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Chronic kidney disease (CKD) affects more than 37 million American adults. Adult-onset

CKD is typically attributed to acquired comorbidities such as aging, type II diabetes,

and cardiovascular disease. Conversely, congenital abnormalities of the kidney and

urinary tract are the most common cause of CKD in children. Both adult and pediatric

patients with CKD are at risk for neurocognitive dysfunction, particularly in the domain

of executive function. The exact mechanism for neurocognitive dysfunction in CKD is

not known; however, it is conceivable that the multisystemic effects of CKD—including

hypertension, acidosis, anemia, proteinuria, and uremic milieu—exert a detrimental effect

on the brain. Quantitative neuroimaging modalities, such as magnetic resonance imaging

(MRI), provide a non-invasive way to understand the neurobiological underpinnings of

cognitive dysfunction in CKD. Adult patients with CKD show differences in brain structure;

however, much less is known about the impact of CKD on neurodevelopment in pediatric

patients. Herein, this review will summarize current evidence of the impact of CKD on

brain structure and function and will identify the critical areas for future research that are

needed to better understand the modifiable risk factors for abnormal brain structure and

function across both pediatric and adult CKD populations.

Keywords: chronic kidney disease, magnetic resonance imaging (MRI), pediatric chronic kidney disease,

neurocognition and behavior, brain structural abnormalities, neuroimaging, disease and development

INTRODUCTION

Neurocognitive deficits have been well-described in both the adult and pediatric chronic
kidney disease (CKD) and end-stage kidney disease (ESKD) populations (1, 2). These deficits
are associated with longer duration of kidney disease (1, 3, 4), metabolic acidosis (5, 6),
proteinuria/microalbuminuria (1, 7, 8), anemia (1, 9, 10), and hypertension (11, 12). Even subtle
neurocognitive deficits have broad impacts on quality of life, as they contribute to poorer high
school graduation rates and long-term underemployment in the adult CKD population (13).
The cognitive complications of CKD may be linked to an aberrant “kidney-brain axis” whereby
decreases in kidney function, CKD-associated sequelae (including cardiovascular disease), and
concomitant inflammatory milieu all negatively impact the brain, leading to increased risk of
cognitive impairment in parallel with CKD progression (14–16).

Unfortunately, our understanding of the neurobiology of cognition in CKD is limited
because of a lack of concurrent neuroimaging and neurocognitive assessment. Neurodevelopment
is a dynamic process occurring throughout the human lifespan, with the most rapid
neurodevelopmental changes occurring in childhood and adolescence (17)—specifically,
reductions in cortical gray matter (e.g., dendritic pruning) and concomitant white matter (myelin)
deposition (18). Our understanding of normal developmental processes in the context of chronic
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disease is limited. Use of magnetic resonance imaging (MRI)
provides an opportunity to examine the brain structure, as it
relates to CKD, in a noninvasive manner.

To reduce the burden of neurocognitive deficits within the
CKD population, there is an urgent need for new approaches
to patient care applied across CKD lifespan. Such approaches
require understanding the effects of CKD progression and
severity on both the adult and pediatric brain. In this review we
will 1) address existing literature specific to the impact of CKD
on brain structure and function and 2) discuss potential CKD-
associated risk factors for abnormal brain structure and function
in both pediatric and adult populations.

HOW DOES CKD IMPACT BRAIN
STRUCTURE AND FUNCTION?

Neuroimaging in Adult CKD
More than 37 million adults in the United States are living with
CKD and millions more are living with either undiagnosed CKD
or with an increased lifetime risk of developing CKD. Diabetes
and hypertension are the leading causes of CKD in adults,
contributing to almost 66% of CKD cases in the United States
(19). Cardiovascular disease remains the major cause of death for
individuals with CKD.

Structural brain findings of adult patients with CKD–not
receiving renal replacement therapy–have demonstrated the
presence of cerebral atrophy, as well as decreased cerebral
density in both white and gray matter. Poor kidney function
has been associated with glomerular small vessel disease, and in
the 2008 study by Ikram et al. (20) hemodynamic similarities
were investigated between the kidneys and vascular beds of the
brain by MRI. Here, impaired kidney function was associated
with smaller brain volume, smaller deep white matter volume,
and more white matter lesions (20). Other randomized trials,
including the Systolic blood PRessure INterventional Trial
(SPRINT), examined the effects of hypertension treatment on the
structure of the brain in patients with and without CKD, with
cognitive endpoints noted (21). The SPRINT study found that
CKD patients who were on standard blood pressure treatments
had increased risks of mortality and major cardiovascular events,
demonstrated mild cognitive impairment, and showed small
vessel ischemic disease (white matter lesions) by MRI.

White matter hyperintensities are noted more frequently
within the adult CKD/ESKD population. These hyperintensities
are often associated with increased cerebrovascular risk and may
predict risk of stroke and dementia (22). Diffusion tensor imaging
(DTI) is an MRI technique used to provide detailed images of the
brain. MRI-DTI measures the rate at which water moves through
the brain’s white matter (23). While macrostructural MRI
markers, such as white matter hyperintensities, correlate with
reduced kidney function, loss of white matter microstructural
integrity may be a more sensitive measure of white matter
disease (24). White matter degeneration and white matter
abnormalities may be attributed to several causes. First, the
kidneys and brain share several perfusion pathways in which
cardiovascular and hemodynamic deviances may damage both

organs simultaneously. Other factors, including the hypertension
seen inmany CKDpatients, may also play a role in the association
between kidney function and white matter integrity (25). Finally,
impaired kidney function can lead to increased circulating
inflammatory factors. Proinflammatory factors decrease serum
nitric oxide in the brain vasculature, and this could contribute to
cerebral hypoperfusion, which, in turn, could lead to whitematter
damage as well (25).

Cerebral hypoperfusion has been implicated in
neurodevelopmental disorders. Hemodynamic disturbances
during CKD may play a role in the regulation of cerebral blood
flow (26), potentially linking CDK to cognitive problems. An
analysis based on the Rotterdam Study (27) found that lower
estimated glomerular filtration rate (eGFR) is independently
associated with lower cerebral blood flow (27). More recently,
Lepping et al. (28) used arterial spin labeling to assess cerebral
blood flow in a cohort of EKSD patients and age-matched
controls. The authors’ goal was identify kidney-associated
brain changes following kidney transplantation. Here, after
kidney transplant, cerebral blood decreased in ESKD patients
to values comparable to controls. White matter integrity, as
measured by fractional anisotropy and by mean diffusivity
with MRI-DTI, also increased and decreased, respectively,
post-kidney transplant (28). These measurements of white
matter integrity taken after kidney transplant were comparable
to controls. Taken together, these data suggest that proper kidney
function is essential for regulation of blood flow to the brain and
hemodynamic homeostasis.

Neuroimaging in Pediatric CKD
In contrast to adult CKD, congenital anomalies of the kidney
and urinary tract are the leading causes of CKD among children
ages birth to 4 years, whereas systemic diseases, infection, and
glomerular disease (e.g., focal segmental glomerular sclerosis)
become the leading causes of kidney failure in the older pediatric
population (29). Up to half of all children with congenital CKD
will experience a decline in kidney function so severe as to require
dialysis and eventually, a kidney transplant (30). Thus, children
with congenital anomalies of the kidney and urinary tract are
faced with a lifetime of CKD and of potential detrimental impacts
on the developing brain.

Neuroimaging studies in the pediatric population have
focused mainly on children with moderate to severe CKD
(including dialysis and transplant populations). The effect of
kidney disease in these children introduces many confounding
factors that affect brain function, such as uremia. Another
limitation of imaging studies in older children is that these studies
cannot provide direct information about the key stages of brain
development that occur from birth to 4 years of age. These issues
signal a critical gap in our understanding of the kidney-brain axis
during periods of peak neurodevelopment.

Cystic kidney diseases are some of the leading causes
of early-onset inherited kidney disorders. These diseases are
often characterized by enlarged kidneys with multiple cysts
and progressive kidney impairment. Autosomal dominant and
autosomal recessive polycystic kidney disease, as well as Meckel’s
syndrome, are a few examples of renal ciliopathies seen in the
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pediatric population. Cysts develop due to uncontrolled epithelial
cell proliferation, growth, and altered cell polarity—events
that occur downstream of abnormal cilia-dependent signaling.
Due to the early onset of renal ciliopathy-induced CKD and
concomitant development of severe hypertension, it is thought
that ciliopathies are a risk factor for neurocognitive dysfunction
secondary to CKD (31). The spectrum of neurocognitive
deficits ranges from relatively benign (akin to that seen in
polycystic kidney diseases) to more progressive deficits in
neurocognition (such as that seen in Joubert syndrome). One
cross-sectional, control-matched analysis, which involved the
Chronic Kidney Disease in Children (CKiD) cohort, compared
a group of autosomal recessive polycystic kidney disease
patients with mild-to-moderate CKD patients with respect
to intellectual functioning, academic achievement, attention
regulation, executive functioning, and behavior (31). No
differences were observed between these two disease cohorts;
however, further investigation into the potential effects of
renal ciliopathies on neurocognition in the pediatric population
is needed.

The majority of published pediatric CKD studies evaluating
volumetric brain structure have used computerized tomography
(CT) imaging data obtained in a clinical setting, rather than
quantitative MRI data obtained as a part of a specific research
focus (19). Brain atrophy is well-described in the early pediatric
nephrology literature (prior to 1990): up to 60% of patients had
atrophy that was not clearly related to etiology of disease or
CKD-associated sequelae such as hypertension (32). Qualitative
CT imaging also provides evidence for global cerebral atrophy,
silent white matter infarcts, and ventriculomegaly in advanced
pediatric CKD (19). In other studies, lower cerebral density (33,
34) and ventriculomegaly secondary to brain atrophy (35) were
found to be associated with the need for pediatric hemodialysis
(especially duration), but not with peritoneal dialysis (36).

To date, there are only four published studies that have
utilized quantitative, research-based MRI sequences to evaluate
the brain in CKD (26, 37–40). Hartung and colleagues (41)
used MRI to examine brain structure in 85 patients aged 8–
25 with CKD, encompassing a mix of pre- and post-transplant
patients (37). The authors reported subtle, cortical gray matter
abnormalities; however, their findings were significant only in
unadjusted models and did not persist in models adjusted for age
and gender. In this study, observed volumetric brain differences
were more prominent among the kidney transplant recipients
compared to those with pre-transplant CKD. More recently, our
group has observed significant reductions in overall cerebellar
gray matter volume and unexpectedly, an increase in cortical
(cerebral) gray matter volume among children ages 6–16 years
old with early-stage CKD, relative to controls (39). The degree
of cerebellar volume reduction was associated with estimated
glomerular filtration rate (Figure 1). Volumetric reduction in
the cerebellar gray matter was also associated with poorer
performance in tests of executive function. The volumetric
increase in the cerebral gray matter was associated with poorer
mathematics performance (Figure 2).

CKD is a known risk factor for cerebrovascular disease, with
white matter being particularly susceptible to the effects of altered

vascular tone. Matsuda et al. (38) evaluated the impact of CKD
on brain white matter within a cohort of 49 children, including
29 children with CKD of varying stages, ranging from pre-
to post-transplantation. Diffusion tensor imaging was used to
compare white matter microstructure in CKD patients compared
to controls.

Patients with CKD were found to have abnormal white
matter microstructure (specifically, within the anterior limb of
the internal capsule), as reflected by decreased white matter
fractional anisotropy and increased mean diffusivity and radial
diffusivity. Within the sample, 21% of CKD participants had
evidence of focal and multifocal white matter injuries compared
to healthy controls. No neurocognitive data were obtained in this
study; thus, the clinical significance of these white matter findings
remains unclear.

Recently, our group identified global abnormalities in white
matter microstructural integrity in CKD patients compared
to controls. The global decrease in white matter fractional
anisotropy was driven by regional reductions within the body
of the corpus callosum, cerebral, cingulum (hippocampus), and
posterior limb of the internal capsule (Figure 3). Despite these
significant differences in white matter integrity, we found no
significant association between the neurocognitive abilities of
CKD patients and white matter fractional anisotropy. Likewise,
there were no CKD-associated medical variables that emerged as
predictors for decreased white matter integrity.

Cerebral blood flow, which is a reliable measure of
cerebrovascular integrity, can be quantified using arterial spin
labelingMRI. Based on data from theNeurocognitive Assessment
and Magnetic Resonance Imaging Analysis of Children and
Young Adults with Chronic Kidney Disease (NiCK) study cohort
(41), Liu et al. (26) found, unexpectedly, that global cerebral
blood flow is higher in children with CKD compared to healthy
controls (41). These findings are in line with adult data showing
increased global cerebral blood flow, again as determined using
arterial spin labeling sequences (42). Since increases in cerebral
blood flow are associated with reduced hematocrit level in
children with CKD (26), it has been hypothesized that the higher
cerebral blood flow reflects a physiological compensation for the
chronic anemia typically associated with advanced CKD.

DISEASE OR DEVELOPMENT:
DELINEATING RISK FACTORS FOR BRAIN
ABNORMALITIES IN THE SETTING OF CKD

Cognitive deficit in CKD has been linked to a variety
of mechanisms associated with decreased kidney function,
including concomitant uremia, proteinuria, anemia, metabolic
acidosis, and cardiovascular disease (43). These CKD-associated
medical sequelae become more prominent in CKD stage 3
and beyond (eGFR < 60 ml/min/1.73 m2). Elevated blood
urea nitrogen (uremia) is a CKD-associated comorbidity that
often appears together with cognitive problems. Neurons, such
as the noradrenergic and serotonergic neurons responsible
for sleep/wake cycles and motor control, as well as the
acetylcholinergic neurons responsible for memory, may be
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FIGURE 1 | Neuroanatomical differences between controls and patients with pediatric chronic kidney disease CKD. (A) Shows the standardized group estimates

(x-axis) and 95% confidence limits of the estimates for each of the regions of interest (ROI) included in the analysis (y-axis). Estimates are adjusted for age,

socioeconomic status (SES) and maternal education. The red (vertical) line marks 0, or no significant effect of group on ROI. Red circles mark significant group

estimates. (B) Shows the relationship between estimated glomerular filtration rate, eGFR, (x-axis) and standardized cerebellum gray matter volume (y-axis) in the CKD

group. Reproduced with permission from Solomon et al. (39).

particularly sensitive to high levels of uremic milieu (44).
Alterations in the monoaminergic neurons may contribute to the
transient development of cognitive impairment that is seen in
patients with advanced CKD requiring dialysis (44). Although
uremia is commonly invoked as a primary etiology for cognitive
deficit in CKD, a clear neuroimaging correlate to link changes
in the brain with symptomatic uremia is lacking. One recent
case series evaluated MRI scans from patients with clinically
documented uremic encephalopathy and showed bilateral basal
ganglia lesions in the majority of images (45). However, since
no neurocognitive phenotype was described in this study, no
inference can be drawn as to whether the lesions noted were
associated with cognitive deficit.

Metabolic acidosis may play a direct role in cognitive
impairment in adults with CKD. Animal data suggest that
metabolic acidosis perpetuates neuronal dysfunction by
upregulation of excitatory synapses on gaba-aminobutyric
acid-ergic neurons (44, 46). The SPRINT-MIND [Systolic
Blood Pressure Intervention Trial Memory and Cognition
IN Decreased Hypertension (21)] cohort assesses adults with

hypertension and includes adults with CKD. Data from
this study showed that decreases in serum bicarbonate were
independently associated with lower performance on tests
of executive function (5). Harshman et al. (6) evaluated the
impact of metabolic acidosis in relationship to blood pressure
variability in pediatric CKD patients using the CKiD cohort.
The researchers found that the effect of increased blood pressure
variability on executive function was attenuated in the setting of
higher serum bicarbonate levels.

Hypertension (HTN), a CKD-associated comorbidity, can
affect the severity and course of cerebrovascular disease.
Consequently, HTN is a potentially modifiable risk factor for
cognitive defects in both pediatric and adult CKD populations.
As noted previously, the SPRINT study is the largest intervention
study to date looking at the effect of intensive blood pressure
control on cardiovascular outcomes among persons at high risk
for cardiovascular disease. The SPRINT trial demonstrated a role
for intensive systolic blood pressure control (goal of <120mm
Hg) in the reduction of probable dementia within an adult
CKD subgroup (21). Importantly, data from the SPRINT-MIND
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FIGURE 2 | Structure-function relationships in the pediatric chronic kidney disease (CKD) group. Significant associations are illustrated for cerebellum gray matter and

category fluency (A) and cerebrum gray matter and arithmetic (B). Results were adjusted for age, parental SES and maternal education. Reproduced with permission

from Solomon et al. (39).

sub-analysis found no detrimental effect of intensive lowering
of systolic blood pressure on brain perfusion or volumetric
structure (47).

The neurocognitive deficits in the adult CKD population
exacerbate comorbidities and contribute to a lower quality of
life. The most frequently impaired cognitive domains in the
adult CKD population include executive function, orientation,
and attention (48). Multiple studies have reported increases in
cognitive impairment with increasing age; however, even the
younger kidney transplant candidate in the adult population has
a relatively high burden of cognitive impairments compared to
the average adult. The conclusions from Chu et al. (48) suggest
that transplant centers consider screening kidney disease patients
for global cognitive impairment throughout their clinical care
regardless of age (48).

The association between hypertension, CKD, and cognition
has received a significant amount of focus within the prospective
CKiD cohort study. Lande et al. (12) evaluated data from children
with mild to moderate CKD who have elevated blood pressure
[i.e., systolic or diastolic blood pressure > 90th percentile for
age (49)]. Children with elevated blood pressure were more likely
to have lower nonverbal IQ than normotensive children. Within
the analysis, it was also noted that the blood pressure index
(i.e., the subject’s blood pressure divided by the 95th percentile
blood pressure for that subject’s gender, age, and height)

correlated inversely with nonverbal IQ, and this relationship was
maintained even after controlling for demographic and disease
related variables.

The neurocognitive deficits in the pediatric CKD population
have also been assessed through batteries such as the Penn
Computerized Neurocognitive Battery (50). This test revealed
that children and young adults with CKD have lower accuracy in
tests of complex cognition compared to their age-matched peers,
as well as deficits in verbal reasoning, nonverbal reasoning, and
spatial processing. Patients with CKD also had lower accuracy for
attention but were found to have faster response times, possibly
indicating greater impulsivity.

While unlikely to be the underlying cause of adult cognitive
impairment, genetic factors may influence the pathogenesis of
cognitive dysfunction in pediatric CKD patients. Both single-
gene variants and copy number variants have been implicated
as potential factors influencing cognitive deficit in pediatric
CKD. Genomic differences associated with pediatric CKD were
analyzed as part of the CKiD study (51); the aimwas to determine
whether genetic factors (in addition to, or perhaps rather than,
renal impairment) were responsible for the subtle neurocognitive
differences seen in pediatric CKD. Children with CKD-associated
genomic disorders were found to score significantly poorer on
all measures of intelligence and executive function compared to
noncarriers (52).
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FIGURE 3 | Group differences in global and regional white matter fractional anisotropy. Patient group (case or control) is shown on the x-axis and white matter

fractional anisotropy on the y-axis. Individual observations are represented by small, gray circles. Means and 95% confidence limits of the means are shown for each

group. (A) Shows the global fractional anisotropy, and (B–G) show white matter fractional anisotropy for the corpus callosum, cerebral peduncle, posterior limb of the

internal capsule, retrolenticular internal capsule, external capsule, and cingulum hippocampus, respectively.

Variation in the klotho gene has been associated with both
an accelerated aging phenotype as well as development and
progression of CKD (53, 54). Klotho is expressed in the
brain, with high levels of mRNA expression in the choroid
plexus, hippocampus, and cerebellar Purkinje cells (55, 56).
The klotho gene is also highly expressed in the kidney, where
Klotho acts as a coreceptor for fibroblast growth factor 23
(FGF23) in regulating calcium and phosphorus homeostasis

(57). Homozygous klotho knockout mice and CKD subjects
have similar phenotypes, suggesting that klotho dysfunction may
contribute to CKD progression (54, 58). Additionally, Klotho-
deficient mice demonstrate an accelerated aging phenotype
characterized by neurodegeneration and cognitive deficits (59,
60). In both CKD patients and in mice lacking Klotho function,
plasma FGF23 levels increase (61). Limited preclinical suggests
that elevation of FGF23 is associated with abnormalities of
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hippocampal neural networks. While previous studies evaluating
the effect of FGF23 on cognition have been equivocal in adults,
data from the CKiD cohort suggests that a higher plasma FGF23
level is associated with higher cognitive impairment and lower
performance in tests of executive function (55, 62).

Recent evidence suggests that there is crosstalk between
the kidney and brain, and that this “kidney-brain axis” is
sensitive to cellular oxidative stress and chronic inflammatory
processes (14). The crosstalk, mediated by reactive oxygen
species and inflammatory markers, may contribute to the
high prevalence of cognitive impairment observed during
the progression of CKD. Emerging data suggests that the
metabolic interactions of the “kidney-brain axis” are likely
mediated—at least in part–by the activities of hormetic
processes and a phenomenon dependent on the severity of
disease (63, 64). Oxidant-induced inflammatory pathways
could be promising therapeutic targets for the protection
of neurocognitive function in developing children who
have CKD.

NEUROIMAGING IN CKD: WHERE DO WE
GO FROM HERE?

In contrast to adult CKD populations, there is a paucity of
systematic, quantitative neuroimaging studies in young children
with CKD. The reasons for this are multiple. Certainly, there
are clear challenges to obtaining quality images from non-
sedated, young children. Furthermore, published pediatric CKD
neuroimaging studies have relied on patient samples with
heterogenous disease stage and etiology, making it difficult
to pinpoint mechanisms of neurocognitive deficits across the
lifespan. Additionally, there has been a stark lack of attention to
the impact of CKD on early brain development: to date, only one
neuroimaging study has been published that evaluated the brain
in very young CKD patients (children younger than 8 years of
age) (39).

The value of incorporating neuroscience-oriented analyses
into pediatric CKD research is that this combined approach
provides the clinical-translational tools needed to identify
potential neurobiological mechanisms that bring about
neurocognitive deficits in CKD children. This means moving

beyond the use of clinical scans to describe brain structure in
pediatric CKD; by their nature, these scans can highlight only
a limited range of the potential neurobiological mechanisms.
Multisite collaborations are necessary to address limitations
related to small sample sizes and heterogeneity of neuroimaging
research in pediatric CKD. And for these multisite neuroimaging
initiatives to be effective, collaboration between nephrologists
and neuroscientists is essential as well.

Neuroimaging research in the field of CKD requires tandem
assessment of cognition and kidney disease sequelae, in order
to identify patients who are at risk for neurocognitive deficits
and also to learn how early brain changes relate to CKD
progression. In comparison to the pediatric literature, the adult
CKD-brain literature is robust and incorporates a comprehensive
approach to the study of the brain. This should serve as an
example for the field of pediatric nephrology to embrace when
designing future CKD-brain studies. Neurocognitive difficulties
emerge in early childhood, during early CKD, and signal
a need for a greater understanding of how the developing
brain is affected by this life-long, chronic disease process.
Thus, longitudinal neurological assessment into adulthood
is essential, and must continue through the period when
CKD progresses to the point of requiring dialysis and/or
kidney transplant. Future neuroimaging research is necessary to
elucidate the neurobiological underpinnings of cognitive deficits
in CKD.
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