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ABSTRACT

Epistasis is defined as a statistical interaction be-
tween two or more genomic loci in terms of their
association with a phenotype of interest. Epistatic
loci that are identified using data from Genome-
Wide Association Studies (GWAS) provide insights
into the interplay among multiple genetic factors,
with applications including assessment of suscep-
tibility to complex diseases, decision making in pre-
cision medicine, and gaining insights into disease
mechanisms. Since the number of genomic loci as-
sayed by GWAS is extremely large (usually in the
order of millions), identification of epistatic loci is
a statistically difficult and computationally intensive
problem. Even when only pairwise interactions are
considered, the size of the search space ranges
from hundreds of millions to billions of locus pairs.
The large number of statistical tests performed also
makes sufficient type one error correction impera-
tive. Consequently, efficient algorithms are required
to filter the tests that are performed and evaluate
large GWAS data sets in a reasonable amount of
computation time. It has been observed that many
pairwise tests are redundant due to correlations in
their genotype values across samples, known as link-
age disequilibrium. However, algorithms that have
been developed for efficient identification of epistatic
loci do not systematically exploit linkage disequi-
librium. Here, we propose a new algorithm for fast
epistasis detection based on hierarchical represen-
tation of linkage disequilibrium (LINDEN). We utilize
redundancies in genotype patterns between neigh-
boring loci to generate a hierarchical structure and
execute a branch-and-bound search to prioritize loci
testing based on approximations of a test statistic
for pairs of locus groups. The hierarchical organiza-
tion of tests performed by LINDEN allows for efficient
scaling based on the screened loci. We test LINDEN

comprehensively on three data sets obtained from
the Wellcome Trust Case Control Consortium: type
two diabetes, psoriasis, and hypertension. Our re-
sults show that, as compared other state-of-the-art
tools for fast epistasis detection, LINDEN drastically
reduces the number of tests performed while discov-
ering statistically significant locus pairs. LINDEN is
implemented in C++ and is available as open source
at http://compbio.case.edu/linden/.

INTRODUCTION

Genome-Wide Association Studies (GWAS) have been cel-
ebrated as a comprehensive way of assessing the statisti-
cal association between specific genomic variants and a
given phenotype within a population. An application of the
common-disease common-variant hypothesis (1), GWAS
initially focused on single-locus associations (2), and have
been successful in identifying significant associations be-
tween various genomic variants and many complex diseases
(3–5). However, as the limitations of GWAS are now recog-
nized, research has shifted toward multi-locus, epistatic in-
teractions which show more promise in capturing the inter-
play among multiple variants in their association with com-
plex traits (6).

Epistasis

Epistasis can be viewed as a functional or statistical inter-
action between two or more genomic variants in the con-
text of a specific phenotype (7). Functional epistasis refers
to the notion that one genetic variant can modify the ef-
fect of another genetic variant on phenotype (8). Reces-
sive alleles under a Mendelian inheritance model would be
an example of this. Statistical epistasis is concerned with
finding quantifiable statistically significant relationships be-
tween two or more variants in their association with phe-
notype (9). Ideally, data on statistical epistasis helps inform
the inference of the biological underpinnings of functional
epistasis. However, it is important to note that the existence
of statistical epistasis does not necessarily imply a useful bi-
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ological link. As a data-driven approach, GWAS are usu-
ally concerned with detecting statistical epistasis. For this
purpose, epistasis is tested using various methods, includ-
ing multiplicative and genotype-based models (10). In this
study, we focus on testing epistasis with genotype-based
models, performed through a � 2 test on the contingency ta-
bles associated with pairs of loci.

Computational and statistical challenges

Two of the most significant challenges in detecting epistatic
loci both stem from the size of the search space. Exhaus-
tive evaluation of all marginal effects alone can require
hundreds of thousands of statistical tests. This number
then grows exponentially based on the order of interac-
tions considered, and higher order interactions quickly re-
sult in a highly under-determined system. Consequently,
most epistatic search algorithms focus only on pairwise in-
teractions. Even so, the sheer number of locus pairs to be
tested necessitates significant computational power to cal-
culate all of the test statistics. Furthermore, a large number
of independent statistical tests greatly reduces the statistical
power of those tests. This makes correction for multiple hy-
pothesis testing rather challenging. For this reason, many
methods have been developed to reduce the number of tests
necessary for detecting epistasis.

Existing methods

Existing approaches to detecting epistasis can be roughly
classified into three categories: Exhaustive methods,
filtering-based methods, and heuristic methods. Exhaustive
methods examine all pairwise combinations and will
not miss any significant interactions, as defined by their
chosen measure of significance. These methods achieve
improvements in computational performance through
use of carefully designed index structures that exploit the
patterns in GWAS data (11,12). However, these meth-
ods are likely to be significantly slower, and potentially
intractable for sufficiently large datasets. Filtering-based
methods reduce the search space of possible locus pairings
by incorporating prior biological knowledge (13,14).
These methods commonly utilize mappings of the loci
to known pathways, functional categories, or proteins in
protein interaction networks, and limit the search space to
pairs that are mapped to the same pathway or interacting
proteins. This approach is capable of drastically reducing
the time complexity as well as improving the statistical
power of the epistasis tests. However, these methods ignore
the vast majority of loci pairings available in GWAS data
as most loci are neither within coding nor known regula-
tory regions. A broader class of approaches that include
incorporation of prior knowledge comprises heuristic
methods in general. These methods aim to strike a balance
between the accuracy of exhaustive methods and reduced
computational complexity of filtering (15,16) and usually
either prescreen loci or prioritize pairs of loci for testing
epistasis. (17,18). The tool-set PLINK (19,20) contains
what is to our knowledge, the fastest general purpose
pairwise epistasis scan currently available, fast-epistasis.
PLINK achieves this speed through an extremely efficient

implementation. Consequently, it still requires a quadratic
number of statistical tests to be performed and will not be
suited to very high density datasets.

Linkage disequilibrium

Linkage disequilibrium (LD) (21) refers the existence of
statistical associations between the genotypes of different
loci, and are most commonly observed between loci that
are physically close to each other in the genome. This is
also known as gametic phase disequilibrium and occurs due
to the way in which chromosomes are copied and recom-
bined during meiosis. During prophase, homologous chro-
mosomes exchange segments with one another in a process
known as cross over. This results in a statistical linkage be-
tween the genotypes of nearby loci as only those on oppos-
ing sides of a crossover event will have had their association
broken. The closer two loci are, the less likely it is that an
event will occur between them as there are less potential lo-
cations for one to occur.

LD offers many challenges in the detection of epistatic
loci, since loci that are in LD can appear to be statistically
interacting due to the patterns induced in the loci that are
in disequilibrium (22). However, LD also offers opportu-
nities in the detection of epistasis. In particular, it is com-
mon practice to identify groups of loci with strong LD, and
use only a single locus from each group for testing epistasis.
Since the genotypes of different loci in the same LD group
are correlated, it is sufficient to identify the interaction be-
tween a representative locus from that group and other loci
in the genome (23). This is also useful in integrating data
from multiple cohorts, since different studies can genotype
different loci, and a missing locus may have an LD partner
that is genotyped.

Contributions of this study

In this study, we propose a framework for systematically
exploiting LD to reduce the number of tests performed in
epistasis detection. Observing that LD is a quantitative con-
cept, and the definition of ‘LD groups’ relies on arbitrary
statistical thresholds, we develop a hierarchical representa-
tion of LD groups. In the proposed framework, rather than
relying on available LD information derived from the gen-
eral population, we use the redundancies in the GWA data
set that is analyzed. The proposed method, LINDEN, uses
correlations between the genotypes of neighboring loci to
construct groups that hierarchically represent LD trees and
derives representative genotypes for these LD groups. Sub-
sequently, it uses these representative genotypes to score the
potential interaction between any pair of loci in the respec-
tive groups and filter out pairs of loci groups that are not
promising.

We test LINDEN comprehensively on three different
GWAS datasets obtained from the Wellcome Trust Case
Control Consortium (WTCCC). We observe that LINDEN
can substantially reduce the number of tests required with-
out significantly compromising the ability to detect true
epistatic pairs. Finally, we demonstrate that the number of
tests performed by LINDEN grows sub-quadratically when
the growth of the genotyped loci is based on an increase in
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density. This result shows that LINDEN can be very useful
as GWAS evolve into whole-genome association studies.

METHODS

In this section, we first describe the structure of genome
wide association data. We then define epistasis and discuss
the challenges involved in identifying epistatic loci. Subse-
quently, we present an algorithmic framework that exploits
redundancies in the genotypes of neighboring loci to effi-
ciently identify epistatic pairs of genomic loci. The work-
flow of the proposed framework is shown in Figure 1.

Problem description

Genome wide association data. The input to our problem
consists of a genome-wide association (GWA) dataset D =
(C, S, g, f), in which C refers to the set of loci genotyped
for the set of samples S. In this dataset, g(c, s) denotes the
genotype of locus c ∈ C for sample s ∈ S, f(s) the phenotype
of sample s ∈ S. We consider instances in which the pheno-
type can be formulated as a binary trait of interest, e.g., a
sample either has type II diabetes or does not. A sample s
that has/does not have the trait of interest (i.e., f(s) = 1/f(s)
= 0) is called a case/control sample.

Genotype coding. For each locus, the variant that occurs
most commonly in the population is called the major allele,
and the less frequent variant is called the minor allele. The
genotype for a given locus is determined by the combination
of alleles in the two chromosomes. When genotype phasing
information is not available, there are three distinct possible
genotypes for each loci. Therefore, given the major allele for
each locus, a genotype can be coded as a |C| × |S| matrix
G such that G(c, s) denotes the presence or absence of the
minor allele in locus c, i.e.:

G(c, s) =
{2 if g(c, s) is Homozygous minor

1 if g(c, s) is Heterozygous
0 if g(c, s) is Homozygous major

(1)

We call each row of this matrix the genotype vector Gc, the
genotype vector of c.

Epistasis. It has been repeatedly observed that the geno-
type of a locus may alter the effect of a different locus on
an organism’s phenotype (8). Such interactions are captured
statistically by comparing the association between the phe-
notype and the combined genotype of a pair of loci with
the association between the phenotype and the genotypes
of the individual loci. There are multiple models for testing
epistasis statistically, including multiplicative and genotype-
based models (10). Here, we focus on genotype-based epis-
tasis, i.e., our objective is to identify pairs of loci such that
specific combinations of the genotypes of these loci are sig-
nificantly associated with the phenotype. A common statis-
tical test used for this purpose, and what is used by LINDEN,
is the � 2 test. The � 2 statistic assesses the strength of the
potential association with phenotype based on the distribu-
tion of case and control samples in the contingency table
that represents the genotype combinations of the two loci.

Exhaustive testing for epistasis. The most straightforward
method for identifying epistatic loci is to test all, or selected
pairs, of loci to identify locus pairings whose significance of
association exceeds a certain threshold (after correction for
multiple hypothesis testing). In order to exhaustively test all
pairs of loci for epistasis,

(|C|
2

)
statistical tests must be per-

formed. Since the number of genotyped loci is in the order
of hundreds of thousands, this is computationally expen-
sive. Furthermore, testing many pairs greatly reduces sta-
tistical power, due to the large number of independent hy-
potheses tested. To alleviate these problems, we focus on an
alternate formulation of the problem and propose a frame-
work for organizing the input loci into linkage disequilib-
rium trees. This enables early identification and filtering of
non-significant locus pairs without explicitly testing those
pairs for epistasis.

Proposed formulation

We formulate the problem as one of finding the most signif-
icant epistatic interaction for each genomic locus.

Definition 1.
(Most Significant Epistatic Partner for a Locus): Let C

be the set of loci genotyped in a GWAS. For two genomic
loci ci and cj ∈ C, let X2(ci, cj) denote the X2 statistic for the
contingency table of the genotypes of ci and cj. Then, for
each ci ∈ C, the most significant epistatic partner for ci is
the locus cj ∈ C − {ci} such that X2(ci, cj) > X2(ci, ck) for
any ck ∈ C − {ci, cj}.

The motivation for this approach is that correction for
multiple hypotheses renders statistical evaluation highly
conservative, making biological interpretations more de-
pendent on arbitrary statistical thresholds. In contrast,
ranking pairs of loci based on test scores and focusing on
the highest ranked interaction for each locus provides a rep-
resentative view of the possible biologically relevant interac-
tions of all individual loci that are genotyped. This formu-
lation also enables the use of branch-and-bound algorithms
to prune out pairs that are relatively less interesting without
performing explicit statistical tests.

Reciprocally significant epistatic pairs. In practice, the list
of identified epistatic pairs are dominated by some ‘hub’
loci. The hubs emerge even when the search is limited to the
most significant epistatic partner for each locus, since the
marginal effect of a locus shows its interaction with many
other loci as the most significant interaction for each of the
other loci (24,25). This leads to the identification of many
redundant and uninteresting pairs. Motivated by this obser-
vation, we propose to limit the search for reciprocally signif-
icant epistatic pairs, defined as follows.

Definition 2.
(Reciprocally Significant Epistatic Pairs): Two loci ci and

cj ∈ C are said to be reciprocally epistatic if ci is the most sig-
nificant epistatic partner for cj and cj is the most significant
epistatic partner for ci.

Based on this definition, we define the problem of epista-
sis detection as one of identifying and ranking all recipro-
cally significant epistatic pairs of loci. This ensures that each
locus appears at most once in the final output. Constrain-
ing the output to reciprocal pairs reduces the noise from loci
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Figure 1. Work-flow of the proposed framework for efficient detection of epistasis. Decision nodes are denoted by blue borders and green and red arrows
respectively represent yes and no. The input loci can be filtered to remove those with very low minor allele frequency and those with significant marginal
effect. Pairs of loci within a specified number of base pairs are not tested, since linkage disequilibrium may give rise to statistical interactions that are not
functionally relevant.

that may have large marginal effects, thus leaving those lo-
cus pairs that are most likely to have epistatic interactions
with biological significance.

Clearly, P-values are tools for assessing whether a finding
is interesting from a statistical perspective, but the thresh-
olds used to interpret p-values are rather arbitrary. For this
reason, we believe that the qualitative information on being
the ‘best pair’ and ‘reciprocity’ can be useful for the user
who will be interpreting these results. To this end, the label-
ing of this approach as ‘filtering’ or ‘prioritization’ can be
helpful but it may also be misleading. To this end, LINDEN
can best be described as a heuristic all pairs analysis.

Linkage disequilibrium trees

LINDEN utilizes a tree-based representation of loci to ex-
ploit the redundancies in the genotypes of loci that are in
linkage disequilibrium (LD). It is possible to reduce the
number of tested locus pairs by grouping genomic loci that
are in high LD, and using one representative locus from
each LD group for testing epistasis. The PLINK clumping
tool offers a greedy method for grouping and choosing a
representative locus in this manner (20). However, this ap-
proach can lead to many false negatives for loci that are not
in perfect disequilibrium, since the genotypes of the rep-
resentative loci may not be sufficient to capture the inter-
actions of other loci in the group. Representation of LD
groups using a tree structure better captures the nature of

linkage disequilibrium as a continuum, by providing a way
to hierarchically represent the degree of LD between differ-
ent loci. This allows systematic testing of epistasis for multi-
ple loci in a hierarchical manner, thereby reducing the num-
ber of statistical tests performed while missing fewer (or no)
statistically significant associations.

LD-tree. We define an LD-tree as a full binary tree T, in
which each node t represents a set L(t)⊂C of genomic loci
and is associated with a representative genotype vector, Vt.
Each leaf node represents exactly one individual genomic
locus, where the representative genotype vector is the geno-
type vector of that locus, i.e., Vt = Gc for leaf node t with
L(t) = {c}. For an internal node t, let t� and tr denote the
children of t. Then, the representative genotype vector Vt is
defined as:

Vt(s) =
{

Vt� (s), if Vt� (s) = Vtr (s)
NIL, otherwise for all s ∈ S. (2)

An example LD-Tree demonstrating the notion of represen-
tative genotype vectors is shown in Figure 2.

Construction of an LD-forest

Formulation. The key idea of the proposed algorithm is
to generate a set of LD-Trees that enables bounding or ap-
proximating the test score for epistasis between pairs of loci
based on the comparison of the representative genotype
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Figure 2. Illustration of the concepts of LD-Tree and representative genotypes. Each representative genotype vector is shown in their respective box. Here
a colon denotes the separation between case and control samples, and a––is used to represent the samples that do not overlap . Each leaf node represents
a single locus, therefore there are no unknown genotypes at this level. A node that is higher in the tree represents a larger number of loci and therefore has
more samples with unknown genotypes in its representative vector.

vectors of the roots (or internal nodes) of these trees. We
call such a collection of LD-Trees an LD-Forest and denote
it by R.

In this setup, it is clear that the nodes that are closer to
the root represent a larger number of loci. However tests
involving these nodes are also less informative, since their
representative genotype vectors constitute a sparser repre-
sentation. Recognizing this trade-off, we can formulate LD-
Forest construction as an optimization problem. Namely,
given genome-wide association data D = (C, S, g, f) and
a parameter d, our objective is to compute the minimum
number of LD-Trees such that all loci in C are represented
by a leaf node in one of the trees and the number of NIL val-
ues in the representative genotype vector of any root node
does not exceed d|S|. We call d the ‘threshold on the frac-
tion of ambiguous samples’. In this formulation, d is a user-
defined parameter that is used to balance the trade-off be-
tween ‘compression’ and accuracy of approximation. It can
be shown that this formulation leads to a generalization
of the bin-packing problem (26), and is therefore NP-hard.
Furthermore, this formulation ignores the accuracy of ap-
proximation at each internal node, which is rather impor-
tant for our end goal. Motivated by these observations, we
construct the LD-Forest using an agglomerative heuristic
that takes advantage of the knowledge of genomic proxim-
ity, and incorporates parameter d in tree construction, uti-
lizing a dynamically adjusted threshold.

Procedure. Our forest construction algorithm starts with a
collection of |C| trees, where each tree corresponds to a sin-
gle locus. Subsequently, it performs iterative scans through
the list of all trees and merges pairs of trees such that the
representative genotype of the root of the new tree contains
at most d* NILs. The parameter d* ≤ d is a dynamically ad-
justed threshold that grows with increasing number of iter-
ations. Merging of LD-Trees is done greedily. Over a scan
iteration, each tree is compared to the b closest trees, where
b is a parameter that defines the extent of the utilization of
genomic proximity in deciding which loci can be in LD. The
individual LD-Trees are stored sequentially, when two trees
are merged the position of the resulting tree within this se-
quential data structure is set to the previous location first
constituent tree. This maintains the relative positions of all
of the other trees. Recall that the before the merging proce-

dure, the forest of LD-Trees contains each locus represented
by a single LD-Tree arranged in genomic order. Thus the ge-
nomic distance between two LD-Trees at any iteration dur-
ing merging is not explicitly calculated and b refers to the
closest Trees within this sequential data structure. When b is
very small, only loci that are next to each other are merged.
As b gets larger, more and more of the genomic redundancy
information provided by the GWAS data is utilized. We use
b = 10 in our experiments.

The first merger that satisfies the bound on d*, if any, is
performed. In the first iteration, d* = 0 in order to merge
loci with identical genotype vectors, and in each successive
iteration d* is incremented by 1%. Thus later iterations al-
low a greater degree of uncertainty in newly formed root
nodes. The merging procedure terminates when d* = d and
no further merging is possible. In practice, the runtime of
this algorithm is linear in |C|. The parameter b defines a con-
stant maximum number of comparisons for a locus during
a merge iteration. The number of merge iterations does not
depend on the number of loci provided. Furthermore, the
runtime of LD-forest construction is negligible as compared
to the testing step, which is described in the next section.

Identification of epistatic pairs

The objective of LINDEN is to produce the correct set of
reciprocally significant pairs. LINDEN implements a heuris-
tic that starts by testing all pairs of the roots of LD-trees.
This entails at a minimum, one test per pair of trees (be-
tween both root nodes). Subsequently, pairs of nodes that
are children of promising pairs of parents are recursively
tested. This strategy enables pruning out subtrees that are
deemed as unlikely to contain any significant interactions
between the leaves of the corresponding subtrees. The like-
lihood of the existence of a significant interaction between
leaves is assessed using an estimation function that operates
on the representative genomic profiles of the respective root
nodes. As mentioned in Figure 1, we do not test loci within 1
Mb of one another. This is done in order to avoid false pos-
itives arising only from linkage disequilibrium rather than
an interesting functional relationship. (27)

Significance estimation. There are two distinct types of
tests between nodes in LD-Trees: tests between two leaf
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nodes, and tests that involve internal nodes. Since leaf nodes
each represent one locus where all sample genotypes are
known, a test between two leaf nodes is a standard � 2 test
between a pair of loci. Naturally a test between two leaf
nodes is the only type of test that can result in LINDEN
discovering an epistatic interaction, as this is the only type
that explicitly tests a pair of individual loci. For tests that
involve internal nodes, our purpose is to estimate the like-
lihood that the corresponding subtrees contain a pair of
leaves with significant epistasis. For this purpose, we use an
estimation function to account for the fact that the genotype
vectors are not perfectly representative of all child nodes.
The choice of this function is important in trading off com-
putational savings and accuracy.

A reasonable choice for the estimation function would be
a function that provides a bound on the � 2 statistic of any
pair of leaves in the subtrees represented by the nodes being
tested. Indeed, a provable bound can be obtained by ‘filling
in’ missing genotypes with the values that lead to the largest
possible � 2 statistic. However, in our preliminary experi-
ments, we observed that such a provable bound is too loose
to provide any significant earnings in terms of the number
of tests avoided. For this reason, we here use an estimation
function that does not provide a provable bound, but pro-
vides a practically useful approximation to the likelihood
that the subtrees contain a significant pair of leaves. It is
important that the function we use here to evaluate pairs of
internal nodes (sets of loci) is not a bounding function for
the significance of pairs of loci in these sets. This function
is not anti-monotonic either, thus it serves as a heuristic to
prune out the search space. As we show in the result section.
this heuristic delivers useful performance in practice. Nev-
ertheless, a tight bounding function that would enable loss-
less (and potentially more effective) pruning of the search
space remains an open problem and an effective solution to
this problem may further improve the efficiency of epistasis
detection.

When testing between internal nodes, we construct a con-
tingency table from the pair of representative vectors, ig-
noring samples in which either vector contains a NIL. Sub-
sequently, we compute the � 2 statistic for this contingency
table. For nodes x and y, we denote this approximation F(x,
y). This process is illustrated in Figure 3. Note that, the � 2

statistic for any pair of leaves can be higher and lower than
this estimation function. However, this estimation function
provides a heuristic approximation to the � 2 statistic for the
pairs of leaves that are in the respective subtrees. The accu-
racy of this approximation depends on the parameter d. For
this reason, in the Results section, we comprehensively as-
sess the effect of the parameter d on the accuracy of the re-
sulting algorithm. We also observe that there is an optimal
value of d across multiple datasets.

Dynamic significance threshold. As described in the pro-
posed formulation, we are interested in identifying the most
significant epistatic partner for each locus. To avoid testing
all possible partners for each locus (i.e. performing all of the(|C|

2

)
tests), we use a dynamic threshold X* on the � 2 statis-

tic. We denote the set of all possible pairs of loci as Cp. We
also define a table Y that stores the number of discovered

locus pairs for a range of � 2 values:

Y(t) =
{|Cp|, if t = 0
|{ci , c j ∈ Cp : χ2(ci , c j ) ≥ t}| if 1 ≤ t ≤ T (3)

Here, T is a bound on the maximum achievable � 2 value
by any pair of loci.The dynamic threshold is maintained at
the maximum � 2 for which there have been at least |C| pairs
found whose test statistics achieve a � 2 at least as large, i.e.:

X∗ = max
0≤t≤T

{Y(t) ≥ |C|} (4)

The idea behind this approach is that the number of re-
ciprocally significant pairs can be at most |C|

2 , thus a pair
that is not among the top |C| significant pairs cannot be re-
ciprocally significant. During testing of epistasis, any pair
of subtrees that have � 2 less than X* are pruned out and
none of the children of the respective nodes are tested. The
dynamic nature of X* translates into a branch and bound al-
gorithm in which pruning becomes more aggressive as more
significant cp are found.

Note that the dynamic significance threshold is used to
guide LINDEN in determining which LD-tree nodes should
be expanded and is based on the locus pairs that have been
detected as the algorithm progresses. Thus the dynamic
threshold does not necessarily follow the same progression
for different values of d. However, due to the large number
locus pairs with similar significances in practice it is very
close. Once LINDEN concludes, the final list of most sig-
nificant reciprocal pairings is assessed for statistical signifi-
cance with one of three methods: the bonferroni corrected
p-value based on an exhaustive pairwise analysis, compari-
son to the background significance after permutation test-
ing with randomized case/control labels, and bonferroni
correction based on the number of tests performed by LIN-
DEN. The cutoff obtained through permutation testing is
the least conservative of the three but is extremely compu-
tationally intensive to calculate. In Figure 12 we show that
bonferroni correction based on the tests performed by LIN-
DEN is a good approximation of the permutation testing
cutoff.

Pairwise tree test. A simple indexing data structure is used
to keep track of the best partner found for each locus and
the � 2 statistic of that interaction. We refer to this structure
as W. A stack Q is used to maintain the order of evaluation
of node pairs between two LD-trees. To identify epistatic
pairs of leaves between two LD-trees, we first test the roots
of the two trees. This is achieved by using the previously
described estimation function in the proposed formulation.
After the roots x and y of two subtrees are tested, F(x, y) is
compared against X*. If F(x, y) > X*, then all pairs of the
immediate child nodes of x and y are pushed to Q. Other-
wise, all tests involving pairs of descendants of x and y are
skipped. If x and y are leaf nodes and the resulting � 2 statis-
tic exceeds the dynamic threshold X*, then the � 2 statistic
for x and y is compared to their current most significant
discovered partners and W is updated accordingly. The Y
table is updated accordingly and X* increased as necessary.
An example illustrating this algorithm is shown in Figure 4.
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Figure 3. Test statistic approximation. When approximating the � 2 test between two representative genotype vectors, the samples that do not have a value
in the corresponding entries of the representative vectors of both loci are dropped during contingency table creation. Here, the resulting contingency table
is constructed from 10 samples.

Figure 4. Testing of epistasis between two LD Trees. Each tree contains four loci represented by the leaf nodes. The stack that keeps track of the pairs of
nodes to test is shown to the right. Each row corresponds to a different iteration. The pair of nodes that is being tested is shown in bold at each iteration.
The black leaf nodes represent two loci that make up a significant pairwise interaction, while the dashed lines represent nodes that are tested against each
other. First, node a is tested against node h, resulting in a value that is above the cutoff, thus all pairwise combinations of their child nodes are added into
the stack. Of those, only the test between node c and node i passes the cutoff, resulting in a total of four leaf node tests performed.

RESULTS

In this section we provide an analysis of LINDEN’s ability
to reduce the number of statistical tests performed to de-
tect the most reciprocally significant locus pairs, as well as
its precision and recall. We next consider LINDEN’s per-
formance based on the density of the loci. We compare
the performance of our greedy method for LD-Tree con-
struction to a method using Plink’s clumping tool. Next
we show that LINDEN finds statistically significant locus
pairs in all three WTCCC datasets. We provide an empirical
comparison of performance between LINDEN, iLoci, and
Plink fast-epistasis. Finally, we briefly consider the func-
tional relevance of the locus pairs detected by LINDENon
the WTCCC data.

Datasets

We comprehensively test the effectiveness of our method on
three datasets obtained from the Wellcome Trust Case Con-
trol Consortium. Each set represents, the genotyped loci for
patients with a specific disease phenotype and the control
samples genotyped at the same loci. We provide a summary
of the three datasets in Table 1.

For the comparison of performance between LINDEN,
iLoci and Plink we utilize the tool GAMETES (28) to gen-
erate simulated GWAS data and implant epistatic loci. We
further post process the GAMETES output to simulate

linkage disequilibrium and locus density. We describe this
procedure in detail later in this section.

Experimental setup

LINDEN is implemented in C++ and is available as open
source at http://compbio.case.edu/linden/. To be able to per-
form comprehensive experiments and characterize the ef-
fect of all factors, we run LINDEN on smaller instances
obtained by sampling from the entire dataset. Since the
method exploits genomic proximity, we subsample contigu-
ous SNPs to create each instance. Namely, for each con-
figuration of parameters and performance criteria, we cre-
ate five instances by selecting 50k contiguous loci (nearly
10% of the loci in the dataset) for each instance. The set
of loci considered in each instance are disjoint from each
other. We run the algorithm on each instance and report
the mean and the standard deviation of each performance
metric across all five instances. Subsequently, in the statis-
tical significance and functional annotation sections, we re-
port results on LINDEN’s performance in identifying statis-
tically significant and biologically relevant epistatic pairs on
the entire dataset for all of the three diseases.

In the following sections, we use the extent of pruning,
accuracy, and efficiency as the main performance criteria.
For each parameter combination, we also plot the per-
formance of an algorithm that exploits LD using a flat-
tened tree structure, i.e. for each LD-Tree the leaf nodes
are treated as a group. In this algorithm, a test between

http://compbio.case.edu/linden/
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Table 1. Description of the three datasets that were used to in computational experiments

Phenotype #Loci #Controls #Cases

Type II Diabetes 495,476 1589 1914
Psoriasis 535,475 2178 5175
Hypertension 454,653 2001 2997

two LD-Groups consists of a random selection of one locus
from each group. By comparing the performance of the flat-
tened structure against our proposed hierarchical approach,
we investigate whether LINDEN’s use of LD-Trees results
in a substantial improvement over more naive methods of
linkage-disequilibrium prioritization.

Following standard procedure, we filter out all loci that
have a minor allele frequency <5%. This is because, if a suf-
ficient number of samples is not available for a given geno-
type, it becomes too difficult to detect any meaningful statis-
tical association. We also discount interactions between loci
that are within one Mbps of each-other. The purpose of this
step is to filter out associations that likely stem from linkage
disequilibrium between the two loci, rather than indicating
a functional relationship. As we show in the statistical sig-
nificance analysis, even with this standard, fairly conserva-
tive screening we are able to detect statistically significant
locus pairs in all three datasets.

Reduction in the number of tests performed

We first assess LINDEN’s ability to reduce the number of
pairwise statistical tests performed as compared to an ex-
haustive enumeration of all locus pairs. LINDEN performs
two types of epistasis tests: (i) tests that involve at least one
internal node of an LD-Tree, (ii) tests that involve two leaf
nodes (i.e. a test of epistasis between two specific loci). The
tests that involve internal nodes represent the ‘overhead’ in-
troduced by LINDEN in order to reduce the number of tests
between the leaves. For this reason, to accurately charac-
terize the reduction in the number of tests performed, we
compare the total (internal and leaf) number of tests per-
formed by LINDEN to the total number of pairs of loci in
the dataset. In other words, letting zi and z� respectively de-
note the number of internal node tests and number of leaf
tests, we quantify LINDEN’s performance in reducing the
number of performed tests as:

Fraction of tests performed = (zi + zl )/
(|C|

2

)
(5)

Furthermore, to assess the contribution of the tree struc-
ture, we also run LINDEN by treating each tree as a
flat group of loci, removing the hierarchical information.
Namely, after the LD-forest is constructed, we test pairs of
randomly selected leaf nodes for each pair of trees. There-
fore, the area between the two curves in Figure 5 repre-
sents the overhead from evaluating internal nodes in the tree
structure. As seen in the figure, this overhead is consistent
and effectively negligible. Furthermore, as demonstrated by
the results presented in the accuracy section, this small over-
head results in a drastic increase in the ability to detect the
correct list of most significant reciprocal pairs.

Precision and recall

When the threshold on the fraction of ambiguous samples,
d = 0, our method is equivalent to a standard pairwise ex-
haustive test of all loci. This is because LD-Trees are only
formed between loci that exhibit identical genotype vectors,
thus resulting in an LD-Forest containing only either trees
of height zero each representing a single locus, or trees with
identical genotype vectors at the leaf nodes. Based on this
observation, we run LINDEN with d = 0 to obtain a list of
reciprocally significant locus pairs, and treat this list as the
‘ground truth’ for reciprocally significant locus pairs. Using
this list for different values of d, we assess the precision and
recall of LINDEN in identifying reciprocally epistatic locus
pairs. Namely, for a given d > 0, the recall is defined as the
fraction of pairs identified by LINDEN, among those that
are identified with d = 0. Similarly, precision is defined as
the fraction of pairs identified, among those that are iden-
tified with threshold d = 0 over the total number of pairs
identified. The results for this analysis are shown in Fig-
ure 6 (recall) and Figure 7 (precision). As seen in both fig-
ures, the overall behaviors of precision and recall are con-
sistent, across the three datasets representing three different
diseases, as well as between different trials on contiguous
groups of loci within a dataset.

It is important to note that precision and recall are rather
conservative measures of the performance of LINDEN. In
practice, if a true reciprocally epistatic pair is not detected,
frequently it is because one of the loci has been substituted
for another and the resulting pairwise significance is very
close to that of the pair in the exhaustive list. This notion
is also supported by the high correlation between precision
and recall in all three datasets. Furthermore, any recipro-
cal pair that is reported is highly significant, regardless of
whether it belongs in the set of the reciprocal pairs identi-
fied by exhaustive testing.

Effect of the threshold on fraction of ambiguous samples

The choice of value for d represents a trade-off between ac-
curacy and runtime. To provide reasonable guidelines for
choosing this parameter, we systematically investigate its ef-
fect on performance. First, we observe that any value of d
≥ 0.5 is not useful. Recall that d represents the maximum
fraction of samples that can have an ambiguous genotype
in a node of an LD-Tree, and therefore are dropped while
testing internal nodes. When performing a pairwise test be-
tween two internal nodes, if both nodes drop half of their
samples, and those samples are disjoint, then there is no in-
formation left to assess significance This becomes very likely
when d ≥ 0.5.

Assessing performance gain. Clearly, there is a trade-off
between the reduction in the number of tests and the recall
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Figure 5. Reduction in the number of tests performed. Fraction of tests performed by LINDEN compared to exhaustive pairwise testing as a function of
the threshold on the fraction of ambiguous samples.

Figure 6. LINDEN’s recall in identifying reciprocally significant locus pairs as compared to exhaustive testing. Plots depict recall as a function of the
threshold on the fraction of ambiguous samples.

and precision of identified reciprocally significant pairs. To
assess LINDEN’s performance in resolving this trade-off, we
propose a criterion, termed gain, that combines these two
metrics. Namely, we define recall/precision gain as the ratio
of recall/precision to the reduction in number of tests. To
be more precise, we define:

recall gain = recall
fraction of tests performed

(6)

precision gain = precision
fraction of tests performed

(7)

The recall and precision gain as a function of d for all
three datasets are shown in Figures 8 and 9 respectively. As
seen in both figures, the gain provided by LINDEN grows as
a function of the fraction of ambiguous samples (d), peaks

around d = 0.5, and then sharply goes down with increased
variance. The rapid decline in gain, as well as the instability
for d > 0.5 is expected for the reasons explained previously.
The growth in both recall and precision gain for values of d
up to 0.5 is consistent across all datasets. This observation
suggests that the hierarchical pruning provided by LINDEN
is indeed beneficial, in that the more aggressively the loci are
merged, the more number of tests are reduced, with toler-
able loss of precision and recall. Note that, as seen in the
figures, both recall and precision gain remain almost con-
stant when the tree structure is not utilized. This observa-
tion demonstrates that the principled way of hierarchically
approximating significance for groups of loci adds value to
the exploitation of genomic redundancies.
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Figure 7. LINDEN’s precision in identifying reciprocally significant locus pairs as compared to exhaustive testing. Plots depict precision as a function of
the threshold on the fraction of ambiguous samples.

Figure 8. The gain provided by LINDEN in terms of recall in identifying reciprocally significant locus pairs as compared to exhaustive testing. Plots depict
the fraction of recall and the reduction in the number of tests as a function of the threshold on the fraction of ambiguous samples.

Effect of genotype density

The proposed LD-Forest data structure has a uniquely use-
ful property in that it becomes more efficient with increasing
density of genotyped loci. A greater density means that the
average distance between loci is decreased and thus the like-
lihood or degree of genotypic redundancy is increased and
therefore LINDEN is likely to perform a greater degree of
LD-Tree merging. For this reason, for a fixed genome, LIN-
DEN effectively enables performance of a quadratic number
of tests (in terms of the number of loci genotyped) in sub-
quadratic time. This is particularly relevant in the context
of whole-genome association studies as these studies cover
a sampling from the entire genome, meaning that a larger
input necessarily has a greater density.

In order to understand the effect of increasing density, we
fix d to 0.45 (based on the observations reported in the pre-

vious subsection) and assess performance as a function of
genotype density. Since available WTCCC data is already
genotyped and it is not possible to increase its density with-
out genotyping new loci, we generate data for different den-
sities by sub-sampling lower-density loci from available loci.
To be more precise, while generating genotype data for den-
sity � , we randomly select a starting locus and generate a
GWAS dataset from the actual dataset by skipping � 1

1−ρ
	

contiguous loci for every locus retained. The results of this
analysis are shown in Figure 10. We also show that the ratio
of tests performed compared to an exhaustive enumeration
decreases substantially as the genotype density increases.
However, the accuracy and precision also decrease moder-
ately, and observe that the overall gain provided by LINDEN
improves with increased genotype density.
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Figure 9. The gain provided by LINDEN in terms of precision in identifying reciprocally significant locus pairs as compared to exhaustive testing. Plots
depict the fraction of precision and the reduction in number of tests as a function of the threshold on the fraction of ambiguous samples.

Figure 10. Effect of genotype density on performance. Each panel shows the behavior of a performance figure as a function of SNP density on subsampled
loci from the three WTCCC datasets, for LINDEN and exhaustive testing. In these experiments, the threshold on the fraction of ambiguous samples is set
to 0.45.
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Comparison against established linkage disequilibrium values

Although LINDEN aims to exploit genomic redundancies
that arise from linkage disequilibrium (LD), it utilizes ge-
nomic redundancy observed in the specific dataset rather
then using established knowledge on the LD between dif-
ferent loci. To understand whether this data-oriented ap-
proach yields better results than utilizing LD information
derived from the general population, we use the PLINK
clumping tool (19) to group loci based on the r2 values. A
higher value of r2 results in more aggressive grouping. We
perform an exhaustive pairwise test between the representa-
tives. The results of these analyses are shown in Figure 11.
As seen in the figure, grouping based on r2 yields relatively
unfavorable performance as compared to LINDEN. Specifi-
cally, while grouping based on r2 provides reasonable preci-
sion and recall if small groups are used, precision and recall
rapidly decline as grouping is performed more aggressively.
Inspection of the behavior of recall and precision gain as a
function of the threshold on r2 (aggressiveness of grouping)
suggests that the gain is minimal and does not improve as
grouping becomes more aggressive. We also observe a mas-
sive spike in variance near r2 = 1.0 (most aggressive group-
ing), this is likely an artifact of the low number of reciprocal
pairs detected at these high r2 levels.

Statistical significance

We next test LINDEN’s ability to find statistically significant
pairs when evaluating the entire set of available loci for each
of the three datasets. The results of this analysis are shown
in Figure 12. We also provide summary statistics in Table 2.
Although LINDEN is quite efficient, performing a complete
pairwise search for multiple permutations across the three
datasets is computationally intensive. For this reason, we
use a 10% significance level rather than 5%, thus requiring a
lower number of permutations. Each plot shows the P-value
for the top one thousand discovered reciprocal locus pairs,
as well as the top one thousand reciprocal pairs detected
in ten iterations of permutation testing. We show the top
one thousand in order to provide a comparison between the
background pairwise significances against those pairs that
are statistically significant. Only those points above at least
one of cutoff lines represent a statistically significant pair
based on permutation testing.

We use d = 0.45 to remain on the slightly conservative
side of the parameter setting that appears to balance the
trade-off between efficiency and accuracy. Even though 0.5
appears to be optimum, it is possible, though unlikely, for a
test between two internal nodes to contain no usable sam-
ples if their sets of unknown genotypes are disjoint. For d
= 0.45, on the other hand, the number of samples available
to any internal node test is at least 10% of the total number
of samples.

In permutation testing, we generate the null models by
randomizing the case control labels for the samples, thus
breaking the association between genotype and phenotype.
Each plot also includes three horizontal lines representing
three significance thresholds. Bonferroni-Standard refers to
a cutoff that corresponds to Bonferroni correction for an
exhaustive test of all pairs in the dataset at the 10% signif-
icance level. Bonferroni-Reduced-Tests refers to the cutoff

calculated from the number of tests performed by LINDEN
(where the number of tests performed is calculated as the
total number of leaf tests and internal node tests) again at
the 10% significance level. Permutation-Testing represents
a cutoff chosen conservatively as the point that is above all
scores achieved in the permuted datasets. Note that these
are not Manhattan plots, the points are spread out to make
it easier to see the individual points at the higher signifi-
cance p-values.

As expected, in all three datasets we can see that the
standard Bonferroni correction is too conservative, thus the
overall statistical power of a standard exhaustive search is
limited. Permutation testing generally produces less con-
servative, appropriate significance cutoffs with the trade-off
that they are much more computationally intensive to calcu-
late. In general, with the exception of specialized methods
(11), permutation testing is not feasible in epistasis detec-
tion.

LINDEN’s estimate of the significance threshold based
on the number of tests performed is substantially closer
to the cutoff determined by permutation testing while re-
maining as easy to calculate as a standard Bonferroni cor-
rection. This is because it implicitly takes into account the
fact that the individual tests are not truly independent, and
Bonferroni correction operates under the assumption of in-
dependent tests. Furthermore, notice that in all three data
sets, there are reciprocal pairs that would not be reported
as statistically significant if the standard Bonferroni cutoff
were used. There is a clear practical benefit to our adjusted
threshold.

Comparison with other methods

We compare the statistical power and runtime of LINDEN
to iLoci (18) and the Plink (20) fast-epistasis tool. All three
methods are intended to provide fast heuristic detection
of epistatically interacting SNP pairs. We also considered
TEAM (11) for comparison, but found that it does not scale
to the number of SNPs we are interested in analyzing. We
use the simulation tool GAMETES (28) to generate simu-
lated genotype data and implant epistatic interactions.

Statistical power. For each model generated, we implant a
single pair of epistatically interacting loci. GAMETES al-
ways places the target pair at the end of the dataset. Thus,
we manually post-process the output of GAMETES to ran-
domize the locations of the targets for each run. All trials
consist of 4000 loci with 1500 case and control samples. The
minor allele frequencies of the background loci range from
5 to 50%. We examine four levels of heritability and the mi-
nor allele frequencies of the target pair, resulting in a total
of 16 different parameter combinations. For each parame-
ter combination we perform 100 replicates. In Figure 13, we
provide the results of these tests.

In general, LINDEN and Plink deliver superior perfor-
mance as compared to iLoci. For most models, the per-
formance of Plink and LINDEN is similar. However, Plink
appears to have have difficulty with datasets that have low
heritability and high minor allele frequency. Because Plink
is exhaustive, this is probably an unavoidable mathematical
property of compression in genotype categories when con-
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Figure 11. The performance of an algorithm that uses linkage disequilibrium in the general population to exploit genomic redundancies. PLINK’s clumping
tool is used to group loci based on linkage disequilibrium (1 − r2). Each performance figure is plotted as a function of the minimum correlation (1 − r2)
required for clumping. Grouping of loci is more aggressive (more loci are grouped together) for larger values of the clumping parameter.

Table 2. Summary statistics on the experiments on real datasets

Phenotype # of Tested loci # of Trees
Proportion of
internal tests

Proportion of
leaf tests

Test reduction
(%)

Fraction
filtered # Pairs reported

Type II
Diabetes

375,801 123,297 72.5 27.5 10.7 0.04 2278 (19)

Psoriasis 514,158 186,115 75.1 24.9 13.1 0.02 3985 (21)
Hypertension 298,611 106,581 70.5 29.5 12.7 0.04 2379 (20)

# Tested loci refers to the number of loci left after filtering by the minor allele frequency and significance of marginal effect as described in the methods
section. This is followed by the number of trees generated by LINDEN and the proportions of internal (between groups of loci) and leaf (between individual
loci) node tests. Test reduction is the number of tests performed divided by the number of pairs of loci that are tested by an exhaustive approach. Fraction
filtered is the number of pairs that are not tested since they are too proximate on the genome. Finally, # Pairs reported is the total number of reciprocally
significant pairs returned by LINDEN. The number in parentheses denotes the pairs passing Bonferroni correction based on the number of tests performed
by LINDEN.

structing the odds ratio tables. LINDEN does not have this
problem as it calculates the � 2 statistic for the complete con-
tingency table. In Figure 14, we consider the average rank
of detected target pairs. As seen in the figure, when LIN-
DEN detects the implanted pair, it always ranks it as the
most significant pair. For Plink and iLoci, the target pair is
not always ranked as the top pair when it is detected. This
is especially problematic in the simulated data because the
only pair that should have an epistatic interaction is the im-

planted pair. The rest of the potential pairs are background
noise. This means that in many instances, Plink and iLoci
are effectively unable to distinguish between the implanted
pair the background.

Simulating linkage disequilibrium. To simulate linkage
disequilibrium, we apply a two parameter transformation
to the GAMETES output. For each locus in the original
set, we generate a random integer in the interval [0 .. mean
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Figure 12. Statistical significance of epistatic loci identified by LINDEN. The reciprocally significant pairs of loci detected on each of the three datasets
are shown on the left-hand-side of each panel, where each panel represents a different dataset. The reciprocally significant pairs of loci detected on ten
permuted versions of these datasets are shown on the right-hand-side of each panel. For each disease, three different significance threshold are shown;
Bonferroni correction considering all possible pairs of loci, Bonferroni correction based on the total number of tests (including leaves and internal nodes)
performed by LINDEN, and the be p-value of the most significant pair identified across ten permutations. For all three diseases, the correction provided by
the number of tests performed by LINDEN closely matches to the empirical correction provided by permutation tests. Note that, these are not Manhattan
plots, the points have been staggered horizontally to aid in visualization.
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Figure 13. Power to detect target pair on simulated data. The figures show the number of trials in which iLoci, Plink, and LINDEN were able to detect the
implanted epistatic pair in 100 trials, as a function of minor allele frequency and heritability.

Figure 14. Ranking of target pair. For the trials in Figure 13 in which the target pair was detected, these figures show the average rank of the target pair in
the list of identified interactions. Notice that this is in log scale, for all trials LINDEN reported the target pair as the most significant when detected.

Table 3. Gene Ontology functional enrichment for Type II Diabetes based on cellular component

GO cellular component Expected Enrichment P-value

Synapse 3.32 3.92 3.37E–02
Unclassified 15.26 0.39 0.00E00

Table 4. Gene ontology functional enrichment for hypertension based on cellular component

GO cellular component Expected Enrichment P-value

Cell projection 8.04 2.61 4.52E–02
Cell periphery 22.43 1.92 3.57E–03
Plasma membrane 21.96 1.91 5.46E–03
Membrane 40.45 1.51 2.09E–02
Unclassified 14.21 .21 0.00E00

Table 5. Gene Ontology functional enrichment for hypertension based on biological process

GO biological process Expected Enrichment P-value

Anatomical structure morphogenesis 10.68 2.71 2.64E–03
System development 18.31 2.08 1.94E–02
Anatomical structure development 21.45 2.05 2.25E–03
Single-organism developmental process 23.78 1.89 1.61E–02
Developmental process 24.15 1.86 2.53E–02
Single-organism process 58.22 1.36 2.50E–02
Unclassified 19.50 0.31 0.00E00
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Table 6. Gene ontology functional enrichment for psoriasis based on cellular component

GO cellular component Expected Enrichment P-value

MHC class I protein complex 0.06 81.82 7.29E–06
MHC class II protein complex 0.10 68.73 2.01E–08
MHC protein complex 0.14 63.12 4.99E–11
Integral component of lumenal side of ER membrane 0.14 42.08 1.07E–05
Lumenal side of ERM 0.14 42.08 1.07E–05
Lumenal side of membrane 0.15 40.63 1.31E–05
ER to Golgi transport vesicle membrane 0.21 28.74 9.98E–05
ER to Golgi transport vesicle 0.26 23.10 3.55E–04
Transport vesicle membrane 0.43 14.03 6.18E–03
Integral component of ERM 0.63 11.17 4.36E–03
Intrinsic component of ERM 0.65 10.74 5.64E–03
Endocytic vesicle membrane 0.75 9.29 1.44E–02
Integral component of organelle membrane 1.31 6.85 9.11E–03
Intrinsic component of organelle membrane 1.38 6.55 1.30E–02
Endosome membrane 1.96 5.11 3.44E–02
Plasma membrane protein complex 2.60 5.00 2.63E–03
Endosome 3.88 3.61 4.08E–02
Membrane protein complex 5.57 3.05 4.56E–02
Unclassified 15.85 .50 0.00E00

Table 7. Gene ontology functional enrichment for psoriasis based on biological process

GO biological process Expected Enrichment P-value

AP and PEPA via MHC I via ERP, TAP-independent 0.02 100 4.44E−03
AP and PEPA via MHC I via ERP 0.03 100 2.61E−04
AP and PEPA via MHC I 0.06 71.40 2.89E−03
AP and PEPA 0.06 65.45 4.07E−03
AP and presentation of endogenous antigen 0.07 56.10 7.48E−03
Interferon-gamma-mediated signaling pathway 0.39 20.40 5.96E−05
AP and POP or polysaccharide antigen via MHC II 0.50 13.88 6.92E−03
Response to interferon-gamma 0.74 13.45 3.87E−05
Cellular response to interferon-gamma 0.65 12.37 2.65E−03
AP and POP antigen 0.96 10.44 4.07E−04
AP and presentation of exogenous peptide antigen 0.87 10.33 2.13E−03
Positive regulation of T cell activation 0.98 10.17 5.18E−04
Positive regulation of homotypic cell-cell adhesion 1.00 9.97 6.25E−04
AP and presentation of exogenous antigen 0.91 9.93 2.96E−03
Positive regulation of leukocyte cell-cell adhesion 1.01 9.92 6.55E−04
AP and presentation 1.15 9.60 1.98E−04
Positive regulation of cell-cell adhesion 1.18 8.50 2.66E−03
Positive regulation of lymphocyte activation 1.27 7.89 5.23E−03
Regulation of T cell activation 1.43 7.71 1.75E−03
Regulation of leukocyte cell-cell adhesion 1.47 7.50 2.30E−03
Immune response-activating cell surface RSP 1.49 7.37 2.72E−03
Regulation of homotypic cell-cell adhesion 1.51 7.27 3.11E−03
Positive regulation of leukocyte activation 1.39 7.19 1.19E−02
Positive regulation of cell activation 1.44 6.96 1.58E−02
Regulation of lymphocyte activation 1.88 5.84 2.57E−02
Regulation of cell-cell adhesion 1.88 5.84 2.57E−02
Immune response-activating signal transduction 2.06 5.83 9.03E−03
Positive regulation of immune response 2.98 5.37 3.94E−04
Activation of immune response 2.30 5.22 2.78E−02
Regulation of cell activation 2.31 5.19 2.97E−02
Positive regulation of immune system process 4.41 4.53 1.15E−04
Regulation of immune response 4.74 4.22 3.68E−04
Innate immune response 5.15 3.88 1.43E−03
Immune response 7.28 3.30 1.42E−03
Regulation of immune system process 7.50 3.07 9.38E−03
Defense response 7.67 3.00 1.38E−02
Positive regulation of response to stimulus 10.35 2.80 1.77E−03
Cell surface RSP 11.10 2.70 2.22E−03
Immune system process 11.02 2.63 6.41E−03
Positive regulation of biological process 27.00 1.93 1.21E−03
Unclassified 21.76 .41 0.00E00

Additional abbreviations are as follows: AP (antigen processing), PEPA (presentation of endogenous peptide antigen), POP (presentation of peptide), RSP
(receptor signaling pathway), ERP (endoplasmic reticulum pathway).
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Figure 15. Runtime with simulated LD. Comparison of the CPU runtime required for iLoci, Plink and LINDEN, based on the simulation of linkage
disequilibrium by replicating loci and adding noise in the data generated by GAMETES. The run-times are shown as a function of mean block size and
re-sample probability. Here, mean block size refers to the average number of copies of loci and re-sample probability refers to the fraction of loci that have
a different genotype as compared to their block. Thus, as the figures move from left to the right, the genotyped loci get denser and as we move to the right
on the x axis, linkage disequilibrium gets stronger.

Figure 16. Power to detect epistatic pairs in simulated data with linkage disequilibrium. The figures show the number of trials in which iLoci, Plink and
LINDEN are able to detect the implanted epistatic pair in 100 trials, as a function of resample probability and mean block size.

block size]. This specifies the number of extra loci to clone
based on the original, both upstream and downstream of
the locus. Initially, the genotype of each clone locus is iden-
tical to its predecessor. The second parameter refers to the
probability that a given genotype of the new locus will be
re-sampled. Note that the re-sampling probabilities are set
to the frequencies of the predecessor’s genotypes. For ex-
ample, if an original locus is transformed such that the pa-
rameters are (2, 0.5) respectively, the original locus will gen-
erate a copy of itself upstream and downstream of itself.
These copies will then re-sample each of their genotypes
with a probability of 0.5 based on the original genotype fre-
quencies. The new upstream locus generates another locus
upstream of it, using its own genotype frequencies to re-
sample, and likewise for the downstream locus. Under this
model, the mean block size parameter represents the size of
the haplotype blocks while the re-sample probability repre-
sents the overall density and linkage disequilibrium of the
dataset.

Runtime. We next compare the runtime of the three meth-
ods as a function of the correlation between the genotypes
of proximate loci. This is used to investigate the improve-
ment in LINDEN’s performance as the density, and thus
linkage disequilibrium, of the input loci is increased. For
this analysis the original set of loci contains 2000 SNPs,
genotyped for 1500 cases and 1500 controls. We set heri-
tability and minor allele frequency to 0.2 for the target pairs.
The results are shown in Figure 15. As the mean block size
increases each method requires a longer amount of time to
complete. This is because the number of loci in each dataset
increases, for example with a mean block size of five, there
are roughly five times as many loci in the set. Both Plink and
iLoci are unaffected by the re-sample probability and expe-
rience a constant time to calculate based solely on the num-
ber of loci in the dataset. LINDEN however, becomes more
efficient as the re-sample probability decreases, where lower
re-sample probability corresponds to increased dataset den-
sity and linkage disequilibrium. Larger mean block sizes
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Figure 17. Ranking of target pair with simulated LD. For the trials in Figure 16 in which the target pair was detected, these figures show the average rank
of the target pair in the list of pairings returned. Notice that this is in log scale, for all trials LINDEN reported the target pair as the most significant when
detected.

also increase the efficiency. We can see that LINDEN be-
gins faster than iLoci and becomes faster than plink with
increased, ’density’. We also note that Plink and LINDEN
provide speed-up through different means (Plink reduces
the complexity of the tests without filtering tests whereas
LINDEN reduces the number of tests). For this reason, it is
possible to use these two methods in combination to further
speed-up the computation.

Statistical power at the presence of linkage disequlibrium.
To ensure that the addition of simulated linkage disequilib-
rium to the GAMETES output does not drastically change
the statistical power of LINDEN. we calculate these mea-
sures for the same models and iterations shown in Figure 15
and provide these results in Figures 16 and 17. Notice that
the value of 0.2 for heritability and minor allele frequency
corresponds to an instance on which both Plink and LIN-
DEN were able to detect the target pair without difficulty.
Thus, as expected, both methods once again perform well
with the simulated LD.

Functional annotation and biological relevance

In order to assess the functional significance of the epistatic
locus pairs detected by LINDEN, we perform Gene Ontol-
ogy enrichment analysis based on cellular component and
process for all three phenotype sets. (29). In each case we,
consider the top one hundred pairs of reciprocally signifi-
cant loci. We then map the individual loci to the closest gene
within 50kb. This results in 112, 123 and 105 loci mapped in
the type II diabetes, psoriasis, and hypertension datasets re-
spectively. The ’unclassified’ term refers to genes that Gene
Ontology was unable to classify. For all Gene Ontology
analyses we show both the expected number of terms for
each category and the enrichment based on that expected
value. Thus an enrichment score greater than one describes
an over-representation of genes for a given term.

For Type II diabetes, we find an over-representation of
genes that are associated with the synapse cellular compo-
nent shown in Table 3. Interestingly, a genetic link between
propensity for type II diabetes and Alzheimer’s through de-
ficiency in synaptic function has been previously reported

(30). Evidence of epigenetic links between synaptic impair-
ments and diabetes have also been found (31).

There is a modest number of enriched terms associated
with epistatic pairs for hypertension, as shown in Table 4
and Table 5. Overall, these terms seem to be more general,
associated with structure and anatomical development.

The dataset with the most significant gene enrichment,
for both process and component, is psoriasis. (14) This
is not particularly surprising as psoriasis is an autoim-
mune disorder well known to have a strong genetic com-
ponent, particularly in the MHC and HLA regions. From
tables 6 and 7 we can see that the most significant over-
representation categories include the MHC region, and
most other categories involve the immune system in some
capacity.

CONCLUSION

We have developed a fast method for the detection of
epistatic interactions between pairs of loci in genome wide
association data. By hierarchically grouping loci that are in
high linkage disequilibrium we are able to reduce the num-
ber of statistical tests performed in an all pairs screen. This
approach improves statistical power and speed of compu-
tation. Our algorithm exhibits sub quadratic complexity in
the number of input loci when increasing overall genotype
density. LINDEN is implemented in C++ and is available as
open source at http://compbio.case.edu/linden/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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