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A B S T R A C T   

In the vanguard of oncological advancement, this investigation delineates the integration of deep 
learning paradigms to refine the screening process for Anticancer Peptides (ACPs), epitomizing a 
new frontier in broad-spectrum oncolytic therapeutics renowned for their targeted antitumor 
efficacy and specificity. Conventional methodologies for ACP identification are marred by pro
hibitive time and financial exigencies, representing a formidable impediment to the evolution of 
precision oncology. In response, our research heralds the development of a groundbreaking 
screening apparatus that marries Natural Language Processing (NLP) with the Pseudo Amino Acid 
Composition (PseAAC) technique, thereby inaugurating a comprehensive ACP compendium for 
the extraction of quintessential primary and secondary structural attributes. This innovative 
methodological approach is augmented by an optimized BERT model, meticulously calibrated for 
ACP detection, which conspicuously surpasses existing BERT variants and traditional machine 
learning algorithms in both accuracy and selectivity. Subjected to rigorous validation via five-fold 
cross-validation and external assessment, our model exhibited exemplary performance, boasting 
an average Area Under the Curve (AUC) of 0.9726 and an F1 score of 0.9385, with external 
validation further affirming its prowess (AUC of 0.9848 and F1 of 0.9371). These findings vividly 
underscore the method’s unparalleled efficacy and prospective utility in the precise identification 
and prognostication of ACPs, significantly ameliorating the financial and temporal burdens 
traditionally associated with ACP research and development. Ergo, this pioneering screening 
paradigm promises to catalyze the discovery and clinical application of ACPs, constituting a 
seminal stride towards the realization of more efficacious and economically viable precision 
oncology interventions.   

1. Introduction 

According to the World Health Organization (WHO), there are approximately 20 million incidents of neoplasm and 10 million 
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tumor-induced fatalities every year. It is envisaged that the global pharmaceutical marketpertaining to oncological agents will amount 
to 436.02 billion US dollars by 2023. Amongst the diverse therapeutic strategies, precision oncology has demonstrated promising 
outcomes in recent clinical studies. However, the exorbitant cost and the substantial capital investment entailed for research and 
development persist as major impediments. The process of identifying suitable molecular targets, whether genomic, proteomic, or 
specific tissue microenvironments, is often arduous and time-consuming. In recent years, broad-spectrum oncolytic peptides have 
garnered significant attention due to their attributes of robust efficacy, high potency, and expeditious action against a wide repertoire 
of malignancies. Anti-cancer peptides (ACPs), with their distinctive mechanisms of pharmacological action, are increasingly being 
acknowledged as a promising modality in oncological therapeutics, paving the way for novel avenues in pharmacological research and 
drug discovery. They offer many advantages over conventional treatments, including lower molecular weights, simpler structures, 
higher tumor selectivity, reduced side effects, easy absorption, diverse routes of administration, and lower risk of inducing multidrug 
resistance [1]. Targeting specificity, ACP-cell interactions, peptide permeability, stability, and efficacy are all impacted by factors such 
as the chemical moiety of the ACP sequence [2]. Therapeutic peptides have been praised for their target specificity and low toxicity 
[3]. In addition, peptide-functionalized liposomes have been shown to provide increased cancer cell specificity, enhanced tumor 
penetration capacity, and significant tumor growth inhibition [4]. Anti-cancer peptides can be categorized into three main groups 
based on their mechanism of action: inhibitory peptides, necrosis-inducing peptides, and pro-apoptotic peptides [5]. They act through 
a variety of mechanisms, including induction of apoptosis, cell cycle arrest, cell membrane rupture, inhibition of intracellular 
signaling, topoisomerases and proteases, and antiangiogenic activity [6]. The objective is to harness advanced deep-learning tech
niques in conjunction with Pharmacological Broad-Spectrum Anti-Neoplastic Peptides, known for their pan-cancer cellular efficacy. 
Antineoplastic peptides emblemize a burgeoning domain within the oncology sphere, presenting the potential for innovative thera
peutic strategies that could significantly bolster therapeutic efficacy whilst mitigating toxic side effects. The model streamlines drug 
discovery by efficiently identifying peptides with anticancer potential, cutting down on preliminary screening time and focusing on the 
most promising candidates. It reduces the number of required experiments and associated costs, minimizing the resources needed for 
biological activity verification. Furthermore, the model accelerates the transition from lab research to clinical trials, speeding up the 
development of new anticancer peptide drugs. 

Currently, cellular research and clinical trials—which primarily rely on conventional biochemical and animal investigations—are 
the primary screening methods for anticancer peptides (ACPs). These procedures have certain efficiency limits, are expensive, and take 
a long time to complete [7]. To get over these restrictions, researchers are coming up with new tactics. For example, a virtual peptide 
library containing 677 peptides based on database and literature searches was generated by a cheminformatics approach. The 
candidate peptides were screened to five by screening for anticancer potential, non-toxicity, non-allergenicity, and non-hemolysis. 
According to molecular docking, PSYLNTPLL was the best potential peptide to stably bind to critical p47phox residues, whereas 
LYSPH was the most promising for targeting myeloperoxidase, xanthine oxidase, and Keap 1 [8]. More extensive study is being done 
for clinical uses. Researchers are deeply exploring the target selection of peptide-based vaccines, the design and screening of epitope 
peptides, clinical efficacy and adverse events, and the combination of peptide-based vaccines with other therapeutic strategies [9]. For 
example, the antitumor peptide CIGB-552 is a new targeted anticancer therapy whose molecular mechanism is related to the stabi
lization of the COMMD1 protein, thereby inhibiting the transcription factor NF-kB [10]. 

Faced with the high cost of experimental design and synthesis of anticancer peptides (ACPs), as well as the exponential growth of 
protein sequence data generated through high-throughput sequencing, experimental methods often take months or even years of 
speculation and experimentation, making it difficult to identify ACPs through experimental methods alone. However, these limitations 
can be appropriately optimized by applying machine learning (ML) methods.ML is a branch of artificial intelligence that automates 
analytical model building for fast and accurate result prediction [11]. For instance, Wan et al. developed a model using machine 
learning techniques such as support vector machine (SVM) and sequential minimum optimization (SMO) to discriminate between 
ACPs and hold peptides. (The accuracy of the model was 95.2 %) [12]. On the other hand, Charoenkwan et al. proposed a new, flexible 
scorecard method (FSCM) to efficiently predict and characterize peptides with anticancer activity using only sequence information. 
However, this method is not as intuitive as the latest integrated methods [13]. In the study of Zhao et al. they developed a new method 
called “DRACP” [14]. Although this method improves the recognition accuracy to some extent, it has some challenges in parameter 
selection and tuning. These studies show that although machine learning plays an important role in the screening and discovery of 
peptide drugs, these methods mainly stay in the traditional learning stage, and the accuracy and screening precision still need to be 
improved. 

In this study,the purpose of this study is to solve the problem of using deep learning to predict the sequence of anticancer peptides 
and distinguish whether peptides have anticancer properties, this study employs a groundbreaking methodology utilizing a 
comprehensive BERT (Bidirectional Encoder Representations from Transformers) natural language processing (NLP) model [15]. To 
enhance model performance, it integrates the robust feature extraction capabilities of Convolutional Neural Networks (CNN) [16]. 
Recognizing the impact of optimizer choice on training outcomes, AdamW was selected for its superior performance among various 
optimizers [17]. Extensive comparisons regarding loss function selection led to the adoption of the binary cross-entropy loss function 
(BCELoss), identified as the most effective [18]. The model’s excellence is validated against traditional machine learning methods, 
such as support vector machine (SVM) [19], GaussianNB model [20], k-nearest neighbor (KNN) model [21], and decision tree model 
[22]. Utilizing five-fold cross-validation and external independent testing, the model demonstrates superior performance, achieving an 
accuracy of 0.9382, a recall of 0.9385, and an F1 score of 0.9371 in the external test. These results affirm the hypothesis that a fusion of 
BERT and CNNs, optimized with AdamW and employing BCELoss, effectively addresses complex NLP challenges. Fig. 1 (workflow 
diagram) meticulously outlines the research methodology of this paper. 
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2. Methods 

2.1. Data collection 

The study has meticulously curated and assembled two comprehensive data compendiums, denoted as ACP1 and ACP2. In this 
study, two datasets, ACP1 and ACP2, were used to construct and evaluate the model. The ACP1 data set is divided into training set, 
verification set and test set according to the ratio of 7:1.5:1.5. The dataset contains 574 examples that are resistant and 594 examples 
that are not resistant. This partitioning strategy aims to represent positive and negative outcomes equally in each subset.At the same 
time, the ACP2 dataset, consisting of 256 examples that behaved as resistant and 256 examples that behaved as non-resistant, was used 
directly as an external test set. Despite their shared attribute of large-scale magnitudes, each dataset manifests distinct characteristics. 
ACP1 is predominantly tailored towards encapsulating positive and negative instances with anticancer properties, providing an 
enriched source of data for the study’s model’s training. Conversely, ACP2 is architectured to showcase the model’s robust general
ization capability during external validation. Leveraging the samples from ACP2, the study can ascertain the study’s model’s profi
ciency in discerning anticancer peptides from non-anticancer peptides [23], even in a more rigorous and exigent training milieu.Fig. 2 
illuminates a detailed distribution of instances within both ACP1 and ACP2, offering a precise portrayal of the distributional dynamics 
of positive and negative instances. This graphical exemplification furnishes readers an intuitive conduit to comprehend the data, 
particularly spotlighting the dispersion of peptide sequence lengths within the “activity” column. This visual elucidation empowers 

Fig. 1. Workflow diagram. It shows the research idea of this paper in detail.  
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readers to grasp lucidly the length distribution dynamics between anticancer peptides and non-anticancer peptides.Table 1, a 
comprehensive tabulation, provides granular insights into the count and provenance of positive instances within ACP. The study 
manually harvested data from APD3 (252 entries) [24], DPL (50+ entries) [25], and PlantPepDB (36 entries) [26], and coalesced data 
from BioPepDB (635 entries) [27] through an amalgamation of web scraping and manual collection techniques. Additionally, the study 
exported data from FeptideDB (45 entries) [28]. Consequently, the study aggregated an impressive total of 1639 positive instances 
from these heterogeneous databases.For the study’s negative instances, the study leveraged active peptides from the prolific Uniprot 
database. Adhering to a defined ratio, the study stochastically bifurcated the overall repository into two sub-libraries. One sub-library 
was purposed for training and cross-validation, while the other was designated for independent validation. It bears underscoring that 
there is no overlap between positive and negative instances. Moreover, ACP1 and ACP2 are independent entities, devoid of in
tersections or overlaps.the study’s In the design of ACP2 as an external test set, the intention was to validate the model’s ability to 
generalize and predict anticancer peptides in future databases. This step not only demonstrated the accuracy of the model in iden
tifying anticancer peptides in unknown datasets but also highlighted the model’s applicability and flexibility when encountering new, 
untrained data. By conducting tests in this independent, more challenging environment, the potential of the model for the broad 
identification of anticancer peptides was further demonstrated, providing a powerful computational tool for the discovery of anti
cancer peptides and future clinical applications. 

2.2. Data Preprocessing 

Initially, raw amino acid sequence data were de-duplicated to ensure dataset uniqueness and representativeness, resulting in a 
clean dataset devoid of duplicate entries, thereby enhancing model training efficiency. Subsequently, a statistical approach was 
employed to identify and exclude outliers, specifically sequences with significant deviations in length or base composition, thus 
improving dataset quality by removing extreme values and noise. Further, a series of denoising operations were conducted to eliminate 
irrational amino acid sequences containing spaces, special symbols, and similar anomalies. This purification step allowed the model to 
focus more effectively on identifying and learning significant patterns and associations. Lastly, amino acid codes occurring at very low 
frequencies, deemed rare within the dataset, were filtered out. This approach enabled the model to concentrate on analyzing common 
and representative amino acid sequences. 

2.3. Amino acid sequence feature extraction 

The enhanced protein sequence representation known as pseudo amino acid composition (PseAAC) goes considerably beyond the 
conventional method based on the composition of 20 amino acids. PseAAC further incorporates sequence order information, thereby 
capturing amino acid interactions. PseAAC operates on the assumption that amino acid residues located at position i and position (i +
k) in a protein sequence correlation exist. This comprehensive formulation elucidates the properties of proteins, including, but not 
limited to, their structure, function, and interactions. By adjusting the parameters, PseAAC can generate multiple pseudo-amino acid 
composition vectors, thus enhancing its versatility and adaptability [29]. 

This study extensively utilizes PseAAC for protein sequence analysis. In 2015, Hong-Bin and Kuo-Chen Chou introduced a web 
server named PseAAC, facilitating the generation of various PseAA combinations to enhance analysis capabilities [30]. PseAAC of type 

Fig. 2. Detailed distribution of data. 
This graph shows the detailed distribution of anticancer peptides and non-anticancer peptides of ACP1 and ACP2, respectively, and the distribution 
of their peptide sequence lengths is revealed in the “Activity” column, which provides an intuitive way of interpreting the data. 
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Table 1 
data sources.  

No. Database 
Name 

Number of 
Entries 

Link 

1 APD3 252 https://aps.unmc.edu/database/anti 
2 BioPepDB 635 http://bis.zju.edu.cn/biopepdbr/index.php?p=search&field=category&query=anticancer 
3 DPL 50+ http://www.peptide-ligand.cn/search/? 

csrfmiddlewaretoken=PSqYxvTcUbmCHIAOCjLDJa0tzZky9MoQ6YR9NrAVsHHqeUB6uBkdMNyrmIJ1o2Zf&q0=&q1=&q2=&q4=Anticancer+&q3=&q5=&submit=Search 
4 PlantPepDB 36 http://14.139.61.8/PlantPepDB/pages/browse_result.php 
5 FeptideDB 45 http://www4g.biotec.or.th/FeptideDB/peptide_search.php  
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2 was selected, focusing on the correlation of consecutive amino acids to more efficiently capture protein sequence order information. 
A weight factor of 0.05 was applied, dictating the significance of sequence correlation terms within the PseAAC vector. The λ value was 
set to 1, emphasizing the consideration of neighboring amino acids’ correlation in protein sequences. For representing amino acids’ 
physicochemical properties, parameters such as hydrophobicity, hydrophilicity, mass, pK1 (pKa value of the α-carboxylic group), pK2 
(pKa value of the amino group), and pI (isoelectric point at 25 ◦C) were chosen. These elements collectively constitute the PseAAC 
model employed in this research, offering a comprehensive and adaptable approach for probing into protein sequence intricacies [31]. 

2.4. Technological route 

2.4.1. Applications of BERT and its variants in the field of biopeptides 
BERT models have played an important role in the advancement of biomedical research, especially in the field of drug-target 

interactions (DTIs) [32]. By applying and fine-tuning the BERT pre-training model ChemBERTa, Kang et al. significantly improved 
DTI prediction [33]. BioBERT is an optimized BERT model that emphasizes domain-specific training for its effectiveness [34]. 
PharmBERT is another iteration of the BERT model for addressing unique language in drug labels and further exploits the potential of 
domain-specific BERT models by pre-training on drug labels [35]. The CT-BERT model is pre-trained on a large corpus of 
COVID-19-related Twitter messages to provide valuable insights for COVID-19 content analysis [36].2022 Mingyu et al. developed a 
model that utilizes BERT for text feature extraction and BiLSTM to obtain the internal information of audio, which achieves an effective 
fusion of multimodal features [37]. In conclusion, BERT modeling has made significant progress in the biomedical field, providing a 
powerful tool for data analysis, prediction, and understanding. 

This research explores various BERT variants [38]. Initially, AdamW is integrated with BERT to enhance convergence speed and 
model stability, albeit at the cost of increased training complexity and time due to hyperparameter fine-tuning. Attention then shifts to 
employing the Binary Cross Entropy Loss (BCELoss) function for model optimization. However, this approach might intensify issues in 
datasets with significant category imbalance, necessitating further mitigation techniques. Furthermore, an exploration into merging 
Convolutional Neural Networks (CNNs) with BERT is conducted to leverage CNNs’ performance benefits in computer vision tasks, 
particularly for multimodal inputs [39]. Yet, this amalgamation challenges with potential increases in computational demands and 
extended training durations due to BERT and CNN’s structural variances [40]. 

2.4.2. 2 Model construction 
Building on the theoretical and practical foundations laid out, a BERT enhancement model was developed. This model seamlessly 

combines BERT with the AdamW optimizer, BCELoss, and CNN, achieving significant improvements.The detailed architecture of this 
model is illustrated in Fig. 3. 

In conclusion, BERT variations, particularly the model integrating the AdamW optimizer, BCELoss, and CNN, exhibit strong per
formance. However, challenges such as fine-tuning hyperparameters, addressing class imbalance, and optimizing computational re
sources and training time present areas for further exploration and enhancement. Addressing these issues is crucial for refining model 
training processes. This endeavor represents an ongoing academic journey, pushing the boundaries of research in this field. 

2.4.3. Traditional machine learning models 
To deeply investigate the prediction of anticancer peptides, four classical machine learning models are used in this study for 

analysis and comparison. The first, the Support Vector Machine (SVM), which primarily distinguishes between different classes by 
locating the ideal hyperplane, was first developed by Vapnik and Lerner in 1963 [41]. In this study, the parameters of SVM are 
configured as follows: the kernel function is linear (Tinear), the C-value is 1.0, the Degree is 3, and the Gamma is set to scale. Second, 
the GaussianNB model is explored, a probability-based classifier that operates on the foundational principle of applying Bayes’ the
orem with a distinct probability distribution [42].The parameters of this model are set as None for the prior probability (priors) and 
1e-09 for the variance smoothing parameter (var_smoothing). Next is the Nearest Neighbor (KNN) model, which is an instance-based 
classification algorithm, the main idea of this algorithm is to find the “nearest neighbor” data points of the test data in feature space, 
and based on that, it is possible to find the “nearest neighbor” data points of the test data in the feature space. The main idea of this 
algorithm is to find the “nearest neighbor” data points of the test data in the feature space and make predictions based on the categories 
of these “neighbor” data points [43]. The parameters are configured as follows: the number of neighbors (n_neighbors) is 1; the weight 
selection method is UNIFORM so that all neighbors have equal weights, i.e., each neighbor has the same influence on the prediction 
results; the search algorithm is AUTO; and the p-value is 2. Finally, the decision tree model is a tree-structured model that can be used 
for classification and regression tasks. It achieves the best classification results by constantly judging and dividing the features [44]. Its 
parameters are configured as follows: the decision criterion is the Gini coefficient (gini), the segmentation method is selected as best, 
the maximum depth (max_depth) is None, the minimum number of samples split (min_samples_split) is 2, the minimum number of 
samples leaf (min_samples_leaf) is 1, and the maximum number of features (max_features) is None. features) as None. Through in-depth 
comparison and parameter tuning of these four models, the study aim to find the most suitable model for anticancer peptide prediction, 
thus ensuring the accuracy and generalization ability of the prediction. 

2.5. Model evaluation 

In evaluating deep learning models, several key metrics are utilized to assess the performance, including Accuracy (ACC), F1 score, 
Area Under Curve (AUC), and Matthews Correlation Coefficient (MCC) [45].Together, these evaluation metrics depict the performance 
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of the model in various aspects, including accuracy of prediction, comprehensiveness, and consistency of the predicted results with the 
true results. 

Firstly, the Accuracy Criterion (ACC) is the most intuitive evaluation metric and is the ratio of the sample data that were correctly 
categorized to the total number of samples. It is expressed in a mathematical formula as shown in Equation (1): 

ACC=
(TP + TN)

(TP + TN + FP + FN)
(1)  

Where TP denotes the number of true positive samples, TN denotes the number of true negative samples, FP denotes the number of 
false positive samples, and FN denotes the number of false negative samples. The higher accuracy rate represents the more effective the 
classifier is and the higher the precision of the prediction results. 

Second, the F1 score is the reconciled average of Precision as shown in Equation (2) and Recall as shown in Equation (3). Precision 
represents the number of samples that were judged to be positive examples; Recall represents the proportion of correct predictions in 
all actual positive samples. The F score is calculated as shown in Equation (4): 

PRE=
TP

(TP + FP)
(2)  

REC=
TP

(TP + FN)
(3)  

F =
(α2 + 1)P ∗ R

α2(P + R)
(4) 

In the above equation, when α = 1, it is the common F1 score as shown in Equation (5). 

F1 =
2P ∗ R
P + R

(5) 

After that, the area under the curve (AUC) is an important metric used to evaluate the predictive performance of the model. The 
larger the area under the ROC curve, the better the predictive performance of the model [46]. 

Finally, Matthews correlation coefficient (MCC) is used to measure the model binary classification performance, which usually 
takes values ranging from − 1 to 1 [47]. The MCC is calculated as shown in Equation (6): 

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (6) 

The closer the value is to 1, the higher the consistency of the model’s predictions with the true results. On the contrary, it means 
lower consistency. 

Using these evaluation metrics, it is possible to comprehensively assess the model’s performance in anticancer peptide (ACP) 
screening, facilitating a deeper understanding and optimization of its capabilities. 

Fig. 3. Model architecture diagram.  
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3. Result 

3.1 Experimental set up. 
In this research, deep learning models were utilized to explore the anticancer peptide (ACP) screening process. Rigorous experi

mental setup and optimization of multiple models were conducted to ensure high recognition efficiency of ACPs. Models underwent 
extensive iterations with parameter tuning for optimal convergence and to effectively mitigate overfitting. Specifically, the AdamW- 
based model required 61 iterations for optimization, while the BERT model integrated with Convolutional Neural Networks (CNNs) 
was optimized after 54 iterations. Optimization was achieved after 44 iterations for the model employing Binary Cross Entropy Loss 
(BCELoss), 45 iterations for the baseline model, and the best performing module reached its peak after 77 iterations. To augment the 
models’ robustness and predictive accuracy, GridSearch CV was implemented for hyperparameter fine-tuning, in conjunction with 
five-fold cross-validation and external dataset testing. These experiments ran on Python 3.8 (Ubuntu 20.04 system), utilizing PyTorch 
1.10.0 as the primary deep learning framework and Cuda 11.3 for computational acceleration. Experiments were conducted on an Intel 
(R) Xeon(R) Platinum 8358P CPU @ 2.60 GHz server, equipped with RTX A5000 GPUs and 15 vCPUs. The introduced model is based 
on the 12-layer Transformer architecture [48], incorporating 12 self-attention mechanisms in each layer [49], with a hidden layer size 
of 768 and an intermediate layer size of 3072 in the feedforward neural network. A fully connected layer was added atop BERT for 
classification purposes. Furthermore, a novel CNN-BERT model was developed, adding a convolutional layer on top of BERT and 
integrating a maximum pooling layer before the fully connected classification layer [50]. Open-source libraries such as Sklearn, 
Transformers, Numpy, Pandas, and Matplotlib were extensively leveraged, providing powerful and versatile tools for feature 
extraction from the ACP database. 

3.1. Result for -fold cross validation 

3.1.1. Five deep learning models 
Five deep learning models were carefully designed and run for each prediction task in the study’s main dataset: the BERT baseline 

model, the fusion of BERT with the AdamW optimizer, the union of BERT with BCELoss, the combination of BERT with Convolutional 
Neural Networks (CNNs), and the top-performing model (BERT + AdamW + BCELoss + CNN hybrid model). To ensure the fairness and 
impartiality of the comparison, all the models have undergone rigorous and fine parameter optimization. 

Table 2 below will show the cross-validation results of the five models in detail, and Fig. 4 shows the results for the anticancer 
peptide (ACP) grade prediction task and the receiver operating characteristic (ROC) curve of the study’s proposed model [51]. Among 
all the models examined, the BERT + AdamW + BCELoss + CNN model exhibits the best performance with an average area under the 
ROC curve (AUC) of 0.9726, a result that is significantly better than the other four models: the BERT baseline model (0.9593), BERT +
AdamW (0.9642), BERT + BCELoss (0.9622) and BERT + CNN (0.9611). This finding clearly reveals that the model incorporating the 
optimizer, loss function, and convolutional neural network has a significant advantage in this prediction task. 

This study demonstrates the remarkable progress made by deep learning models in predicting ACP mutation status and grade. 
These models provide a viable new option for non-invasively identifying ACP grade and genetic characteristics in patients, and will 
likely accelerate the development of novel peptide-based anti-cancer therapies. In evaluating the performance of the study’s models, 
the study employed a confusion matrix that provides a detailed view of each model’s performance on the test dataset (see Fig. 5), 
including the number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) [52]. Of particular note, 
the BERT + AdamW + BCELoss + CNN model shows excellent performance in all categories, generating low numbers of false positives 
and false negatives, which suggests that the model performs superbly in terms of both prediction precision and recall. 

The training process is clearly illustrated through the training iteration graph, highlighting the variation of training and validation 
losses over the number of iterations. For the BERT + AdamW + BCELoss + CNN model, a decreasing trend in both training and 
validation losses was observed, signaling the model’s convergence throughout the learning phase. Notably, the training loss diminishes 
more rapidly in the initial stages, with the rate of reduction slowing as iterations progress, indicating the model’s approach towards an 
optimized solution. Conversely, the pattern of validation loss reduction is crucial; it diminishes in the early phases but begins to plateau 
after reaching a certain number of iterations, suggesting the onset of overfitting and serving as a cue to cease training [53]. Figs. 6 and 
7 provide a detailed view of the BERT training iteration dynamics. 

3.1.2. Machine learning models 
In addition to the main focus of this research, four traditional machine learning models were developed: Support Vector Machines 

(SVMs), Gaussian Naïve Bayes (GaussianNB), k-nearest Neighbors (KNN), and Decision Tree Models. To ensure a fair evaluation, each 
model underwent thorough parameter optimization, with performances directly benchmarked against those of deep learning models. 
Among the traditional approaches, SVM stood out, achieving the highest average area under the receiver operating characteristic 
(ROC) curve (AUC) of 0.9441.It is closely followed by the Gaussian Plain Bayesian model, with an AUC of 0.9321. k-Nearest Neighbors 
and Decision Tree models perform relatively weakly, with AUCs of 0.8675 and 0.7844, respectively. These results are presented in the 
shown in detail in the subsequent figures (Table 3, Fig. 8, Fig. 9), including the performance metrics and ROC curves for each model. 

3.2. External validation 

This research not only conducted a rigorous five-fold cross-validation on an internal dataset [54] but also carried out compre
hensive validation on an external independent dataset. This approach was taken to confirm the robustness and applicability of the 
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model for real-world clinical scenarios [55]. 

3.2.1. Deep learning models 
The study ran five deep learning models on external datasets: the BERT baseline model, the combination of BERT and the AdamW 

optimizer, the union of BERT and BCELoss, the fusion of BERT and a convolutional neural network [56] (CNN), and the study’s best 
model, the BERT + hybrid model of AdamW + BCELoss + CNN. All these models are finely parameterized to ensure a fair performance 
comparison. 

The results show that the BERT + AdamW + BCELoss + CNN model performs best on the tasks of anticancer peptide (ACP) grade 
prediction and ACP mutation status prediction. On the external validation dataset, the area under the receiver operating characteristic 
(ROC) curve (AUC) of the model reaches 0.9848, a result that starkly reveals the superior performance of the study’s model when 
dealing with real-world data. 

The AUCs of the remaining models on the external validation dataset are 0.9641 for the BERT baseline model, 0.9699 for BERT +
CNN, 0.9750 for BERT + BCELoss, and 0.9671 for BERT + AdamW.These results provide further evidence of the superiority of the deep 
learning models in processing complex bioinformatics data. 

Further analysis of the confusion matrix (Table 4) reveals that the BERT + AdamW + BCELoss + CNN model demonstrates excellent 
prediction accuracy and recall, underscoring its significant potential for practical deployment. Fig. 10 showcases the ROC curves of five 
deep learning models, with the model developed in this paper outperforming the rest.ACP2 consists of peptide sequences that have 
never participated in the model training process. These sequences were collected from different databases through independent 
methods to test the model’s performance when faced with entirely new data. The model demonstrated exceptional performance on this 
external test set, accurately identifying anticancer peptides and non-anticancer peptides.This result not only confirms the model’s high 
generalization ability but also showcases its potential in recognizing unknown anticancer peptides in practical applications. 

3.2.2. Traditional machine learning models 
For a comprehensive performance comparison, this paper ran four traditional machine learning models on an external dataset: 

support vector machine (SVM), Gaussian plain Bayes (GaussianNB), k-nearest neighbor (KNN), and decision tree models. Despite 
rigorous parameter optimization, the performance of these traditional models is still far below that of the study’s deep learning model 
when processing real data. Fig. 11 illustrates the ROC curves for the four models. 

As shown in Table 5: Specifically, the area under the receiver operating characteristic (ROC) curve (AUC) is 0.9494 for the SVM 
model, 0.9385 for the Gaussian Plain Bayesian model, 0.8999 for the k-nearest neighbor model, and 0.8519 for the decision tree model. 
These results further corroborate the fact that the deep learning models are handling complex biomedical prediction tasks leading 
position on the complex biomedical prediction task [57]. 

While traditional machine learning models are still valuable in some aspects, the study’s model performs significantly better than 
traditional models in the tasks of ACP grade prediction and mutation status prediction. This finding emphasizes the leading position of 
deep learning in handling complex biomedical prediction tasks [58] and reveals its great potential in the development of future 
peptide-based cancer therapies. 

In conclusion, in this study, this paper comprehensively evaluated the performance of deep learning models versus traditional 
machine learning models in predicting ACP grade and mutation status through internal five-fold cross-validation and external inde
pendent validation. The study’s results reveal the superior performance of deep learning models and their potential applications in 
cancer therapy research [59], providing strong support for the development of future peptide-based cancer therapies. 

3.3. Discussion 

In the clinic, determining whether a biological peptide has anticancer properties usually requires extensive experiments, which are 
not only time-consuming but also costly [60]. All these factors have limited the rapid development of the field of anticancer peptide 
research. In this study, this paper developed the study’s model based on the dataset processed by two feature encoding methods, 
PseAAC expression bioinformatics and natural language processing, which can come to predict whether a biopeptide is an anticancer 
peptide or not. This strategy realizes efficient and highly accurate screening of anticancer peptides. Future work may benefit from 

Table 2 
Cross-validation results.  

ver Acc (95%CI) P (95%CI) R (95%CI) F1 (95%CI) MCC (95%CI) 

baseline 0.92544 ± 0.0073 0.94314 ± 0.0171 0.9065 ± 0.0252 0.92408 ± 0.0141 0.85192 ±
0.0146 

bceloss 0.92368 ± 0.0069 0.9372 ± 0.0083 0.90848 ± 0.0174 0.92252 ± 0.0068 0.84752 ±
0.0066 

AdamW 0.93262 ± 0.011 0.96632 ± 0.0131 0.89738 ± 0.0212 0.93022 ± 0.011 0.86806 ±
0.011 

Conv 0.9195 ± 0.0103 0.95668 ± 0.023 0.8804 ± 0.019 0.91634 ± 0.0158 0.84258 ±
0.0201 

Best 0.9326 ± 0.0103 0.95014 ± 0.0122 0.91332 ± 0.0124 0.93126 ± 0.009 0.86583 ±
0.0132  
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expanding the dataset size to further validate the study’s findings and enhance the generalizability of the model developed. 
While there are many precedents of combining traditional machine learning with peptide screening, traditional machine learning 

models usually miss many nuances in the information and the accuracy is not very high [61]. In recent years, the advent of pre-training 
models has propelled uni-modal domains like computer vision (CV) and natural language processing (NLP) into a new era, with 
large-scale models integrating vision and language, such as M-FLAG [62], CLIP [63], and Med-UniC [64], demonstrating commendable 

Fig. 4. ROC curves for each model.  
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effectiveness in their respective fields. Although this study focuses solely on natural language large-scale models and does not involve 
image processing, it paves the way for new research directions and ideas for our future studies. BERT’s main innovation is based on the 
bi-directional structure of the Transformer (a self-attentive mechanism model) [65], which allows the model to take into account all 
the information in the context when processing the language. Although BERT has been able to learn some important features from the 
original amino acid sequence [66], PseAAC contains information that is difficult for BERT to capture. It can enhance the model’s 
understanding of the global and local properties of proteins by independently calculating the two outputs and then combining them to 
form a larger feature vector. This vector is fed into a convolutional neural network optimized for AdamW and BCELoss to minimize 

Fig. 5. Confusion matrix for the 4 models. The study’s model performs well across samples.  
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Fig. 6. Bert training iterative graph. 
Top left to right: learning rate Training loss. Validation loss. Average Accuracy. Area Under Curve; Bottom left to right: Accuracy. Precision Rate. 
Recall rate. F1 value. Area Under Curve. 

Fig. 7. Bert training iterative graph.  

Table 3 
Fifty-fold cross-validation of four machine learning models.  

Models Accuracy (95%CI) Precision (95%CI) Recall (95%CI) F1 Score (95%CI) MCC (95%CI) 

KNN 0.7806 ± 0.0344 0.7876 ± 0.0641 0.7806 ± 0.0344 0.7797 ± 0.0344 0.5676 ± 0.0679 
NB 0.8484 ± 0.0194 0.8521 ± 0.0382 0.8484 ± 0.0194 0.8480 ± 0.0194 0.6994 ± 0.0389 
DT 0.7961 ± 0.0229 0.7971 ± 0.0447 0.7961 ± 0.0229 0.7961 ± 0.0229 0.5923 ± 0.0464 
SVM 0.8783 ± 0.0142 0.8910 ± 0.0277 0.8783 ± 0.0142 0.8772 ± 0.0142 0.7683 ± 0.0289  
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prediction errors and maximize prediction accuracy. 
The application of deep learning techniques to the discovery and development of anticancer peptides has a lot of value: the 

application of the model will likely facilitate research advances in the field of tumor therapy because it can be used for initial screening 
to quickly and efficiently identify peptides with anticancer activity from a large number of candidate peptides [67], This method 
significantly accelerates the initial screening phase, allowing researchers to promptly concentrate on the substances most likely to 
achieve success. Second, the ability of the model does not stop at screening but can guide the design of anticancer peptides by 
extracting useful patterns and features from amino acid sequences, the optimization of which is expected to create more potent 
anticancer peptides [68]. By identifying potential peptides in advance, the time and resources required to validate biological activity in 
the laboratory can be reduced. In addition, the analytical power of the model can also reveal the mechanism of action of anticancer 
peptides and deepen the study’s understanding of the active features of anticancer peptides, thus promoting the development of 
anticancer therapies. Finally, the application of the model in the field of precision medicine is also expected [69], using the model to 
analyze protein/peptide sequences in tumor samples from specific patients to predict peptides with possible antitumor activity, which 
can help develop personalized anticancer therapies. 

ESM-2 was evaluated in preliminary experiments and was found to exhibit suboptimal performance. Additionally, the model’s 
considerable size and extensive parameter count make it particularly challenging to train, which undermines its suitability for practical 
clinical application. Given these limitations, a decision was made to develop a proprietary model tailored to overcome these specific 
challenges, aiming for both high performance and feasibility in clinical translation. This hybrid model combining BERT, CNN, AdamW, 
BCELoss, and PseAAC exhibits high performance on the task of anticancer peptide prediction, especially when compared with 
traditional machine learning methods such as Support Vector Machines (SVMs), Gaussian Spartan Bayes (GaussianNB), k Nearest 
Neighbors (knn), and Decision Trees (DTs) in terms of accuracy, precision, recall, F1 score, and Matthews correlation coefficient (MCC) 
were significantly improved. This hybrid model shows excellent performance on the anticancer peptide prediction task, and this 
performance is stable and reliable as the model performs well in both the five-fold cross-validation and ablation experiments. In 
external tests, this hybrid model achieved an accuracy of 94.02 %, a precision of 95.42 %, a recall of 92.34 %, an F1 score of 93.85 %, 
and a Matthews correlation coefficient (MCC) of 88.09 %. These results are significantly better than the baseline model as well as 

Fig. 8. Four model ROC curves: decision tree AUC:0.7844; KNN AUC:0.8675; plain Bayes: 0.9321; support vector machine: 0.9441.  
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traditional machine learning methods, as shown in Table 6, demonstrating the superiority of the hybrid model for the task of anti
cancer peptide prediction. The study thoroughly examined the model’s generalization capabilities, with a particular focus on its 
predictive performance when encountering peptide sequences derived from databases of diverse origins. The employment of an 
external test set, ACP2, underscores the model’s robust performance in handling entirely novel data. 

The model developed in this study has demonstrated significant strengths in predicting anticancer peptides, yet it is essential to 
confront several inherent limitations. Initially, the research relies predominantly on theoretical calculations, marking merely the 
initial step. Future work will necessitate validating these predictions through biological experiments in a laboratory setting to merge 
theory with practice and ensure the predictions translate into practical outcomes. Moreover, despite promising results on an external 
test set, a deeper understanding of the model’s generalizability requires extending the validation to more external test sets. This 
expansion is critical for a comprehensive evaluation of the model’s stability and reliability across varying data environments. Addi
tionally, the model requires further optimization to handle a broader range of tumor cells [70], potentially necessitating the intro
duction of new feature representations or adjustments to the model’s structure and parameters for enhanced adaptability to specific 
tumor cell types. Notably, the current model does not account for the prediction of transmembrane ACEase inhibitory peptides [71], a 

Fig. 9. Confusion Matrix for 4 Models of Machine Learning. Confusion matrices for four machine learning models, namely, decision tree, KNN, plain 
Bayes, and support vector machine, are shown in turn for comparison with the performance of the study’s model in each sample below. 

Table 4 
Comparison of outcome indicators.   

BERT BERT CNN BCELOSS ADAMW Acc P R F1 MCC 

baseline ✓ ✓    0.9183 0.952 0.879 0.914 0.8389 
bceloss   ✓   0.9343 0.964 0.9032 0.9314 0.87 
AdamW    ✓  0.9183 0.9259 0.9073 0.9165 0.8368 
Conv     ✓ 0.9303 0.9419 0.9153 0.9284 0.8608 
best ✓ ✓ ✓ ✓ ✓ 0.9402 0.9542 0.9234 0.9385 0.8809  
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vital category of anticancer peptides. Future updates will involve collecting relevant data and adjusting the model’s input and output 
structures to encompass these peptides. In previous studies, the focus on anticancer peptide prediction was predominantly centered 
around short peptides, and the application of machine learning and deep learning techniques in related experiments yielded promising 

Fig. 10. ROC curves of 5 deep learning models: The ROC curves of 5 deep learning models are listed, and the results show that the study’s model 
developed in this paper has the best performance among them. 
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outcomes [11–14]. Moving forward, the scope of research will be expanded to encompass other types of peptides, taking into 
consideration factors such as tertiary structures.Moving forward, addressing these challenges will be a priority to improve the model’s 
performance and utility, thus offering a more robust tool for the discovery and development of anticancer peptides [72]. In future 
endeavors, the model will undergo comprehensive enhancements in several key areas. Primarily, tools such as Gradient-weighted Class 
Activation Mapping (Grad-CAM) will be employed to augment the model’s interpretability by vividly demonstrating the focal points 
during the identification of anticancer peptides. Furthermore, a stronger collaborative framework with biologists, pharmacologists, 
and clinical physicians will be established, ensuring the model’s efficacy in both biological and clinical contexts. Moreover, to maintain 
the accuracy and relevance of the model, continual assessments and updates will be conducted in response to emerging data and 
technological advancements. These initiatives are aimed at enriching the theoretical depth and practical applicability of the deep 
learning model, thereby advancing the research and development of anticancer peptides.Simultaneously, we plan to harness the power 
of ensemble learning methods. This strategy will involve employing suitable ensemble strategies to integrate the strengths of various 
deep learning architectures. 

4. Conclusion 

This research has developed a pioneering model that seamlessly integrates deep learning, preference-ordered amino acid coding 
(PseAAC), and natural language processing (NLP), establishing a novel approach in anticancer peptide screening. The model’s unique 
configuration allows for exceptional performance in identifying anticancer peptides, offering a more cost-effective and economically 

Fig. 11. Four model ROC curves.  

Table 5 
Machine learning results for each model.   

Acc P R F1 MCC 

svm 0.8865 0.8984 0.8812 0.8897 0.7729 
GaussianNB 0.8586 0.9025 0.8161 0.8571 0.7214 
knn 0.9004 0.8981 0.9119 0.9049 0.8005 
decision tree 0.8506 0.8843 0.8199 0.8509 0.7036  
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viable alternative to conventional screening methods [73]. Demonstrated through rigorous five-fold cross-validation and external 
testing, this model has consistently outperformed existing models, showcasing its proficiency in predicting the anticancer properties of 
peptides across various databases. Validation using an independent external test set further verifies the model’s accuracy in detecting 
known anticancer peptides and its capability to predict the anticancer potential of previously uncharacterized peptide sequences. 
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ACP Anti-Cancer Peptides 
NLP Natural Language Processing 
PseAAC Pseudo Amino Acid Composition 
BERT Bidirectional Encoder Representation from Transformers 
CNN Convolutional Neural Networks 
ML machine learning 
BCELoss binary cross-entropy loss function 
SVM support vector machine 
TP true positives 
TN true negatives 
FP false positives 
FN false negatives 
ACC Accuracy 
AUC Area Under Curve 

Table 6 
Fifty-fold cross-validation results for 5 deep learning models.   

Acc P R F1 MCC 

svm 0.8865 0.8984 0.8812 0.8897 0.7729 
GaussianNB 0.8586 0.9025 0.8161 0.8571 0.7214 
knn 0.9004 0.8981 0.9119 0.9049 0.8005 
decision tree 0.8506 0.8843 0.8199 0.8509 0.7036 
best 0.9402 0.9542 0.9234 0.9385 0.8809  
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MCC Matthews Correlation Coefficient 
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[46] J.M. Lobo, A. Jiménez-Valverde, R. Real, AUC: a misleading measure of the performance of predictive distribution models, Global Ecol. Biogeogr. 17 (2) (2008 
Mar) 145–151. 

[47] Jurman G, Riccadonna S, Furlanello C. A Comparison of MCC and CEN Error Measures in Multi-Class Prediction. 
[48] T Wolf, L Debut, V Sanh, J Chaumond, C Delangue, A Moi, P Cistac, T Rault, R Louf, M Funtowicz, J Davison, Transformers: State-of-the-art natural language 

processing, InProceedings of the 2020 conference on empirical methods in natural language processing: system demonstrations, 2020 Oct, pp. 38–45. 
[49] A. Vaswani, P. Ramachandran, A. Srinivas, N. Parmar, B. Hechtman, J. Shlens, Scaling local self-attention for parameter efficient visual backbones, in: 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 12894–12904. 
[50] A Safaya, M Abdullatif, D Yuret, BERT-CNN for offensive speech identification in social media. InProceedings of the Fourteenth Workshop on Semantic 

Evaluation, KUISAIL at SemEval-2020, Task 12 (2020) 2054–2059. 
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