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Background & Aims: Autoimmune liver disease (AILD) is thought to result from a complex interplay between genetics and
the environment. Studies to date have focussed on primary biliary cholangitis (PBC) and demonstrated higher disease
prevalence in more urban, polluted, and socially deprived areas. This study utilises a large cohort of patients with PBC and
primary sclerosing cholangitis (PSC) to investigate potential environmental contributors to disease and to explore whether
the geo-epidemiology of PBC and PSC are disease-specific or pertain to cholestatic AILD in general.
Methods: All adult patients with PBC and PSC in a tightly defined geographical area within the UK were identified. Point- and
area-based analyses and structural equation modelling (SEM) were used to investigate for disease clustering and examine for
relationships between prevalence, distribution of environmental contaminants, and socio-economic status.
Results: We identified 2,150 patients with PBC and 472 with PSC. Significant spatial clustering was seen for each disease. A
high prevalence of PBC was found in urban, post-industrial areas with a strong coal-mining heritage and increased envi-
ronmental cadmium levels, whereas a high PSC prevalence was found in rural areas and inversely associated with social
deprivation.
Conclusions: This study demonstrates spatial clustering of PBC and PSC and adds to our understanding of potential envi-
ronmental co-variates for both diseases. Disease clustering, within the same geographical area but over different scales, is
confirmed for each disease with distinct risk profiles identified and associations with separate putative environmental factors
and socio-economic status. This suggests that different triggers and alternative pathways determine phenotypic expression of
autoimmunity in the affected population. Co-variate analysis points towards the existence of specific disease triggers.
© 2020 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Autoimmune disease is thought to arise as a result of a com-
plex interaction between genetic susceptibility factors and
environmental triggers.1 There has been substantial progress
in recent years in identifying genetic contributors (typically
the cumulative impact of numerous individually low impact,
typically immune-related, loci). There has been considerably
less progress, however, in identifying environmental triggers
and why disease develops in only a small proportion of
genetically predisposed individuals remains a key unanswered
question.

The current literature regarding the geo-epidemiology of, and
potential environmental factors in, autoimmune liver disease
(AILD) has focussed mainly on primary biliary cholangitis (PBC)
with identification of significant spatial and spatio-temporal
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variations in disease risk. Studies from the north-east of En-
gland have identified a higher prevalence of PBC in urban
areas,2–4 whereas a study in New York City found clusters of PBC
patients in zip codes that contained, or were adjacent to,
superfund toxic waste sites (SFSs).5 These studies point to the
importance of potential environmental risk factors in disease
aetiology but the same level of investigation of primary scle-
rosing cholangitis (PSC), the other cholestatic AILD, and auto-
immune hepatitis (AIH) have not previously been undertaken.
The only modelling study in PSC was as part of the work from
New York that did not show any statistically significant differ-
ence between the prevalence of transplanted PSC patients ac-
cording to zip code or for type of SFS.5 In AIH, a single study
found clusters of patients listed for liver transplantation near
sites with high levels of chlorinated hydrocarbons including
trichloroethylene.6

PBC and PSC are both rare, but important, causes of immune-
mediated, cholestatic, chronic liver disease and account for up to
18% of elective adult liver transplants in the UK.7 There is strong
evidence for a genetic component in both diseases, with
genome-wide association studies and other studies identifying a
number of susceptibility loci and risk genes.8–11
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In this study, we have used more advanced modelling tech-
niques than previous studies to build on the existing geo-
epidemiological research in PBC. In addition to investigating
disease clustering we have used point-based analyses, area-
based analyses, and structural equation modelling (SEM) to
attempt to understand environmental triggering by introducing
spatial covariates (risk factors) into the models. This study as-
sesses both PBC and PSC as comparator cholestatic AILDs to
evaluate whether putative environmental factors are common to
cholestasis or specific to each disease. We have then used AIH as
a comparator non-cholestatic, but immune-mediated, liver dis-
ease to explore the hypothesis that potential environmental
triggers are disease-specific rather than features shared by
autoimmunity per se. We believe that the findings make a sub-
stantial contribution to our understanding of disease pathogen-
esis and demonstrate distinct risk profiles for the development of
PBC in comparison with PSC. The techniques used here have
given unique insights into these diseases, and this study is an
exemplar for a broadly applicable approach.
Patients and methods
Populations
A comprehensive case-finding approach was used to identify all
incident and prevalent patients with PBC, PSC, and AIH in a
tightly-defined geographical study area (the Academic Health
Science Network for the North East and North Cumbria [AHSN
NENC]) who had been diagnosed before the end of 2016. This
area was used as the denominator as it reflects natural clinical
referral patterns.

Diagnostic criteria
Patients with ‘definite’ or ‘probable’ PBC, based on the conven-
tional diagnostic criteria, were included.12,13 The standard diag-
nostic criteria for PSC were used; cholestatic liver biochemistry
with typical cholangiographic features in the absence of other
identifiable causes or other extrahepatic disease (except
inflammatory bowel disease) with patients with clinical,
biochemical, and histological features compatible with PSC, but
with a normal cholangiogram, being classified as small duct
PSC.14 The diagnosis of AIH was based on the simplified Inter-
national AIH Group diagnostic criteria from 2008.15 Patients with
anti-mitochondrial antibody positivity and normal liver blood
tests (n = 694), those with an a priori clinical diagnosis of an
overlap syndrome (PBC/AIH: 130 patients; PSC/AIH: 36 patients),
those with an unknown postcode or living in a postcode outside
the study area (n = 299) and patients who were not alive during
the time period studied (n = 793) were excluded from analyses.

Multiple case-findingmethodologies were used:WorldHealth
Organization International Statistical Classification of Diseases
and Related Health Problems 10 codes, liver histopathology re-
ports (Table S1), autoantibody profiles, radiology reports, and
outpatient clinic letters. The lead researcher, a consultant hep-
atologist with a specialist interest in AILD, reviewed all case notes
to confirm or refute the clinical diagnosis. Further details of
the case-finding methodologies used are provided in the
Supplementary data: Case-finding and search strategies.

Ethical approval was obtained on 12 March 2015 (REC refer-
ence 15/SW/0048, IRAS project ID 166616, ISRCTN48732084). In
compliance with the Declaration of Helsinki, NHS research and
development approval was obtained for each study site before
recruitment. The study was conducted in accordance with
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International Conference on Harmonisation Good Clinical Prac-
tice guidance. Valid, written informed consent was obtained in
accordance with the study protocol from participants for whom
additional clinical data were collected.
Modelling methods
Point-based analyses
Further details of the modelling methods used are provided in
the Supplementary data. Spatial point-based analyses (K func-
tion) were used to investigate for the presence and patterns of
clustering of disease. K function analyses were used to assess if
cases occurred together in space and time more than expected
by chance. This method counts the number of cases within
concentric rings of each case and then compares the observed
count with that expected as a random process.16 Place of resi-
dence (postcode) was used as the spatial reference point and
year of diagnosis was used for temporal modelling.

‘Postcode head counts’ from the NOMIS dataset were used to
create a pool of control sites equivalent to the total population of
the region (approximately 3 million people) to adjust for popu-
lation size. Modelling included adjustment for the size of each
areal unit and population density.

Area-based analyses
Point-based analyses do not identify the size or location of
clusters or account for the role of putative risk factors. Area-
based analyses were used to examine for relationships be-
tween disease prevalence and the distribution of potential
environmental contaminants and socio-economic status. The
null hypothesis was that there was no difference between areas
in expected disease prevalence given the population size and
distribution of potential environmental contaminants. Bayesian
area-based analyses (using conditional autoregressive models)
were used to estimate the relative risk of disease in individual
postcode districts. The expected numbers of cases were calcu-
lated by distributing the total observed cases for the study area
between the postcode districts according to the adult population
estimate for each postcode district, that is NE3, CA7 (part of the
postcode classification system in the UK). Models were then
fitted with a variety of explanatory variables as single spatial
covariates. Coal mines, landfill sites, limestone quarries, sand-
stone quarries, and lead mines were all corrected for area, that is
counts per unit area. The deviance information criterion (DIC)
was used to compare model fit with 97.5% confidence intervals. A
difference in DIC>2 indicates a significant difference in model
performance.17,18 The best performing model was that with the
lowest DIC containing only significant variables.

Structural equation modelling
Taken together, point- and area-based analyses of patterns of
disease allow us to generate hypotheses about the putative
causes of disease. However, they do not take into account addi-
tional factors that may interact to contribute to disease devel-
opment. Our hypothesis was that putative environmental and
socio-economic risk factors are themselves inter-related. There-
fore, structural equation modelling (SEM) was used to develop a
conceptual model (Fig. 1) with pathways linking factors or
covariates that are hypothesised to be driven by or drive disease
itself. Potential sources of environmental exposure were divided
into 3 types:
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The SEM used actual counts of diseases and was adjusted for
population size. Model fit was estimated using the root mean
square error of association (RMSEA) and comparative fit index
(CFI). Non-significant variables were removed from the model
and it was re-run until the best model was identified in which all
included covariates were significant at the 95% level.
of patients
402

nts = 1,207 Total PSC patients = 521

ts = 963 PSC patients = 472

Excluded - Total = 11,733
•  Not AILD diagnosis = 10,836
•  AMA +ve normal LFTs = 694
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•  Out of area = 43
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•  Too young = 1

0
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hepatitis; AILD, autoimmune liver disease; AMA, anti-mitochondrial antibody;
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Spatial covariates
Hypotheses were generated regarding potential environmental
triggers related to autoimmune liver disease. ‘Urban-ness’ was
assessed using the Rural-Urban Classification, giving a measure
of the proportion of people living in an urban environment with
an average value for each postcode district. Traffic count datasets
for 2000–2015 were obtained from the Department for Trans-
port for the north-east and north-west of England. Data
regarding landfill sites, coal mines, lead mines, sandstone
quarries, and limestone quarries were obtained from the Envi-
ronment Agency Geostore and the British Geological Society
BRITPITS Database (licence number 2016/076BP ED). The
Geochemical Baseline Survey of the Environment project pro-
vided stream sediment pH and heavy metal data. The Townsend
Material Deprivation Score and The Index of Multiple Depriva-
tion (IMD) were used as measures of social deprivation.

Non-parametric data are presented as median and range.
Continuous variables are described as median, minimum, and
maximum and assessed using a 2-tailed Mann–Whitney U test
with p <0.05 being considered statistically significant. Data were
analysed using SPSS version 22 (SPSS Inc., Chicago, IL, USA),
GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA) and
in the R statistical package, version 3.6 (R Foundation for Sta-
tistical Computing, Vienna, Austria).
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Fig. 3. K-function analysis of spatial clustering and conditional autore-
gressive models of relative risk for PBC across study area. (A) K-function
analysis of spatial clustering for 2,150 PBC patients. Significant clustering
(using 95% CI) occurring when the data lies above the red line. (B) Relative
risk for PBC in each postcode district. (C) Significant relative risk for PBC in
each postcode district with dichotomised ‘high’ (red) and ‘low’ (green)
relative risk map at 97.5% significance. PBC, primary biliary cholangitis.
Results
There were 2,150 PBC patients (1906; 88.7% female, point prev-
alence 41.7/100,000 population) and 472 PSC patients (151; 32%
female, point prevalence 8.6/100,000 population) identified with
residential postcodes within the study area, giving a total study
population of 2,622 patients. For the comparator AIH group, a
further 963 patients (772; 80.2% female, point prevalence 21.2/
100,000 population) were identified. Fig. S1 shows the distri-
bution of the cases for the individual diseases across the study
area. Fig. 2 shows a Consolidated Standards of Reporting Trials
diagram outlining the patient identification process, reasons for
excluding patients and the final number of patients available for
inclusion in the study.

Primary biliary cholangitis
There was clear spatial clustering of PBC with the observed K-
function being outside the limits of the random samples be-
tween approximately 1–2 km and then at all distances above 7.5
km (Fig. 3A). This suggests clustering at both a local and a
broader level. There was no significant temporal clustering
(Fig. S2A). After adjusting for population size, areas of relative
high and low PBC prevalence were observed (Fig. 3B) with sta-
tistically significant variation in prevalence (Fig. 3C). The DIC for
the ‘null model’ was 799.755. When spatial covariates were
added to the model, coal mines gave the largest change in DIC
(9.885) with a highly significant increase in effect, suggesting a
strong association between PBC and coal mining (Table 1).
Urban-ness also significantly improved the null model but with a
change in DIC score of <2. The kriging maps in Fig. S3 show that
coal mines map onto urban areas and those with higher levels of
social deprivation. The areas with significantly increased PBC
prevalence (Table S2), such as Blyth and Cramlington in North-
umberland, are former coal-mining areas with more recent
housing development, frequently on reclaimed mine sites.

The best SEMmodel for PBC is shown in Fig. 4A. Thefinalmodel
was a goodfitwith an RMSEAof 0.000 and CFI of 1.000. Coalmines
4JHEP Reports 2021 vol. 3 j 100202



Table 1. Log file for DIC scores for null model and single covariates in PBC.

2.50% Median 97.50% DIC Change in DIC

Null 799.755
Urban 0.006796 0.1048 0.2014 799.209 0.546
Traffic −0.00934 −0.00333 0.002562 801.347 −1.592
Landfill sites −0.656 0.7062 2.039 801.621 −1.866
Coal mines 1.06000 1.992 3.029 789.87 9.885
Limestone quarries −4.1000 0.3970 4.757 801.758 −2.003
Sandstone quarries −0.527 0.08870 0.7020 801.223 −1.468
Lead mines −15.5000 7.4600 28.96 801.02 −1.265
Manganese −0.1349 0.05671 0.2543 801.648 −1.893
Lead −0.00028 0.0000749 0.000414 801.084 −1.329
Arsenic −0.00607 −0.00156 0.002764 801.058 −1.303
Iron −0.00713 −0.00125 0.003499 801.18 −1.425
Cadmium −0.04128 −0.00491 0.02935 802.019 −2.264
Stream sediment pH −0.06738 0.0141 0.0918 802.899 −3.144
Townsend score −0.0237 0.004068 0.03112 801.563 −1.808

Red line (Coal mines): Best model – statistically significant improvement on null model with largest change in DIC score. Yellow line (Urban): Statistically significant
improvement on null model but with change in DIC score <2.
DIC, deviance information criterion; PBC, primary biliary cholangitis.
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Fig. 4. Structural equation model for PBC and distribution of coal mines
and environmental cadmium levels across study area. (A) Output from best
SEM model for PBC. (B) Locations of coal mines (represented by black dots)
overlaid onto kriging map of stream sediment cadmium concentrations. The
lighter the colour on the scale, the higher the concentration of cadmium
(yellow = highest, blue = lowest). PBC, primary biliary cholangitis; SEM,
structural equation modelling.
were the major contributor (39%) to the SEM and environmental
cadmium levels appeared to play an interactive role with coal
minedistribution. Cadmium levels alsomade adirect contribution
to the model (22%). The kriging map in Fig. 4B shows that coal
mines map onto many of the cadmium-rich areas.

Primary sclerosing cholangitis
Significant spatial clustering was seen for PSC with peaks at
approximately 1 km, 2 km, and between 7.5 and 12.5 km
(Fig. 5A) with no significant temporal clustering (Fig. 2Fig. S2B).
Areas of high and low prevalence of PSC were observed (Fig. 5B),
with statistically significant variation in disease risk (Fig. 5C).

The DIC for the null model for PSC was 577.200. When spatial
covariates were included (Table 2), urban-ness and Townsend
score significantly improved the ‘null model’. Both were nega-
tively associated with the change in DIC score, that is fewer ur-
ban (more rural) and fewer deprived areas had a higher
prevalence of PSC. The area with increased PSC prevalence is in
the Lake District in Cumbria, an almost exclusively rural, sheep-
farming area (Table S3).

The best SEM model for PSC only had an RMSEA of 0.141 and
CFI of 0.872 with p >0.08 for all variables, so the model could not
be refined any further. However, it identified a number of co-
variates (stream sediment pH, arsenic, lead mines, and lead)
that were associated with variation in disease risk that warrant
further investigation.

Autoimmune hepatitis
To contextualise the results for PBC and PSC we compared the
findings in these 2 diseases to the non-cholestatic, autoimmune
liver disease AIH. Statistically significant spatial clustering was
seen for AIH with a peak of clustering at approximately 1 km and
further clustering between 7.5 and 14 km (Fig. 6A) but with no
temporal clustering (Fig. S2C). Although there was variation in
relative risk of AIH across the study area, this was not statistically
significant using 97.5% confidence intervals (Fig. 6B and C). The
DIC for the null model for AIH was 681.621 and none of the single
spatial covariates improved the model (Table S4).

For AIH, the best SEM model had an RMSEA of 0.000 and CFI
of 1.000 with no p values >0.05. Coal mines contributed 6% to the
variation in disease risk whereas cadmium was an independent
risk factor (22%). The relationship between stream sediment pH
JHEP Reports 2021
and AIH was negative, that is there was more disease in more
acidic areas.
5vol. 3 j 100202
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Discussion
This is one of the most comprehensive studies of the geo-
epidemiology of PBC and PSC performed to date. It demon-
strates the potential of comprehensive epidemiological
approaches for increasing our understanding of disease aetiology
through identification of potential environmental and socioeco-
nomic risk factors. It builds on previous work carried out in
the north-east of England exploring the geo-epidemiology of
PBC,2–4,19–22 but here, the identical modelling approaches have
also been used to study PSC in the same geographical area. We
have demonstrated spatial, area-based clustering of both PBC
and PSC but with notable differences in their geographical dis-
tribution. There was a high prevalence of PBC in the urban, post-
industrial east of the study region that has a strong coal-mining
heritage, as opposed to PSC, which was more common in the
rural, sheep-farming west and inversely associated with social
deprivation. An identical modelling approach was used for AIH
(as a comparator non-cholestatic, autoimmune liver disease).
Although significant spatial clustering was seen, the variation in
relative risk of AIH across the study area was not significant and
no spatial covariates were identified. The modelling techniques
used here were more advanced than in the previous north-east
England PBC studies, used a much larger cohort (2,150 vs. 770
with minimal cohort overlap given the 25-year difference be-
tween the studies), included a broader geographical area and
investigated other AILD. Previous studies aimed at identifying
disease triggers in both PBC and PSC have largely used case–
control epidemiological methods.3,4,21,23–26 The previous geo-
epidemiological study from New York that did include both
PBC and PSC patients found an association with toxic landfill
sites for PBC but not for PSC.5 There are potential synergies be-
tween the different experimental approaches and their findings.
Tobacco smoke, landfill sites, and industrial emissions are
major sources of volatile organic compounds, other aromatic
hydrocarbons, polychlorinated biphenyls, and heavy metals, all
of which are known to be related to immune dysregulation.27,28

It is known that there is an increased risk of PBC and PSC in
the family members of patients compared with the general
population.29–31 Given the well-described genetic associations of
both diseases, the potential for a genetic basis for this observa-
tion is clear. Parents, offspring, and siblings typically have a
shared environment for many years, raising the possibility that
familial risk may also have an environmental component. Point-
based analyses showed peaks at short distances (1–2 km) and
then a second, larger peak at a greater distance (above 7.5 km).
The first peak could potentially relate to a family with more than
one member affected by disease. Alternatively, small postcodes/
areas are likely to have less heterogeneity in many parameters
(e.g. genetics, potential exposure risks) that could result in close
case clustering. The presence of 2 peaks may point to genetics
being one factor in disease aetiology (accounting for peaks over
small distances) with the second peak relating to broader envi-
ronmental associations.

There was no temporal clustering in any of the diseases
studied. This is in contrast to previous studies from the north-
east of England that found statistically significant space–time
clustering of PBC patients.2,3 The authors suggested that a tran-
sient environmental cause (such as an acute infection) origi-
nating from a fixed geographical source could contribute to
disease development. It is perhaps a surprising discovery in a
chronic disease that has different modes of presentation, and
where there is an undefined, and often prolonged, time period
6vol. 3 j 100202



Table 2. Log file for DIC scores for null model and single covariates in PSC.

2.50% Median 97.50% DIC Change in DIC

Null 577.200
Urban −0.3424 −0.1704 −0.0012 574.892 2.308
Traffic −0.01624 −0.00413 0.0077 578.302 −1.102
Landfill sites −4.4400 −1.444 1.325 577.405 −0.205
Coal mines −2.0000 0.1076 2.249 578.722 −1.522
Lead mines −19.300 18.00 48.98 577.677 −0.477
Sandstone quarries −1.4200 −0.094300 1.2200 579.573 −2.373
Limestone quarries −9.9200 −0.70400 7.751 576.885 0.315
Cadmium −0.1054 −0.02616 0.04727 577.931 −0.731
Arsenic −0.00563 0.00299 0.01126 578.816 −1.616
Lead −0.000972 −0.000213 0.000484 579.155 −1.955
Manganese −0.2235 0.1577 0.5254 577.322 −0.122
Iron −0.00992 0.000427 0.009606 577.944 −0.744
Stream sediment pH −0.2868 −0.00223 0.2175 579.162 −1.962
Townsend score −0.1190 −0.06367 −0.0122 574.416 2.784

Orange line (Urban): Statistically significant improvement on null model with change in DIC score >2. Red line (Townsend score): Best model – statistically significant
improvement on null model with largest change in DIC score.
DIC, deviance information criterion; PSC, primary sclerosing cholangitis.
between developing disease and the clinical diagnosis being
made.

One of the key findings in this study is that SEM showed that
up to 39% of the variation in PBC risk was associated with
proximity to coal mines, and also pointed to relationships with
environmental cadmium both as an independent covariate and
also as an additive risk factor to residence in a former coal-
mining location. The SEM for PSC could not be refined to the
same degree but showed different covariates to that seen in PBC
(stream sediment pH, arsenic, lead mines, and lead). Possible
hypotheses about why coal mining may be related to PBC include
environmental disturbance leading to release of potential xe-
nobiotics, products from processing escaping into the environ-
ment, a surrogate association, socio-economic aspects (e.g.
smoking rates), and communities with similar genetics being
challenged by another pathology that stimulates the immune
response resulting in disease development.

Cadmium exposure can cause liver injury32 and is a well-
recognised environmental pollutant with cadmium mobi-
lisation as a result of coal-mining activity and water pollution
from abandoned metal mines recognised in environmental pol-
icy.33–35 The traditional conceptual model for PBC pathogenesis
is one of a primary autoimmune disease with the initial injury
to biliary epithelial cells (BECs) being a consequence of break-
down of immune self-tolerance. More recently, an alternative
hypothesis has emerged in which the primary injury to the BECs
is cytopathic, with altered expression of self-antigen (pyruvate
dehydrogenase) as a consequence of injury.36 Cadmium is cyto-
pathic, inducing apoptosis, cell senescence, and epithelial to
mesenchymal transition37; all cardinal features of the BEC
response to injury in PBC.32,38–40

The observation of PSC being more common in rural, affluent
areas raises questions regarding the inter-play between envi-
ronmental entities in the landscape and socio-economic status.
Overall, rural areas tend to be less deprived than urban ones.
Government statistics show that “12% of people living in urban
areas are in areas that are within the most deprived 10% of the
IMD, compared with just 1% of people living in rural areas”.41

However, owing to the IMD being a measure of relative depri-
vation, not every individual in a deprived area will be deprived,
and vice versa. The inverse relationship between PSC and social
deprivation is in stark contrast to most diseases where
JHEP Reports 2021
prevalence is higher in areas of greater social deprivation with
poorer levels of overall health.42–44

The link between PSC and rurality could reflect land usage, for
example agricultural activity, use of pesticides, and/or fertilisers.
Organophosphates are used to improve agricultural yield
but related to the development of autoimmune diseases in
humans.45 Studies suggesting that genetic polymorphisms may
be relevant in determining individual response to pesticide
exposure point to the interaction between genetics and the
environment.46 Work in rats has shown that concomitant
exposure to organophosphates increases hepatic reactive oxygen
species and triggers an acute liver injury with rises in
transaminases.47

Limitations and future work
One of the main limitations in both the previous and current
studies is the use of date of diagnosis as a surrogate for date of
disease onset. This means that conclusions regarding a temporal
element to disease onset should be interpreted with caution.

The current work examines associations between PBC and
PSC and the environment at a population level. Individual-level
data (e.g. smoking status, employment) should now be used to
examine these relationships at that scale and investigate for the
presence of additional aetiological factors contributing to dis-
ease clustering. The choice of covariates was based on hy-
potheses regarding potential environmental triggers but it
must be acknowledged that the covariates included were
dependent on the data being available at the geographical unit
studied.

One of the challenges in epidemiological research relates
to patient mobility. Individuals may move within the course of
their lifetime and space–time clustering may be affected by
population shifts during the study period. However, it is well-
reported that the north of England has low migrations rates,
particularly in women aged 30 years or over (almost all patients
with PBC).22 In the current study, for the 1,450 patients for whom
both the postcode at diagnosis and postcode at the time of study
entry were available, 73% were the same at postcode unit level
(i.e. in the same house or within the same cluster of houses), 85%
at postcode district level and 98% at postcode area level. This
confirms that although changing residential address was a lim-
itation within the study, there was relatively little movement
within the study region.
7vol. 3 j 100202
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Conclusions
Association and correlation do not imply causality. However,
this study has demonstrated novel findings of disease clus-
tering and associations with putative environmental risk fac-
tors that are different between PBC and PSC. The distinct risk
profiles associated with each disease have not previously been
reported and add significantly to the current literature. This
work suggests that there may be a common predisposition
(such as genetics) in the affected population with different
triggers and alternative pathways determining the phenotypic
expression of autoimmunity. Improved understanding of dis-
ease pathogenesis may enable reduced exposure to or modifi-
cation of the effect of potential triggers on susceptible
individuals.
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