
Research Article
Large-Scale Customized Production Scheduling of
Multiagent-Based Medical 3D Printing

Jianjia He ,1,2 Jian Wu ,1 Ye Zhang ,3 Yaopeng Wang ,1 and Hua He4

1Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
2Supper Network Research Centre (China), University of Shanghai for Science and Technology, Shanghai 200093, China
3Dept of Biobank, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
4Department of Neurosurgery, +ird Affiliated Hospital, Naval Medical University, Shanghai 200438, China

Correspondence should be addressed to Ye Zhang; yzhang5123@163.com

Received 24 May 2022; Revised 15 June 2022; Accepted 16 June 2022; Published 18 July 2022

Academic Editor: Daniele Bibbo

Copyright © 2022 Jianjia He et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-ree-dimensional (3D) printing, also known as additive manufacturing, has unique advantages over traditional manufacturing
technologies; thus, it has attracted widespread attention in the medical field. Especially in the context of the frequent occurrence of
major public health events, where the medical industry’s demand for large-scale and customized production is increasing,
traditional 3D printing production schedulingmethods take a long time to handle large-scale customizedmedical 3D printing (M-
3DP) production and have weak intelligent collaboration ability in the face of job-to-device matching under multimaterial
printing. Given the problem caused by M-3DP large-scale customized production scheduling, an intelligent collaborative
scheduling multiagent-based method is proposed in this study. First, a multiagent-based optimization model is established. On
this basis, an improved genetic algorithm embedded with the product mix strategy and the intelligent matching mechanism is
designed to optimize the completion time and load balance between devices. Finally, the effectiveness of the proposed method is
evaluated using numerical simulation. -e simulation results indicated that compared with the simple genetic algorithm, particle
swarm optimization, and snake optimizer, the improved genetic algorithm could better reduce the M-3DP mass customization
production scheduling time, optimize the load balance between devices, and promote the “intelligent manufacturing” process of
M-3DP mass customization.

1. Introduction

Medical three-dimensional printing (M-3DP) is an inter-
disciplinary and cutting-edge emerging technology that in-
tegrates additive manufacturing, medicine, and material
science. It realizes the need for personalized customization
and the ground-breaking transformation from subtractive
manufacturing to additive manufacturing, which reduces the
development cycle and cost of products. M-3DP technology
has the advantage of high digitization, rapid prototyping, and
product customization [1], which is already applied to sur-
gical planning, revision surgery, and other medical purposes
[2]. With the frequent occurrence of major public health
events in the world and the increasing demand for large-scale
and customized production of medical products [3], M-3DP

technology has been improved, while facing increased re-
quirements placed on its large-scale customized production
scheduling capability. However, few researchers have con-
sidered the product allocation and production scheduling in
3D printing (3DP) from the perspective of large-scale cus-
tomized production and multi-printing materials.

At present, most studies focus on 3D printing allocation
and production scheduling under a single printing material
that has already been discussed from different perspectives.
To clarify the research status in the field of 3D printing
production scheduling, a comprehensive taxonomy covering
3DP allocation and scheduling problems is proposed (Fig-
ure 1), which is based on a hierarchy of general literature and
consists of four parts: 3DP devices, material, methodology,
and optimization goals. From the perspective of 3DP
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devices, researchers have studied the situations of machines
with the same or different specifications [4, 5] and of single
or multiple machines [5–9]. From the perspective of printing
materials, Rohaninejad et al. [9] discussed the scheduling
optimization problem of different parallel laser melting
devices when producing parts with different printing ma-
terials. Li et al. [4] studied the scheduling cost optimization
problem for different parallel devices with a single material.
From the perspective of methodology, since the 3DP
workshop scheduling problem is an NP-hard problem with
no fixed solution, different scholars have adopted different
methods in the research on 3D printing scheduling.Wu et al.
[10] and Kucukkoc [6] adopted mixed-integer linear pro-
gramming and a heuristic algorithm to optimize the
scheduling problem in different situations. Zhou et al. [11]
established a task matching and scheduling model for dis-
tributed 3DP services in a cloud manufacturing environ-
ment and obtained the optimal solution by improving the
genetic algorithm (GA). De Antón et al. [12] used the
combinatorial auction and heuristic algorithm to solve the
allocation problem of 3DP parts. Rohaninejad et al. [9]
constructed a biobjective mathematical model targeting
makespan and the total tardiness penalty and developed an
efficient hybrid meta-heuristic algorithm to solve the pro-
duction shop scheduling problem under heterogeneous 3D
printing equipment. Che et al. [13] established a mixed-
integer linear programming model and applied a simulated
annealing algorithm with designed packing strategies based
on the skyline representation of packing pattern to solve the
problem of machine scheduling with orientation selection
and two-dimensional packing in a 3D production workshop.
Based on extensive literature research, it was found that
because the intelligent optimization algorithm is not con-
strained by specific problems, it is widely used in the field of
production workshop scheduling by imitating the biological
evolution of nature [14–16]. Different intelligent optimiza-
tion algorithms were adopted by researchers in the heuristic
algorithms, including GA [3, 7, 11, 17], particle swarm
optimization (PSO) [17], and water wave optimization al-
gorithm [16]. Moreover, some researchers have compared
GA, PSO, and other heuristic algorithms and found that GA
is widely used in 3D printing shop scheduling problems
because of its good robustness and global optimization
ability compared with other algorithms [17]. Simulta-
neously, the GA was found to have the strong capability and

highstability inprocessingparallel tasks[18],makingit suitable
for solving the production scheduling model including mul-
tiple parallel tasks.-erefore, this study attempts to develop an
improved genetic algorithm (IGA) to solve the 3D printing
shop scheduling problem. From the perspective of optimiza-
tiongoals, existing studieshave focusedon theminimizationof
cost or the maximization of profit [4, 8, 10, 12, 19], minimi-
zation of maximum completion time [2, 6–8, 14, 15], and
minimization of total energy consumption [14].

With the continuous development of professional 3DP
devices and medical printing materials, M-3DP large-scale
customized production has become a reality. At the treat-
ment stage, 3D printers are under investigation for the
concept of personalized medicine by allowing patients access
to on-demand, customizable therapeutics [20]. Tuomi et al.
[21] believed that the medial application of 3DP was mainly
in the fields of tissue engineering, preoperative planning,
inert implants, orthodontic treatment, postoperative sup-
port structures, and surgical instruments. In addition, with
the frequent occurrence of major international public health
events, such as during the COVID-19 pandemic, diverse
health systems around the world were overloaded, and
supply chains were disrupted due to excessive numbers of
patients, resulting in shortages of medical devices and
personal protective equipment [22], while 3DP can effec-
tively prevent equipment shortages and supply chain dis-
ruptions from recurring. -erefore, it is particularly
important to formulate effective large-scale production
scheduling methods for M-3DP. However, there are cur-
rently few studies on M-3DP large-scale customized pro-
duction scheduling.-ematerials of M-3DP are diverse, and
the intelligent collaboration of devices and jobs needs to be
considered in large-scale customized production. -erefore,
the traditional 3DP production scheduling methods fail to
support M-3DP, showing incapability in the face of intel-
ligent collaborative production scheduling with multiple
parallel tasks. It is urgently needed to find a new method to
realize M-3DP large-scale customized production.

In view of the above, a multiagent-based M-3DP large-
scale customized production scheduling method is pro-
posed, which divides all the products in the order list into
different tasks according to the reclassification rule. On this
basis, a multiagent-based optimization model is established,
which is solved using the improved GA to obtain the
minimum order completion time and optimal load balance
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Figure 1: Classification of studies on 3DP allocation and scheduling problems.
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between devices. Finally, numerical simulation is conducted
to verify the effectiveness and rationality of the proposed
method.

2. Problem Description

Compared with 3DP of single material production, the
production scheduling of M-3DP is different. Taking the
stereo light curing process as an example, the main differ-
ences are as follows: since the liquid tank of the device can
only be filled with one type of material at the same time,
products of different materials cannot be placed in the same
job for production, and material replacement is required if
the material types of two serially produced jobs on one
device are different. Also, compared with the traditional
batch scheduling problem, the processable capacity in the
task set division process is not a simple one-dimensional
knapsack problem, but a more complex irregular rectangular
discharge problem. Taking the projected area of the medical
product layering direction as the emission basis, ensuring a
certain gap between products, and making full use of the
equipment processing platform have a significant impact on
the order completion time. -erefore, to shorten the order
completion time, a problem arises due to the irregular ar-
rangement of different medical products on the two-di-
mensional (2D) plane according to their materials, heights,
and shapes, i.e., the problem of task set division. Also, some
products cannot be allocated to certain 3DP devices due to
the limitations on capacity and maximum support height.
And the load balance between devices needs to be considered
when matching devices and jobs. Consequently, to reduce
the load deviation between devices and shorten the order
completion time, the problem of intelligent matching

between jobs and devices arises. Task sets division problem
and job-to-device intelligent matching problem are typical
NP-hard problems, 3DP shop scheduling problem as a
combination of the two, coupled with the special process of
3DP, is also an NP-hard problem.

In the case study, medical product set I is required to be
produced on 3DP devices, and these medical products have
different requirements for printing material, volume, and
height. First, all medical products were assigned to different
task sets according to the reclassification rule which was
based on the printing material. Subsequently, each task set
was divided into jobs according to the product mix strategy,
which was intelligently matched to the corresponding 3DP
devices. Since the task set division process and job-to-device
matching process required intelligent coordination, multi-
agent collaboration was adopted by converting the different
entities such as the 3DP devices, medical products, and jobs
into agents, which could be intelligently coordinated and
controlled for production, at the same time to design an
improved genetic algorithm is to divide andmatching for the
integrated execution. -is paper combined the task set di-
vision problem in M-3DP large-scale customized produc-
tion with the job-to-device matching problem to optimize
the total production time and load balance between devices.
Figure 2 shows a simplified flow chart of the M-3DP large-
scale customized production scheduling process.

3. Multiagent Optimization Model

3.1. Assumption Setting.
(1) All products in the order list did not have a size

exceeding the maximum constraints of the size of the
printing platform.
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Computational Intelligence and Neuroscience 3



(2) Products with the same printing materials could be
arbitrarily allocated in one job, whereas products of
different printing materials could not be produced in
the same job.

(3) All products to be processed were arranged at a
spacing of 10mm to prevent the products from
coming into contact and becoming damaged during
the production process.

(4) 3DP devices could process multiple medical prod-
ucts simultaneously, but new products could not be
added during the job production, and the ongoing
processing of the 3DP customized products could
not be stopped either; the probability of printing
each product successfully was 100%.

(5) -e length, width, height, and layering direction of
each product were known in advance, and each
product was arranged according to the 2D projection
along the layering direction without any overlap
between products allowed.

3.2. Symbolic Variable Description

3.2.1. Set Variables and Indexes. I represented the set of
medical products, i ∈ I, where i is the index of medical
products.

R represented the task set, r ∈ R, where r is the index of
tasks.

M represented the set of 3DP devices, m ∈M, wherem is
the index of devices.

J represented the set of jobs, j ∈ J, where j is the index of
jobs.

3.2.2. Relevant Parameters. Tmj denoted the total produc-
tion time to complete j jobs on the mth 3D printing device.

Cmj denoted the total time cost to complete the j-th job
on the mth 3D printing device.

Cmis denoted the scanning time for the ith medical
product on the mth 3D printing device.

Cmij denoted the processing time for the ith medical
product on the mth 3D printing device.

Cmjs denoted the scanning time for the jth job on themth
3D printing device.

Cmjj denoted the processing time for the jth job on the
mth 3D printing device.

Cmp denoted the preparation time before the job pro-
duction of the mth 3D printing device, value: [30:90] min.

Cma denoted the processing time after the job produc-
tion of the mth 3D printing device, value: [30:90] min.

Cme denoted the time it takes to replace the printing
material on the mth 3D printing device, value: 180min;

F denoted the standard deviation of the load of the 3D
printing devices;

ai denoted the projected area of medical product i;
Am denoted the total area of the processing platform of

the mth 3D printing device.
Ei denoted the material type of medical product i.

xo, yo, zo denoted the coordinates of the oth point of the
medical products.

xmin, ymin, zmin denoted the minimum coordinates of the
3DP devices in the three-dimensional coordinate system.

Lm,Wm,Hm denoted the length, width, and height of the
processing platform of mth 3DP devices, respectively.

li, wi, hi denoted the length, width, and height of the ith
medical product, respectively.

3.2.3. Decision-Making Variable.

Xmji �
1 product i is processed in jobjby devicem

0 Otherwise.
􏼨

Lmj1j2
�

1 jobsj1andj2 areprinted continuously by devicem,

0 Otherwise.
􏼨

Dj1j2
�

1 jobsj1andj2havedifferentprintingmaterials,

0 Otherwise.
􏼨

(1)

3.3. Objective Function Setting. Considering patients’ urgent
needs for medical products, the objective function mini-
mizes the makespan of the ordered products.

minT � max Tmj􏼐 􏼑. (2)

3.4. Constraint Condition Establishment. -e constraint
conditions of the mathematical model came from stereo
lithography appearance (SLA) printing process constraints
and 3DP production scheduling rules, so the following
constraints were established:

􏽘
m∈M

􏽘
j∈J

Xmji � 1; ∀i ∈ I, (3)

xmin ≤xo ≤ xmin + W; ∀o ∈ i, ∀i ∈ I, (4)

ymin ≤yo ≤ymin + V;∀o ∈ i,∀i ∈ I, (5)

zmin ≤ zo ≤ zmin + H;∀o ∈ i,∀i ∈ I, (6)

Am ≥ 􏽘
i∈I

Xmjixiyi;∀j ∈ J,∀m ∈M, (7)

Pi1 ∩Pi2 � ∅,∀i1, i2 ∈ I, i1 ≠ i2. (8)

Equation (3) ensures that each product is assigned to a
job and produced by a 3DP device. Equations (4) through (6)
indicated that all products had to be arranged on the pro-
cessing platform of the 3DP devices. Equation (7) ensured
that the total area of products allocated to the same job was
smaller than the area of the processing platform of the 3DP
device. Equation (8) ensured that there was no overlap
between products.
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Cme � 180 􏽘
j1∈J

􏽘
j2∈J

Lmj1j2
Dj1j2

; j1 ≠ j2, m ∈M, (9)

Tmj ≥ 􏽘
j∈J

Cmj;∀m ∈M, (10)

Tmj �
Cmj, j � 1,

Tm(j−1) + Cmj + Cme, j> 1,
􏼨 (11)

Cj � Cp + Cmjs + Cmjj + Ca, (12)

Cmjs � 􏽘
i∈I

XmjiCmis,∀j ∈ J, ∀m ∈M, (13)

Cmjj � max XmjiCmij􏼐 􏼑,∀i ∈ I,∀j ∈ J, ∀m ∈M. (14)

Equation (9) is used to calculate the time for the mth
device to replace the printing material. Equation (10) was the
minimized completion time to print a job. Equation (11)
represented the total production time of the device m when
the requirement to be produced by device m consisted of a
single job or multiple jobs. Equation (12) was the total time
cost per job estimated based on the SLA printing process.
-e calculation considered preparation time, scanning time,
processing time, and postprocessing time, where the scan-
ning time was dependent on the area to be printed per layer,
the processing time was dependent on the height of the
products, and preparation time and postprocessing time
consisted of material preparation, filling of protective gas,
preheating, and postcooling of printing materials. Since the
SLA printing was layer by layer; i.e., the laser beam scanned
each product in each layer one by one, the scanning time of a
job could be simplified to the sum of the scanning time of all
products in the job, as shown in Equation (13). Moreover,
the processing time during SLA printing was determined by
the layer changing time, and it was known that layer
changing occurred for all the products in the same job. -e
processing time of a job was determined by the product with
the longest processing time in the job, as shown in Equation
(14).

L(m) � 􏽘
j∈J

Cmj, (15)

F �

�����������������������
1
n

􏽘
m∈M

(L(m) − avgL(m))
2

.

􏽳

(16)

To keep the 3DP devices in a relatively good production
state and shorten the printing time, a load balancing con-
straint was established. Equation (15) defined the total
production time of themth 3DP devices as its load, Equation
(16) represented the overall load balance of the 3DP devices,
with F being the standard deviation.

4. Improved GA Design

To optimize the production scheme of the above 3DP shop
scheduling problem, this paper proposes an improved

genetic algorithm (IGA). IGA combines genetic algorithms
with heuristic optimization rules that take into account SLA
production characteristics and product discharge issues,
while solving the problem of task set division and allocating
jobs to different devices in scheduling.-e flow of the IGA is
shown in Figure 3. -e main steps are as follows: First,
according to the medical product to be printed, use the
initialization strategy to generate an initialization pop-
ulation, and then repeat the evaluation, selection, crossover,
and mutation until the termination criteria are met. Among
them, the calculation of the fitness value of each individual
mainly includes three steps: first, to realize the arrangement
of medical product positions; second, to realize the matching
between jobs and devices; third, to calculate the completion
time of the order according to the arrangement and
matching results time.

4.1. Coding. Integer coding was adopted for the task sets
division process and intelligent matching process, as shown
in Table 1. Each row represents the medical products
contained in a task, corresponding to different product
agents. By changing the order of the products in any task set,
new coding results were generated.

4.2. Initialization Selection. Most existing studies used
random initialization methods, which could not guarantee
the quality of the initialized population, and it was time-
consuming to find the optimal solution. It was known from
previous studies that mass production of products of similar
height could improve production efficiency. Simultaneously,
a highly-random initialization method was used for the tasks
to ensure the diversity of the initial population; i.e.,10% of
the chromosome sequences were obtained by the first-fit
decreasing sorting algorithm, and the rest of the chromo-
somes were randomly generated, to study the problem of
task sets division and intelligent matching.

4.3. Fitness Calculation. Firstly, the chromosomes were
decoded, and the task sets were divided into jobs by the
lowest horizontal line method according to the sequence
after decoding. After obtaining the jobs, the completion time
of each job was calculated according to equation (12).
Secondly, the device agent and the job agent are intelligently
coordinated through the intelligent matching mechanism
(IMM), and then the total processing time of the order was
calculated using equation (11). Finally, Equation (17) was
used to calculate the fitness of the population, where Fina

denoted the fitness of the ath individual, Tmax denoted the
maximum total production time of the current generation
population, and Tina denoted the order production time for
the ath individual.

Fina � 1.1 × Tmax − Tina. (17)

4.3.1. Product Mix Strategy. In view of the product mix
strategy, an improved lowest horizontal line method is
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designed (Figure 4), which is mainly improved from two
aspects. First of all, a plus and minus sign is randomly added
to the gene during encoding, so there is a plus and minus
sign in the decoded sequence.-e plus sign indicates that the
product does not rotate 90° and is directly placed into the
processing platform according to the rules, while the minus
sign is the opposite. Secondly, the product will be rotated by
90° during the arrangement process if the product cannot be
placed in the lowest horizontal line before the merger, and
then judged whether it can be placed again. Such im-
provements can expand the optimization space of the GA to
obtain better arrangement results, thereby improving the
utilization of processing platforms and shortening the
completion time of orders. -e specific steps of this method
are as follows:

Step 1 Initialize the lowest horizontal line set (Line),
which only includes Line0 � (0, Wm, 0).
Step 2 In terms of the decoded sequence order, the next
medical product i to be arranged is selected. First, judge
whether to rotate the product i according to the sign
and then inquire whether there is Linei with a width
greater than wi and the lowest height in Line. If it exists
(see Figure 4(a)), go to Step 3; If it does not exist (see
Figure 4(b)), rotate the product i by 90°, and then re-
query whether there is Linei with a width greater than li
and the lowest height in Line. If it exists (see
Figure 4(c)), go to Step 3; If it still does not exist after
rotation (see Figure 4(d)), go to Step 4.
Step 3 Arrange product i into the leftmost end of Linei,
update the Line, and go to Step 5.
Step 4 Select a horizontal line with a lower height
adjacent to the lowest horizontal line, raise the lowest

horizontal line to be flush with the horizontal line (see
Figure 4(e)), update Line, and go to Step 2.
Step 5 Determine whether all medical products have
been arranged. If the arrangement is complete, end,
otherwise go to Step 2.

4.3.2. Intelligent Matching Mechanism. In view of the in-
telligent matching process between jobs and 3DP device
resources, a multiagent intelligent matching mechanism was
established (Figure 5), including the resource layer that
stored the status of 3DP devices and the task layer that stored
job information. Simultaneously, a management layer was
set up to complete the information exchange between the
resource and task layers to achieve intelligent matching
between jobs and 3DP devices. Also, the function of the
managing agent was to control, supervise, and coordinate
the execution process of each agent in the model. Each 3DP
device agent corresponded to the 3DP devices fed back the
device status information to the managing agent in real time
and accepted the scheduling of the managing agent. Each job
agent corresponded to the job sent the information in-
cluding production time and printing materials required for
each job to the managing agent in real time and accepted the
assignment of the managing agent. Each job agent had an
equal probability to be matched to any 3DP device agent,
and the optimal matching results were given based on the
decision-making condition. -is mechanism could improve
thematching capability withmultiple resources andmultiple
tasks in the intelligent cooperative scheduling problem and
optimize the load balance among 3DP devices.

IMM mainly includes two important processes: task
requirements and resource matching. During the task re-
quirement setup process, the job j submitted task condition
limits to the managing agent and applied for resourcem, and
the task condition limiting vector was Yn � (Cmj, E, max(li),
max(wi), max(hi)), where Cmj denoted the total time cost to
complete the jth job on the mth 3D printing device; E
denoted the material type of the job; max(li), max(wi),
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Figure 3: Flow chart of IGA.

Table 1: Coding scheme.
Task 1 Product 1 Product 2 Product 3 · · · Product i1
Task r Product 1 Product 2 Product 3 · · · Product i2
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max(hi) represented the largest length, width, and height of
products in the same job, respectively. -e above data was
stored in the dynamic information database. During the
resource matching process, the jobs were arranged in
descending order of production time, then matched with the
3DP devices one by one according to the matching rules.-e
managing agent received the task condition limiting vector
Yn, forwarded it to each device in the resource layer, and
queried the dynamic information databases for 3DP devices
that satisfied the data variables L≥max(li), W≥max(wi),
and H≥max(hi). If such M was unavailable, a message
indicating the job could not be completed was returned.
Otherwise, it again queried the dynamic information da-
tabase for the 3DP devices with the lowest working load as
the output device, which was returned to the managing

agent. Also, if the printing material for the previous job was
different from that for the following job, additional time for
changing the printing materials became necessary.

4.4. Selection. In the selection process, a strategy combining
roulette selection and elite selection was proposed to
overcome the slow convergence speed of GA in processing
parallel tasks. -e selection probability of an individual was
based on equation (18), where Pina denoted the probability of
selecting ath individual in the population, and e denoted the
population size of each generation.

Pina �
Fina

􏽐
e
a�1 Fina

. (18)
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4.5. Crossover and Mutation. To improve the crossover ef-
ficiency of the population, a product sequence-based
crossover method was adopted to change the product ar-
rangement during processing. Assuming P1 and P2 were
two-parent generations, the crossover was as follows:

(1) All products were randomly divided into either S1 or
S2, where S1 denoted the first set of products and S2
denoted the second set of products.

P1 � 5 4 2 1 3􏼂 􏼃P2 � 2 4 3 1 5􏼂 􏼃,

S1 � 1 3 4􏼂 􏼃S2 � 2 5􏼂 􏼃.
(19)

(2) -e product sequences belonging to S1(S2) in P1(P2)
were copied to D1(D2).

D1 � . 4 . 1 3􏼂 􏼃D2 � 1 . . . 5􏼂 􏼃. (20)

(3) -e product sequences belonging to S1(S2) in P1(P2)
were copied to D2(D1). -e chromosomes of the two
descendent generations after crossover were
respectively:

D1 � 2 4 5 3 1􏼂 􏼃D2 � 2 4 1 3 5􏼂 􏼃. (21)

Also, chromosomal mutation conventionally referred to
the random mutation of genes in the chromosomes, which
would lead to repeated production or missed production of
products. -erefore, the method of exchanging genes was
adopted; i.e., two genes in a chromosome were selected to be
exchanged in sequence. Assuming P1 was a parent gener-
ation, the mutation was as follows:

(1) Two genes were randomly selected from the parent
generation P1 into S1.

P1 � 5 4 2 1 3􏼂 􏼃S1 � 5 2􏼂 􏼃. (22)

(2) -e positions of the two genes in S1 were exchanged
in the parent generation P1, so that the descendent
generation had the following chromosomes after
mutation:

D1 � 2 4 5 1 3􏼂 􏼃. (23)

5. Results and Discussion

5.1. Experiment Design. Since there were many 3DP pro-
cesses, it was difficult to find available experimental results
for direct comparison. Moreover, since the 3DP production
was slow, it was time-consuming and costly to conduct
various comparative experiments. -erefore, numerical
simulation was used to verify the proposed M-3DP large-
scale customized production scheduling method. In terms of
the selection of medical products, the medical product
models were downloaded from relevant websites, which
were used as a customized 3DP production order list for a
certain hospital. -ere were 70 products in the order list,
including tissue and organ models required for preoperative
simulation, prosthetics, splints, medical tools, and auxiliary
devices. In terms of the selection of printing materials, since

there were many types of printing materials for M-3DP, the
production scheduling of medical products with two dif-
ferent types of printing materials was studied to ensure that
the experimental results were more comprehensive. In terms
of the selection of printing devices, since SLA technology
had significant advantages in mass production, precision
manufacturing, and customized manufacturing, and was
widely used by major manufacturers, the LT450 was selected
as the device. It was assumed that all the products had no
special performance requirements so that they could all be
produced by the LT450 device.-e support for each product
was generated through the Materialise Magics 24.0 software
based on the device parameters of LT450, and the scanning
time and processing time of each product were estimated.
Table 2 shows the specific data. Also, to verify the processing
capability of the proposed method in different scenarios, the
experimental scenarios are set as follows: 70 medical
products and two to eight sets of 3DP devices. -e ability of
intelligent collaborative scheduling method to optimize
processing time and device load balancing under different
production resources were studied.

5.2. Experimental Results and Discussion. To verify the ap-
plicability of the genetic algorithm compared with other
algorithms in processing 3DPworkshop scheduling, the PSO
and the snake optimizer (SO) with the IMM were designed
respectively, and the optimization capabilities of each al-
gorithm for shortening the order completion time and
devices load balancing were compared. In Table 3, the same
number of iterations, population size, and corresponding
parameters are set for each algorithm.

Each algorithm runs under the corresponding parameter
settings, and the obtained minimum order completion time
and device load standard deviation are shown in Table 4.-e
data in brackets represent the load standard deviation of
devices under the current scenario, and the data outside the
brackets represent the minimum order completion time
under the current scenario. It can be concluded from the
table that IGA outperforms other algorithms in all scenarios
and has better solution quality. -is is because the crossover
mutation of IGA is more suitable for the 3D printing shop
scheduling problem when the population is updated and
iterative, while the PSO often repeats or misses the number
of a certain dimension when updating the particle position,
which will lead to the global search ability deviation in later
modification. -e SO can be regarded as an extension of the
PSO in a sense. Compared with the PSO, it has a better
balance ability in the breadth and depth search. However, in
the face of 3DP workshop scheduling problem, the iterative
update of the snake group position is not as good as the
crossover-mutation method of IGA.

In addition, to verify the importance of the IMM in
shortening the order completion time and devices load bal-
ancing, the optimization capabilities of IGA and simple GA,
PSO and SO for order completion time and device load
standard deviation were compared. Figure 6(a) shows the
influence of changes in the number of 3DP devices on the
completion time for the order list.-e results indicated that as
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Table 2: Medical product information.

Medical product
code

Scanning time
(min)

Processing time
(min)

Length
(mm)

Width
(mm)

Height
(mm)

Printing
material

Projection
area (mm2)

1 17 266 105 101 80 1 23050
2 18 66 61 79 20 2 8552
3 6 73 30 28 22 1 5883
4 7 113 54 27 34 2 7675
5 8 70 53 143 21 2 8822
6 9 36 222 39 11 2 13660
7 14 186 36 40 56 1 7042
8 15 106 70 60 32 2 9601
9 15 170 58 58 51 1 18174
10 19 173 53 53 52 1 18306
11 20 133 40 58 40 2 7279
12 16 163 63 63 49 1 19195
13 17 156 68 68 47 1 20336
14 26 176 87 112 53 2 26139
15 28 26 79 79 8 2 11782
16 29 79 24 120 24 1 16155
17 5 140 82 58 42 2 5391
18 6 20 47 28 6 1 4122
19 22 133 148 163 40 2 12615
20 23 109 57 45 33 2 7566
21 25 66 73 91 20 1 10925
22 25 306 37 40 92 2 20352
23 26 143 57 72 43 1 11448
24 42 10 130 80 3 2 19935
25 42 213 79 59 64 2 12599
26 45 293 114 109 88 1 9179
27 34 96 27 370 29 2 15860
28 34 340 131 140 102 2 30310
29 38 266 130 70 80 2 36813
30 56 100 90 67 30 1 15879
31 60 83 150 50 25 1 18671
32 61 93 76 169 28 1 36568
33 46 316 72 104 95 2 38029
34 227 386 95 165 116 1 92067
35 247 346 73 85 104 2 71198
36 251 340 80 109 102 1 69697
37 65 340 54 125 102 2 22437
38 66 159 80 88 48 2 17500
39 71 83 140 25 145 1 42412
40 89 233 70 70 70 1 15175
41 99 200 80 121 60 1 25627
42 123 213 80 80 64 2 24460
43 130 259 77 109 78 1 25664
44 133 266 226 207 80 2 44480
45 135 133 126 137 40 1 33116
46 156 159 144 137 48 2 36814
47 159 296 89 96 89 1 61950
48 173 340 71 113 102 2 30827
49 212 406 96 87 122 2 34184
50 220 236 109 102 71 1 54796
51 339 250 203 164 75 2 48894
52 372 230 150 150 69 1 80945
53 413 66 200 200 20 1 112585
54 276 159 140 145 48 1 72909
55 598 500 161 176 150 2 102969
56 798 343 103 184 103 2 110156
57 1479 276 200 301 83 1 317492
58 284 303 86 172 91 2 93529
59 297 379 124 128 114 1 41846
60 331 233 140 151 70 1 106793
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Table 3: Algorithm parameter.
IGA PSO SO

Maximum iteration 300 300 300
Population size 80 80 80

Parameter

Crossover Rate: 0.8 Cognitive weight factor c1 � 1.5 Food threshold: 0.25
Mutation Rate: 0.1 Social weight factor c2 �1.5 Temperature threshold: 0.6

— Inertia weight: 0.7 Food constant c1 � 0.5
— Range of speed: [−5, 5] Exploration constant c2 � 0.05
— — Development constant c3 � 2

Table 4: Minimum order completion time and load standard deviation of devices.
Quantity of device IGA PSO SO
2 8421(0.5) 8820(2.5) 8836(40.5)
3 5717(1.88) 6067(50.5) 5869(73.8)
4 4341(3.27) 4608(71.6) 4480(85.5)
5 3552(8.25) 3711(77.3) 3588(95.2)
6 2953(10.51) 3208(173.6) 3019(34)
7 2521(23.95) 2816(136.5) 2632(58)
8 2211(7.06) 2565(251.4) 2421(244.5)
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Figure 6: Comparison of completion time and load balancing as 3D printing devices increase. (a) Comparison of completion time.; (b)
Comparison of load balance.

Table 2: Continued.

Medical product
code

Scanning time
(min)

Processing time
(min)

Length
(mm)

Width
(mm)

Height
(mm)

Printing
material

Projection
area (mm2)

61 425 133 300 200 40 1 155674
62 477 430 123 198 129 2 86217
63 521 390 167 155 117 2 147457
64 550 416 171 171 125 1 193244
65 557 143 300 200 43 1 131703
66 598 133 280 181 40 2 145926
67 22 66 85 70 20 1 9649
68 22 90 73 79 27 2 9807
69 22 13 65 70 4 2 12248
70 1483 443 179 154 133 1 254786
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the number of 3DP devices increased, when the number of
3DP devices lied between two and five, the order completion
time was reduced rapidly; when the number of 3DP devices
lied between five and eight, the completion time of orders
tends to be flat. Also, under the same number of iterations, the
shortest order completion time can be achieved by IGA. It can
be seen that IMM can effectively solve the problem of resource
waste caused by the slow decline of the total production time

of an order as the number of resources increases when the
number of devices is greater than 5 and has a significant
optimization effect on shortening the total production time of
order. In addition, Figure 6(b) shows the changes in the
overall load balance of the device with different numbers of
3DP devices. It shows that in different scenarios, the best load
balancing solution can always be obtained by IGA. It can be
seen that the IMM has a strong ability to optimize the load

Table 5: Tasks division results.
Task Job Production time per job Cmj (min)

Task R1

Job J1 3738
Job J2 1228
Job J3 3134
Job J4 1399

Task R2

Job J5 2132
Job J6 970
Job J7 2908
Job J8 972
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Figure 7: Task Rn product arrangement result. (a) Job 1 products’ arrangement. (b) Job 2 products’ arrangement. (c) Job 3 products’
arrangement. (d) Job 4 products’ arrangement.
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balancing between devices, which helps to improve the in-
telligent matching ability between devices and jobs. Com-
bining Figures 6(a) and 6(b), it can be found that load
balancing has a certain impact on order completion time.
Except for IGA, when the number of devices is 5 to 6, the
order completion time does not decrease but increases. At the
same time, the load standard deviation between devices also
increases significantly. -is is because the excessive pursuit of
improving the utilization rate of the devices in each job leads
to poor matching results between devices and jobs.-erefore,
when dealing with the M-3DP mass customization produc-
tion scheduling problem, we cannot simply pursue to improve
the utilization rate of equipment in each job but should look at
the problem from the perspective of the overall planning and
scheduling of the production workshop. To sum up, under the
M-3DP mass customization production, the mismatch be-
tween devices and jobs leads to a large load standard deviation
between the devices, which prolongs the total order com-
pletion time. -erefore, IMM is of great significance for
M-3DP mass customization production scheduling. To a
certain extent, it helps to shorten the total production time of
an order, and at the same time optimize the load balancing
performance among 3DP devices.

Finally, according to the multiagent intelligent collaborative
schedulingmethod, IGAwas used to solve the parallel tasks, and
the task set division result, product layout, and total order
completion time were calculated. For the 70 medical products,
Table 5 shows the simulation results of task sets division.

Taking the task R1 as an example, the product ar-
rangement of each job of the task R1 obtained through the
product mix strategy in the IGA is shown inFigure 7.
Figure 7(a) shows the arrangement results of the projected
shapes of the medical products on the processing platform,
where the 450mm× 450mm rectangular frame represented
the processing platform of the device, and each rectangle
inside this platform represented a medical product to be
processed, with the numbers inside indicating the product
code. Figures 7(a)–7(d) represent the product arrangement
results when the task R1 was divided into four jobs.

After inheriting the tasks division results, the job Agent
and the 3DP device Agent are reasonably matched through
the IMM embedded in the IGA. In the scenario with four sets
of 3DP devices, Table 6 shows the intelligent matching results.

6. Conclusions and Future Work

In view of the time-consuming task and large load deviation
of M-3DP large-scale customized production scheduling, a
multiagent-based optimization model was established, and an
IGA embedded with product mix strategy and the intelligent
matching mechanism is designed to optimize production

time and load balancing. Finally, numerical simulation ex-
periments were carried out to analyze the effectiveness of the
proposed method. -e experimental results indicated that
with a given working load and increasing device resources,
IGA led to the shortest completion time, the best product
arrangement, and the minimum load standard deviation of
devices compared with other algorithms.

-e multiagent-based M-3DP intelligent collaborative
scheduling method could solve the M-3DP large-scale
customized production scheduling problem under multiple
materials, providing better optimization of shortening
production time and balancing the load, which had certain
theoretical significance. Facing the frequent occurrence of
major public health events, the demand for medical products
in hospitals had increased. -e application of this method
could shorten the production time, improve production
efficiency, and alleviate the shortage of medical products to a
certain extent, which had certain practical significance.

Notably, with the accelerated development of models and
algorithms, emerging technologies such as the Internet of
-ings (IoT), artificial intelligence, and cloud computing, the
M-3DP large-scale customized production scheduling method
could be further improved in many aspects, including:

(1) -e simultaneous optimization of the three-dimensional
production and the product layering direction can be
considered in the model and relevant algorithms in
future research, since the two-dimensional rectangle
with the fixed product layer direction during the
multiagent model constrains the current version of the
process.

(2) -e current method solves the scheduling problem
of minimizing production time in the same parallel
machine. It is worth thinking whether future studies
can develop new production scheduling methods
that can adapt parallel and heterogeneous 3D
printing devices simultaneously, with extended op-
timization objectives, such as minimizing total cost
and maximizing production efficiency.

(3) Emerging technologies such as IoT, blockchain, and
cloud computing could be applied to deploy this
method in a cloud-based environment, to promote
the implementation of the industrial interconnec-
tion, build an M-3DP “smart manufacturing” supply
chain, and promote the sharing and development of
the resources in the medical industry [23].

Data Availability

-e data used to support the findings of the study can be
obtained from the corresponding author upon request.

Table 6: : Intelligent matching results with four sets of 3DP devices.
3DP devices Job Completion time (min) Total order completion time (min)
M1 J2, J7 4339

4341M2 J1, J4 4333
M3 J5, J6 4341
M4 J3, J8 4341
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