketamine does not.42 Importantly, large head-
to-head clinical comparisons of esketamine with 
R-ketamine and racemic ketamine have not yet 
been reported.41,43

Ketamine is metabolized extensively in the body via 
CYP2B6- and CYP3A4-mediated N-demethylation 
to norketamine. Norketamine then undergoes fur-
ther catabolism to hydroxynorketamines (HNKs) 
and dehyronorketamine.20 Several researchers have 
investigated specific metabolites of ketamine for their 

antidepressant-like behavioral actions in  animal 
models44–47; 2R,6R-HNK was reported to have anti-
depressant-like effects and no side effects in rodents.44 
However, the literature on the  antidepressant effects 
of 2R,6R-HNK is controversial, with several contra-
dictory reports.41,48–52 S-norketamine, a metabolite of 
S-ketamine, has been shown in animal models to 
have useful antidepressant-like properties and fewer 
adverse effects than esketamine.35,53 In these animal 
models, S-norketamine has been reported to be equi-
potent to S-ketamine with regard to antidepressant-
like activity, but less potent than R-ketamine.34,35

Bioavailability of ketamine differs with route of 
administration. Intravenous administration pro-
vides the most predictable dosing with 100% 
bioavailability, and availability via other routes 
of administration including intranasal (45%), 
sublingual (30%), oral (20%), intramuscular 
(93%) and rectal (30%) is discussed in the 
literature.31,34,35,46,54

Overview of the status of clinical trials with 
ketamine and its enantiomers
Since Berman et al.9 demonstrated a rapid antide-
pressant effect of intravenous ketamine, numer-
ous studies have now replicated this finding. 
Multiple meta-analyses55–59 have now concluded 
that intravenous ketamine is effective as a rapid-
acting antidepressant for major depressive epi-
sodes in both unipolar and bipolar depression, 
although one study suggested that there was a 
greater antidepressant effect size for unipolar 
depression than for bipolar.57 While several of 
these studies have supported claims that keta-
mine’s antidepressant effect lasts up to 7 days,55,56 
other authors have suggested this to be true only 
for unipolar depression. One meta-analysis found 
that ketamine loses its effect in bipolar depression 
after day 3 or 4.58 Several RCTs have now looked 
at repeated infusions of six intravenous infusions 
over several weeks,60–62 but to date no long-term 
RCTs exist.

Studies on other modalities of ketamine adminis-
tration are limited at this time. While one RCT 
on intranasal ketamine63 suggested that intranasal 
administration may be a viable alternative, 
another study64 was aborted early due to poor tol-
erance to the intranasal formulation. Other 
reports based on clinical experience65,66 have 
reported that although it remains experimental in 
nature, maintenance intranasal ketamine has 
been clinically useful in patients who have 
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exhausted other treatment options. Studies on 
oral and sublingual ketamine have been the sub-
ject of a recent systematic review,67 but the stud-
ies reviewed include wide variations in dosing and 
do not appear to take into account limited bioa-
vailability of oral formulations, so may underesti-
mate efficacy.68 One previous pilot study has also 
suggested that intramuscular or subcutaneous 
routes may be viable options.69

Intranasal esketamine was approved by the FDA 
in the United States in March 2019 for major 
depression that has failed treatment with two or 
more antidepressants. This approval was based 
on three acute-phase studies and two mainte-
nance-phase studies. A phase III trial of over 200 
patients using esketamine adjunctive to an antide-
pressant demonstrated significant improvement 
in depression at 4 weeks compared with those 
using a placebo nasal spray.70 Two other phase III 
trials failed to meet primary endpoints.71,72 It has 
been suggested that the results of these studies 
were limited by a fixed dosing design in one71 and 
an elderly, more treatment-resistant population 
in the other.72 Of note, the esketamine acute stud-
ies have been conducted on populations more 
severely depressed than would be typical for FDA 
approval for antidepressant treatments of adjunc-
tive medications.73 Two maintenance studies fol-
lowed patients on maintenance esketamine up to 
88 weeks, and reported decreased risk of depres-
sive relapse when patients used esketamine weekly 
or every second week,74 and provided reassuring 
data on safety to over 1 year of esketamine use.75 
Janssen has ongoing trials in progress, including 
one that will track safety outcomes to 5 years.33 It 
has been suggested that R-ketamine may confer 
antidepressant effects and greater tolerability than 
esketamine.34 Perception Pharmaceuticals has a 
phase I clinical study with R-ketamine underway 
from 2019, but to our knowledge no results are 
available to date.34

Potential adverse effects of ketamine
Ketamine administered at sub-anesthetic doses by 
infusion may result in several adverse effects, most 
of which occur during the infusion period and 
abate shortly thereafter. These acute and transient 
effects include an increase in blood pressure (usu-
ally asymptomatic), nausea and vomiting, percep-
tual disturbance, drowsiness, dizziness and 
dissociation.43,76–78 Blood pressure should be 
measured prior to ketamine administration and 
monitored after administration until it returns to 

normal values.79 As mentioned previously in this 
review, there appear to be differences in the degree 
of adverse effects between the enantiomers of ket-
amine, although the two enantiomers have not yet 
been compared in a comprehensive head-to-head 
clinical study.27,34 Incidence and severity of 
adverse effects may vary with route of administra-
tion and length of time administered, although 
more investigation must be done on these matters. 
Swainson et  al.33 have provided a review of the 
adverse effects associated with intranasal adminis-
tration of esketamine. It should also be remem-
bered that ketamine is a potential drug of abuse, 
and high doses, particularly for long periods of 
time, can result in increased severity of the above-
mentioned side effects as well as severe urological 
side effects.80 In addition, as pointed out in a 
recent paper by Talbot et al.,81 further studies on 
the possible risks associated with cessation of keta-
mine antidepressant treatment are warranted.

Antidepressant mechanisms of ketamine 
and potential biochemical biomarkers
Glutamate is the main excitatory neurotransmitter 
in the central nervous system, acting on NMDA 
and α-amino-3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA) ionotropic receptors, as well 
as metabotropic glutamate receptors. Of interest, 
AMPA receptors are usually co-localized with 
NMDA receptors. Release of glutamate into the 
synaptic cleft initially activates AMPA receptors, 
which allow entry of sodium ions into the postsyn-
aptic membrane. Subsequent depolarization of the 
postsynaptic membrane results in removal of the 
NMDA receptor channel voltage-dependent mag-
nesium ion block and facilitates NMDA receptor 
activation, allowing entry of sodium and calcium 
ions. Ketamine has been long recognized as a non-
competitive antagonist at NMDA receptors. To 
provide some background on other mechanisms  
of ketamine, brain-derived neurotrophic factor 
(BDNF) is a growth factor protein with roles in 
supporting survival of existing neurons as well as 
promoting neurogenesis and synaptogenesis in the 
central nervous system. Rapamycin, a compound 
isolated from bacteria in the 1960s and found  
to have antifungal, immunosuppressive and anti-
tumor properties, was later discovered to interact 
with and inhibit a protein kinase named mechanis-
tic target of rapamycin (mTOR). mTOR was 
noted to regulate metabolic cell growth by promot-
ing lipid, nucleotide and protein synthesis while 
inhibiting cellular autophagy.82 Apart from its 
numerous metabolic functions, mTOR was also 
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suggested to have roles in neural development and 
neuronal circuit formation.82 Interestingly, mTOR 
is a component of two separate protein complexes, 
namely mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2); ketamine appears to affect 
the mTORC1 pathway.

There has been suggestion that glutamatergic 
neurotransmission is dysregulated in MDD.83,84 
This is supported by findings of elevated serum 
and plasma glutamate levels in patients85,86 and 
reduction of plasma glutamate levels following 
treatment with selective serotonin reuptake inhibi-
tors (SSRIs).87 Of interest, the severity of depres-
sive symptoms was found to be correlated with 
plasma glutamate levels.88 Elevation of extracellu-
lar glutamate in MDD may, in part, be caused by 
loss of glial cells that are responsible for glutamate/
glutamine cycling.89 A consequence of increased 
extrasynaptic glutamate levels may actually be 
downstream suppression of glutamatergic neuro-
transmission via activation of metabotropic gluta-
mate receptor 2 (mGluR2) autoreceptors.

However, ketamine’s mechanism of action is more 
complex than antagonism of NDMA receptors. 
This is supported by the finding that other NMDA 
receptor antagonists such as memantine, lanicem-
ine and nitrous oxide do not exert a consistent 
antidepressant effect in RCTs.90 Furthermore, a 
meta-analysis of single-infusion non-ketamine NMDA 
receptor antagonists, including traxoprodil, lan-
icemine and rapastinel (GLYX-13), showed 
smaller effect sizes in depressive symptom change 
in comparison with ketamine and non-superiority 
in remission compared with placebo for unipolar 
and bipolar depression.55 It is likely that keta-
mine’s mechanism involves additional down-
stream targets, given that it is metabolized rapidly 
(within hours) but demonstrates longer-lasting 
antidepressant effects (days to weeks).

The mechanism of ketamine’s antidepressant 
action involves the following cascade of sequential 
events.41,91–93 Ketamine has a greater affinity for 
NDMA receptors on γ -aminobutyric acid (GABA) 
interneurons,94 which are inhibitory neurons and 
act to suppress excitation of downstream gluta-
matergic neurons. As a result of NMDA receptor 
antagonism, ketamine prevents activation of GABA 
interneurons and causes downstream disinhibition 
of glutamatergic neurons and a consequential 
 glutamate surge. Increased extracellular glutamate 
initiates activation of postsynaptic AMPA recep-
tors, leading to potentiation of BDNF and 

mTORC1 signaling pathways. The aforemen-
tioned pathways culminate in augmentation of 
synaptic plasticity and synaptic strength.

The majority of the literature on ketamine’s neu-
rochemical effects has involved animal models. In 
the rat prefrontal cortex (PFC), ketamine was 
demonstrated to activate glutamate release and 
neurotransmission.95 AMPA receptor activation 
appears to be a critical step in ketamine’s mecha-
nism of action as co-administration of an AMPA 
receptor inhibitor abolished its antidepressant 
effects.96–98 Ketamine administration was also 
shown to enhance AMPA-evoked electrophysio-
logical responses in the rat hippocampus and 
medial PFC, suggesting that ketamine may 
 augment AMPA receptor transmission.99,100 
Furthermore, ketamine increased expression of 
AMPA receptor GluA1 and GluA2 subunits in 
the mouse hippocampus.44,101 Within 30 min of 
treatment, ketamine increased rat brain levels of 
BDNF96 and mTOR.102 This was further sub-
stantiated by observations that ketamine increased 
BDNF and mTOR expression in the rat hip-
pocampus103 and that pre-treatment with the 
analgesic tramadol enhanced the antidepressant 
effects of ketamine in the forced-swim test and 
potentiated the upregulation of mTOR in the rat 
PFC and hippocampus.104 The increase in hip-
pocampal and PFC BDNF and mTOR levels 
appears to be mediated by AMPA receptors as 
pre-treatment with an AMPA receptor antagonist 
increased forced-swim test immobility time and 
reduced levels of BDNF and mTOR, whereas 
pre-treatment with an AMPA receptor agonist 
reduced forced-swim test immobility times and 
increased levels of BDNF and mTOR.105

Several studies have reported that ketamine’s 
antidepressant effects are abolished when animals 
were pre-treated with rapamycin, an inhibitor of 
mTORC1.102,106 However, it should also be noted 
that the role of mTORC1 in ketamine’s antide-
pressant action may not be as clear-cut as origi-
nally surmised. In mice, ketamine administration 
was not noted to affect mTOR phosphorylation 
in hippocampal or cortical tissue44,96 and rapamy-
cin did not block ketamine-induced antidepres-
sant effects.96

There is significant support for the role of BDNF 
pathways in ketamine’s antidepressant mecha-
nism. Use of genetic mutant mice lacking BDNF 
prevented the behavioral antidepressant responses 
of ketamine.96 The authors also proposed that 
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ketamine-mediated antagonism of NMDA recep-
tors deactivates eukaryotic elongation factor 2 
(eEF2) kinase, resulting in de-suppressing BDNF 
translation. Mice with a Val66Met single-nucleo-
tide polymorphism in the BDNF gene exhibit 
impairments in BDNF release and mRNA traf-
ficking; ketamine administration was demon-
strated to have reduced synaptogenesis in the 
PFC and impaired antidepressant behavioral 
effects in these animals.107

In rats vulnerable to chronic mild stress, ketamine 
was noted to result in reversal of anhedonic 
behavior, partial attenuation of hippocampal 
impairments in presynaptic release of glutamate 
and GABA, along with complete restoration of 
dendritic atrophy and dendritic BDNF mRNA 
trafficking.108 In a mouse model of social defeat 
stress, ketamine was noted to attenuate reduc-
tions in BDNF, dendritic spine density, GluA1 
and PSD-95 (both markers of synaptogenesis) in 
the PFC, dentate gyrus and CA3 region of the 
hippocampus at 8 days following drug adminis-
tration.109 In an investigation employing two-
photon imaging in the PFC of living mice exposed 
to chronic stress, ketamine rescued elimination of 
postsynaptic dendritic spines and reversed the 
loss of coordinated activity of multicellular ensem-
bles in projection neurons.110 Of note, the authors 
observed that ketamine’s rescue of dendritic spine 
formation occurred prior to its acute behavioral 
effects but was later correlated with behavioral 
effects 2–7 days after treatment. In addition, 
optogenetic ablation of newly formed dendritic 
spines disrupted the maintenance of ketamine’s 
behavioral effects. Taken together, this may sug-
gest that ketamine’s effect on synaptogenesis may 
be related to longer-term maintenance of antide-
pressant activity. Furthermore, in a mouse social 
defeat model of depression, ketamine restored 
deficits in markers of neuronal and astroglial met-
abolic activity in the PFC to normal levels.111 
This led the authors to suggest that ketamine may 
improve neurotransmitter cycling.

Ketamine’s neurochemical effects were also 
investigated, to a lesser extent, in depressed 
patients. Ketamine responders with TRD dem-
onstrated rapid elevations in plasma BDNF lev-
els112,113; however, another study did not support 
this finding.114 In the aforementioned investiga-
tions, higher levels of BDNF were correlated with 
lower severity of depressive symptoms on rating 
scales. Interestingly, patients with a Val66Met 
single-nucleotide polymorphism associated with 

impairments in BDNF release and mRNA traf-
ficking were also found to have reduced responses 
to ketamine.115,116 In a study of three depressed 
patients responding to ketamine, the authors 
observed an increase in expression of plasma 
mTOR and eEF2 phosphorylation.117 While the 
increase in mTOR is supported by animal stud-
ies, it was surprising to note an increase in eEF2 
phosphorylation that was previously shown to be 
reduced in animal models.96 A recent RCT of 20 
patients demonstrated the surprising finding that 
pre-treatment with rapamycin, an mTORC1 inhib-
itor, actually tripled the response rate at 2 weeks 
after treatment.118 The authors suggested that rapa-
mycin may have augmented ketamine’s effects by 
targeting neuroinflammation via its immunosup-
pressant actions or by promoting homeostasis of 
synaptic density. However, it has also been noted 
that it is unknown whether low-dose rapamycin 
would reach appropriate levels to inhibit mTOR 
in the brain and that it may exert its augmenting 
effects through dampening inflammation in the 
periphery.41

The possible interactions between D-serine, a 
potent co-agonist at the NMDA receptor that has 
been implicated as a possible therapeutic agent and/
or biomarker in both depression and schizophrenia, 
are also of interest and warrant further investigation. 
Several animal studies and clinical investigations 
suggest that D-serine levels may be abnormal in 
depression and that D-serine has antidepressant 
properties.119–123 In this regard, it is interesting that 
ketamine inhibits transport of D-serine,124 ketamine 
metabolites decrease intracellular concentrations of 
D-serine in PC-12 cells,125 and that plasma D-serine 
levels predict a response to the antidepressant effects 
of ketamine.126,127

Other possible cellular targets of ketamine include 
binding to opioid (mu, delta and kappa) recep-
tors, monoaminergic receptors and transporters, 
and muscarinic and nicotinic cholinergic recep-
tors.46,47,128 It has been proposed that ketamine’s 
anti-suicidal and antidepressant effects may 
depend on activation of the opioid system, since 
pre-treatment with naltrexone (an opioid receptor 
antagonist) attenuated these effects in depressed 
patients.128,129 However, other studies have dis-
puted the effect of naltrexone on ketamine’s 
mechanism of action.130,131 Agonists of the opioid 
receptors, such as buprenorphine and metha-
done, do not seem to affect ketamine’s antide-
pressant properties.131 Based on the results of 
studies on laboratory animals, Zhang and 
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Hashimoto132 suggested that the opioid system 
may not play a role in ketamine’s antidepressant 
effects. Overall, it appears that the role of the opi-
oid system in ketamine’s mechanism of action is 
still relatively unclear and controversial.

Other potential biomarkers for predicting 
response to ketamine

Sleep
It is natural to review the potential interactions of 
ketamine, sleep and MDD, given the well-known 
use of higher doses of ketamine as a general anes-
thetic as well as the myriad of clinical and neuro-
physiological interactions of sleep and MDD.

Ketamine has well-described effects on increas-
ing total sleep and slow-wave sleep/slow-wave 
activity (SWS/SWA),133 and its antidepressant 
response has been linked to this effect.113 
Improving SWS/SWA, especially early in the 
night, is thought to be a critical factor in keta-
mine’s mechanism of rapid antidepressant action 
in MDD, and similar results have been seen with 
repetitive transcranial magnetic stimulation 
(rTMS).134 This increase in SWA correlates 
strongly with increases in synaptic plasticity and 
plasma BDNF preclinically,135 and in ketamine-
responsive MDD patients.113,133 BDNF is a 
 well-known potential marker of antidepressant 
response,136 and the magnitude of increase has 
been seen to predict acute mood response to 
ketamine.112 Interestingly, this improvement in 
SWS/SWA may be unique to patients with uni-
polar depression. Ketamine responders with 
bipolar depression were found to experience the 
opposite effect – that is, a reduction of SWA. 
This may be due to known phenotypic differ-
ences of sleep (more hypersomnolence) associ-
ated with bipolar depression137 or the effect of 
mood-stabilizing medication.133 Low baseline 
delta sleep ratio, defined as decreased SWA ear-
lier in the night compared with later in the night, 
has also been suggested to predict acute antide-
pressant effects of ketamine in MDD.138

Overall sleep improvement, especially reduction 
in objective electroencephalogram early-night 
awakening, may be a mechanism by which keta-
mine exerts its anti-suicidal effects.139 This should 
be an interesting area of future inquiry as non-
antidepressant mechanisms need to be elucidated 
to completely explain the anti-suicidal effects of 
ketamine.140

Ketamine also appears to have significant effects 
on circadian rhythm systems, and its effects on 
glutamate likely underlie part of this. 
Synchronization of light/dark and the internal 
clock is partially mediated by glutamate in the 
retinothalamic tract. Small studies have shown 
ketamine responders exhibit more phase advance 
and a stronger amplitude increase in 24 h motor 
activity, indicating a more robust circadian 
rhythm.141,142 Baseline higher amplitude and a 
delayed 24 h motor activity pattern in the circa-
dian rhythm were associated with nonresponse. 
Low and blunted amplitude 24 h activity patterns 
were also seen to associate with rapid relapse and 
brief response to ketamine, respectively.142

Some of these circadian rhythm changes are very 
similar to the effects of sleep deprivation and light 
therapy in MDD,143 and it may be these changes 
to the circadian clock that underlie some of keta-
mine’s rapid antidepressant effects. It is well 
known that circadian rhythm disruption is a key 
biological feature of MDD and it often appears to 
return to normal as symptoms remit.144 It has 
been postulated that people with disrupted circa-
dian rhythms may be a subtype of mood disor-
ders, but clinically they could be quite responsive 
to ketamine or other antidepressant treatments 
with rapid effects on the body clock.

Clock genes are known to control circadian 
rhythms, and ketamine has been noted to induce 
their rapid expression,145 suggesting that clock 
genes may play a role in ketamine’s rapid antide-
pressant effects.146,147 Newer preclinical data have 
shown an overlap between clock gene expression 
in both sleep deprivation and ketamine, both fast-
acting treatments for depression.148 However, 
slower-acting treatments such as escitalopram149 
and lithium150 have also demonstrated this effect. 
As such, clock gene expression could be more a 
long-term mechanism of ketamine, with the 
increase in sleep, SWS/SWA (which has been 
described as a proxy for sleep homeostasis) and 
more acute circadian rhythm changes being more 
linked to the rapid effects.141 The interaction is 
likely critical to sustain any antidepressant 
response overall.151

To date, data regarding ketamine’s effects on 
sleep are very limited, typically restricted to being 
short term with intravenous infusions. No 
reported data could be found on sleep effects of 
other less bioavailable forms of ketamine. The 
authors’ combined clinical experience is that 
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drowsiness is seen in about 15–20%. Effects of 
ketamine on subjective sleep complaints in clini-
cal trials is also not well reported. A major meta-
analysis indicated no difference between ketamine 
and placebo groups on patient reports of ‘tired/
fatigued’ and ‘vivid dreams’.55 However, when 
reviewing the major esketamine trials, signifi-
cantly increased rates of somnolence versus 
 placebo have been reported, especially in relapse-
prevention studies,74,152 but this has not been 
seen consistently.153 While ketamine-specific data 
are limited, evidence from other MDD treat-
ments indicates that both normalization of sleep 
homeostasis and circadian rhythm stabilization 
could be response predictors for ketamine. 
Associated rapid expression of clock genes could 
also be a marker for sustained improvement with 
ketamine in MDD. A prospective trial dosing ket-
amine at different points of the circadian rhythm 
is currently underway to shed more light on this 
question both clinically and biologically.154

Cognition
Cognition and cognitive symptoms (CCS) have a 
key role in recovery and functional outcome in 
MDD.155 Hence, looking at the effects of ketamine 
on CCS is critical to both understanding the 
 mechanism and potentially predicting ketamine-
responsive patient subtypes in MDD. There are 
emerging lines of evidence to support the theory that 
pro-cognitive effects of lower-dose ketamine are a 
foundational component in its putative efficacy.156

It can be confusing to examine the ketamine lit-
erature with respect to CCS, as it has traditionally 
been considered to have significant negative cog-
nitive effects and has even been used as a model 
of schizophrenia, psychosis and cognitive dys-
function.157 Animal models show a differing, 
dose-dependent effect of ketamine on cognition, 
depression and anxiety, with a major postulated 
mechanism being altered BDNF levels. Sub-
anesthetic doses of ketamine were seen to have 
positive effects on BDNF levels in the hippocam-
pus, while the opposite is seen with anesthetic 
doses.158 A single infusion of low-dose ketamine 
(0.5 mg/kg) also increased hippocampal volume 
(often a proxy for increased BDNF) in a small 
group of unmedicated MDD patients as well.159 
Infusion of much higher analgesic doses (8–
20 mg/h) in healthy volunteers was also shown to 
produce significant deficits in cognition,160 indi-
cating a potential dose-dependent effect with 
acute ketamine on CCS. Yet, there appears to be 

a distinct lack of long-term side effects of any sort 
with anesthetic doses,161 and sub-anesthetic doses 
appear to carry a very low risk in clinical trials.162 
Animal models have also demonstrated impair-
ment in episodic memory with a single ketamine 
infusion,163 but this may be an acute finding and 
unrelated to long-term cognitive dysfunction. 
Human results of acute ketamine use on memory 
are mixed,164 and a recent study on intranasal 
esketamine administration in healthy volunteers 
showed significant cognitive dysfunction at 
40 min, but not at 2, 4, and 6 h post-dose.165

Ketamine treatment in actual MDD treatment 
protocols also shows promising results in CCS. 
Three groups of patients – with treatment-resistant 
unipolar and bipolar depression,166 TRD167 and 
anxious/non-anxious depression168 – were given six 
ketamine infusions over 12 days, with similar cog-
nitive testing in a 2 week follow-up period. No 
deterioration in cognitive function was seen in any 
of the studies. Processing speed and verbal learn-
ing improved, but this was significantly correlated 
with improvement in depressive symptoms.166,167 
Only the group of anxious depressed patients dem-
onstrated a similar change in the third study.168 
Improvement in many domains of memory in 
another study of repeated infusions over 12 days 
with a 4 week follow-up period was seen, but was 
not significant when controlling for depressive 
symptom improvement.169 A single infusion of 
0.5 mg/kg in TRD patients was also seen to be 
slightly beneficial in attention and response control 
as well.170 In terms of predictive cognitive variables 
of response to ketamine, greater baseline visual 
learning predicted degree of MDD response to 
ketamine treatment in two of the above stud-
ies.166,168 Low attention169 and processing speed 
have also been seen to be predictive.171

There has long been concern that chronic keta-
mine use could lead to cognitive deficits. Heavy 
and chronic ketamine users have been seen to 
have a variety of cognitive function deficits across 
multiple domains. These include word reading 
and memory,172 verbal/visual memory, motor 
speed and executive function,173 as well as verbal 
fluency, processing speed and verbal learning spe-
cific to frontal and medial temporal cognition.174 
A small group of chronic ketamine users have also 
demonstrated spatial memory disturbances and 
altered hippocampal activity.175

First, these cognitive deficits may be reversible. A 
large group recovered substantial cognitive 

https://journals.sagepub.com/home/tpp


D Matveychuk, RK Thomas et al.

journals.sagepub.com/home/tpp 9

function in domains of executive function, verbal 
and visual memory after stopping heavy keta-
mine use for 12 weeks.176 The ex-ketamine users 
who had been abstinent for a mean of 189 days in 
another study showed no cognitive deficits, even 
though their prior use had been just as significant 
as the chronic usage group.173

Second, the negative effects reported above could 
be related to the fact that abusers were likely using 
very high doses for long periods, creating an effect 
similar to ongoing anesthetic doses. Patients in a 
study demonstrating similar cognitive deficits of 
ketamine psychosis to schizophrenia had an aver-
age ketamine consumption of 3.8 g per day over 
7 years.157 Even taking into account reduced bio-
availability and purity, this would be an exponen-
tial order of magnitude greater than what is used 
in even regular TRD treatment. Cognitive deficits 
were also only seen in very frequent users (over 
four times weekly) in a study of chronic self-
administered ketamine177 and the frequent user 
group in a small group of regional pain disor-
ders178 versus people who used ketamine less 
often. Interestingly, the type of diagnosis may 
interact with ketamine in its potential to create 
cognitive deficits. Nonpsychotic ketamine abuse 
patients were seen to have significantly fewer 
 cognitive deficits than either schizophrenic or 
 ketamine-abusing psychotic patients.157 Clinically, 
this could indicate that more caution may be 
needed when treating patients who have a history 
of ketamine-induced psychotic disorders,  psychotic 
illnesses and perhaps even psychotic depressions.

As mentioned previously, there are a number of 
potential mechanisms of the pro-cognitive effect 
of ketamine in depression. Some include de-
emphasizing the link between cognition and emo-
tion pathways in the brain, creating less 
interference of cognitive processing by negative 
emotional content.179 Glutamatergic modulation 
of numerous neural circuits (especially PFC net-
works) involved in cognition through mechanisms 
such as synaptogenesis, synapse stabilization, 
increased BDNF and mTORC1 production may 
also be involved.156 The specific anti-suicidal 
effect of ketamine may also be related to pro-cog-
nitive effects. Better executive function and con-
trol could reduce the irrationality sometimes seen 
with the impulsivity of acute suicide attempts.180 
This is partially supported by the finding of a sin-
gle infusion of ketamine reducing explicit suicidal 
cognition and a performance-based index of 
implicit suicidal cognition compared with another 

anesthetic, although it was mediated by depres-
sive symptom improvement.181 Another consid-
eration supporting cognition as a key driver of 
ketamine response could be the potential 
decreased efficacy of ketamine clinically when 
benzodiazepines (which are known to impair cog-
nitive processes) are co-administered.182–184

In summary, doses of ketamine used in TRD 
appear to have overall pro-cognitive effects that 
may mechanistically underlie their rapid effec-
tiveness. The negative cognitive side effects of 
ketamine are present likely transiently in acute 
dosing of ketamine but only consistently in long-
term heavy ketamine users, and appear to be 
reversible. These potential dose-dependent 
opposing actions of ketamine in CCS could be 
analogous to amphetamines, where low doses can 
greatly help cognitive measurements in disorders 
such as MDD179–185 and attention deficit hyper-
activity disorder (ADHD),180–186 whereas much 
higher doses or different formulations of abuse 
can be detrimental cognitively or even cause psy-
chosis in those predisposed.181–187 Indeed, there 
are significant overlaps in the cognitive dysfunc-
tion pattern between chronic ketamine and meth-
amphetamine users.182–188 Cognitive impairment 
is not likely an issue in the doses given in MDD 
trials, but longer-term data are needed and, given 
the mechanistic underpinnings, consideration 
could be given to avoiding use in patients with 
psychosis.

Inflammation and metabolism
Metabolic syndrome, a constellation of symptoms 
including hypertension, hypercholesterolemia, 
hyperglycemia and increased waist circumference, 
is common in patients with mood disorders. A 
recent study reported a 38% prevalence of meta-
bolic syndrome in patients with TRD, and it has 
been estimated that approximately one-third of 
depressed patients have elevated inflammatory 
markers.189 A significant yet complex relationship 
exists between mood disorders and metabolic syn-
drome, and this link appears to involve inflamma-
tion. Metabolic syndrome in patients with TRD is 
three times more common in patients with ele-
vated C-reactive protein (CRP), an inflammatory 
marker.190 A systematic review looking at predic-
tors of response in TRD suggested that the inflam-
matory markers interleukin-6 (IL-6), CRP and 
high-sensitivity CRP (hsCRP) may predict 
response to antidepressant medications with anti- 
inflammatory properties, including ketamine.191 
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While there is some suggestion from animal 
 studies that racemic ketamine may have anti-
inflammatory effects,192 human studies remain 
contradictory. Some authors have reported that 
decreases in inflammatory mediators IL-6 and 
interleukin-1 alpha (IL-1 alpha) following keta-
mine treatment have been only transient in the 
form of hours and have not correlated with antide-
pressant response,193,194 but changes in fibroblast 
growth factor (FG-2) were correlated with antide-
pressant response.193 Another study reported that 
a rapid decrease in the pro-inflammatory mediator 
tumor necrosis factor-alpha (TNF-α) was corre-
lated with rapid antidepressant effects of keta-
mine, suggesting that changes in inflammatory 
cytokines may play a direct role.195 Of note, 
peripheral cytokine levels may not reflect central 
levels, and to date, studies have consisted of small 
sample sizes. Of particular interest, racemic keta-
mine has been suggested to protect against inflam-
mation-induced vulnerability to stress behaviors 
in mouse models of depression.192

Mechanisms of the relationships between keta-
mine, depression, metabolism and inflammation 
remain unclear, but are likely mediated by multi-
ple factors. Elevated body mass index (BMI) has 
been found to be a predictor of response to keta-
mine,196 but in another study197 elevated BMI 
was not correlated with ketamine response, and 
presence of metabolic syndrome was negatively 
correlated with ketamine response. It has been 
shown that fatty acid metabolism differs between 
depressed subjects and non-depressed con-
trols,198–200 and it has been suggested that differ-
ences between patients who respond to ketamine 
and those who do not are due to alterations in the 
mitochondrial β-oxidation of fatty acids.201 
Adipokines such as adiponectin, resistin and lep-
tin regulate inflammatory and neuroplasticity 
pathways, as well as influence insulin sensitiv-
ity.202 It has been suggested that low levels of 
 adiponectin, which typically acts as an anti-
inflammatory and improves insulin sensitivity, 
may be predictive of ketamine response. Resistin 
is a pro-inflammatory molecule, and its levels 
have been noted to decrease with positive response 
to ketamine, suggesting that it may play a role in 
ketamine’s anti-inflammatory antidepressant 
action.202 Fat cells also release monocyte chem-
oattractant protein-1 (MCP-1), which leads to 
macrophage infiltration and more  inflammation.203 
It has been previously described that inflamma-
tion leads to glutamate excitotoxicity and  synaptic 
destruction in depression.189 As noted previously 

in this review, ketamine’s antidepressant proper-
ties are thought to be at least in part due to its 
elevation of BDNF, which supports synaptic 
repair and regeneration.

Neuroimaging
There is a growing body of literature on neuro-
anatomical biomarkers of response to ketamine 
treatment. MDD has been shown to affect, 
among other areas, the PFC, the hippocampus 
and the anterior cingulate cortex (ACC), and 
there is evidence that ketamine affects these areas 
preferentially.204–206

Results from Lehmann et al.207 have implicated the 
ACC by utilizing task-related functional magnetic 
resonance imaging (fMRI) to investigate the effect 
of a single dose of intravenous ketamine versus pla-
cebo in a sample of healthy subjects. They found 
greater blood-oxygen-level- dependent (BOLD) 
reactivity in patients with high levels of rumination 
on negative experiences and a potentially larger 
effect at the pregenual ACC. A study using a mag-
netoencephalographic (MEG) task-related tech-
nique also found evidence for dysregulation in the 
ACC being implicated in a more favorable response 
to a single infusion of ketamine.208 This may cor-
relate with findings of  anhedonia being a possible 
clinical biomarker of response.17

Ketamine’s mechanism of action has also been 
associated with the glutamatergic system, espe-
cially in the PFC, as shown in neuroimaging stud-
ies. Using resting state fMRI, researchers have 
shown reduced PFC global connectivity to be 
implicated in MDD.209,210 Abdallah et al.211 dem-
onstrated that 24 h after a single infusion of keta-
mine, PFC global connectivity could be normalized 
in responders and the extent of the PFC global 
connectivity increase was associated with response. 
Interestingly, lanicemine, another NMDA recep-
tor antagonist, did not produce this.

Structural MRI has been performed on human 
subjects undergoing single-infusion ketamine, and 
evidence has been provided showing increased 
hippocampal volumes and decreased nucleus 
accumbens volumes 24 h post-infusion, which was 
correlated to treatment response.212

However, it should be mentioned that neuroim-
aging data overall are limited by small sample 
sizes and the low number of investigations to 
date.
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Future directions
There has been increasing interest surrounding 
ketamine in recent years, largely owing to its 
rapid antidepressant and anti-suicidal properties 
in patients with TRD and its unique mechanism 
of action. The preclinical and clinical studies to 
date have led to further understanding of its use 
in psychiatry, and this will continue to be an 
active area of research as more investigations are 
conducted to determine optimum conditions for 
ketamine treatment in patients (see the work of 
Phillips et  al.60, 213 for examples of very recent 
studies on comparisons of single, repeated and 
maintenance ketamine infusions on TRD and 
suicidal ideation in TRD). There will need to be 
further exploration of individual differences in 
response between patients (including sex differ-
ences214,215) and determination of appropriate 
regimens for maintenance therapy and discon-
tinuation, given ketamine’s transient antidepres-
sant effects. There is also a need to investigate 
further reliable biomarkers for prediction of keta-
mine response and adverse effects. As indicated 
in this review paper, studies on ketamine’s roles 
in sleep, cognition and inflammation have 
resulted in some interesting findings worthy of 
further research. Additional exploration of keta-
mine’s possible role in treatment of bipolar 
depression is also warranted.

It should be remembered that there are also 
many publications in the literature that urge 
caution in the use of ketamine as an antide-
pressant,76,216–222 and clinicians planning to use 
this drug would be well advised to be familiar 
with the extensive literature available on it. A 
2017 consensus statement on ketamine use 
encourages consideration of the current data 
limitations and potential risks associated with 
the drug.222 Nonetheless, ketamine remains a 
promising option for those suffering from 
TRD, and it is exciting to surmise that under-
standing ketamine’s neurochemical mecha-
nisms and related biomarkers will lead to the 
development of other, much needed, next- 
generation antidepressants.
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