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Abstract

 

Cross-linking of Fc

 

e

 

RI induces the activation of three protein tyrosine kinases, Lyn, Syk, and
Bruton’s tyrosine kinase (Btk), leading to the secretion of a panel of proinflammatory mediators
from mast cells. This study showed phosphorylation at Ser-473 and enzymatic activation of
Akt/protein kinase B, the crucial survival kinase, upon Fc

 

e

 

RI stimulation in mouse mast cells.
Phosphorylation of Akt is regulated positively by Btk and Syk and negatively by Lyn. Akt in
turn can regulate positively the transcriptional activity of interleukin (IL)-2 and tumor necrosis
factor (TNF)-

 

a

 

 promoters. Transcription from the nuclear factor 

 

k

 

B (NF-

 

k

 

B), nuclear factor
of activated T cells (NF-AT), and activator protein 1 (AP-1) sites within these promoters is un-
der the control of Akt activity. Accordingly, the signaling pathway involving I

 

k

 

B-

 

a

 

, a cyto-
plasmic protein that binds NF-

 

k

 

B and inhibits its nuclear translocation, appears to be regulated
by Akt in mast cells. Catalytic activity of glycogen synthase kinase (GSK)-3

 

b

 

, a serine/threo-
nine kinase that phosphorylates NF-AT and promotes its nuclear export, seems to be inhibited
by Akt. Importantly, Akt regulates the production and secretion of IL-2 and TNF-

 

a

 

 in Fc

 

e

 

RI-
stimulated mast cells. Altogether, these results revealed a novel function of Akt in transcrip-
tional activation of cytokine genes via NF-

 

k

 

B, NF-AT, and AP-1 that contributes to the pro-
duction of cytokines.
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k
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Introduction

 

Akt/protein kinase B (referred to as Akt hereafter), origi-
nally identified by its similarity to protein kinases A and C
(1, 2) and also found in a rodent oncogenic retroviral ge-
nome (3), is a pleiotropic protein serine/threonine kinase

 

composed of an NH

 

2

 

-terminal pleckstrin homology (PH)

 

1

 

domain and a COOH-terminal catalytic domain. Akt is ac-
tivated by numerous stimuli and is implicated in a variety

of cellular functions, such as survival, metabolism, tran-
scription, and translation (for reviews, see references 4–9).
In response to growth factors that activate phosphatidyl-
inositol 3-kinase (PI3K), the membrane-bound lipid phos-
phatidylinositol 3,4,5-trisphosphate (PIP3) is synthesized
and recruits 3-phosphoinositide–dependent kinase (PDK)1
(10–12) by binding to its PH domain. PIP3 and phosphati-
dylinositol 3,4-bisphosphate recruit Akt to the plasma
membrane by interacting with the PH domain of Akt (13,
14). PDK1 phosphorylates Thr-308 of Akt and PDK2, a
putative kinase yet to be cloned (10), phosphorylates Ser-
473 of Akt. Akt phosphorylated at both sites becomes ac-
tive and phosphorylates target proteins. Other stimuli such
as heat shock, hyperosmolarity, okadaic acid, and cAMP
activate Akt in a PI3K-independent manner (15–18).

Mast cells are crucial effector cells for IgE-dependent im-
mediate hypersensitivity (19). Contact with multivalent an-
tigen activates IgE-bound mast cells, culminating in de-
granulation releasing vasoactive amines and secretion of
lipid mediators, various proteases, and various cytokines.
This high-affinity IgE receptor (Fc

 

e

 

RI)-dependent activa-
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Abbreviations used in this paper:

 

 AP-1, activator protein 1; BMMC,
bone marrow–derived mast cell; Btk, Bruton’s tyrosine kinase; DN, dom-
inant negative; ERK, extracellular signal–regulated kinase; GSK, glyco-
gen synthase kinase; HA, hemagglutinin; HSA, human serum albumin;
IKK, I

 

k

 

B kinase; ITAM, immunoreceptor tyrosine-based activation mo-
tif; JNK, c-Jun NH

 

2

 

-terminal kinase; MAPK, mitogen-activated protein
kinase; MEKK, MEK kinase; NF-

 

k

 

B, nuclear factor 

 

k

 

B; PDK, 3-phos-
phoinositide–dependent kinase; PH, pleckstrin homology; PI3K, phos-
phatidylinositol 3-kinase; PLC, phospholipase C; PTK, protein tyrosine
kinase; RBL, rat basophilic leukemia; SCF, stem cell factor; SH, Src ho-
mology; wt, wild-type.
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tion has been a focus of intense study. Fc

 

e

 

RI consists of
four subunits, i.e., one IgE-binding 

 

a

 

 subunit, one 

 

b

 

, and
two S-S–bonded 

 

g

 

 subunits (20). According to the broadly
accepted hypothesis (21–23), Fc

 

e

 

RI cross-linking elicits the
activation of 

 

b

 

 subunit–bound Lyn, a Src family protein ty-
rosine kinase (PTK). Active Lyn phosphorylates tyrosine
residues in the immunoreceptor tyrosine-based activation
motifs (ITAMs [24]) within both 

 

b

 

 and 

 

g

 

 subunits. Phos-
phorylated 

 

b

 

-ITAM and phosphorylated 

 

g

 

-ITAM recruit
Lyn and Syk, respectively, via Src homology (SH)2 do-
main–phosphotyrosine interactions. Lyn has an SH2 do-
main, and Syk has two tandem SH2 domains. Activation of
these PTKs ensues by phosphorylation of tyrosine residues
in the activation loop and conformational changes induced
by binding to phosphorylated ITAMs (25–27). Active Lyn
and Syk phosphorylate numerous target proteins, including
phospholipase C (PLC)-

 

g

 

. Phosphorylation and activation
of PLC-

 

g

 

 requires the concerted action of Syk and another
PTK, Bruton’s tyrosine kinase (Btk [28, 29]). Hydrolysis of
phosphatidylinositol 4,5-bisphosphate by PLC generates
two second messengers, inositol 1,4,5-trisphosphate (IP3)
and diacylglycerol. IP3 recruits Ca

 

2

 

1

 

 from cellular storage
sites, and diacylglycerol activates protein kinase C isoforms
(30, 31). Optimal degranulation requires Ca

 

2

 

1

 

 and protein
kinase C (32).

Downstream of the above early activation events, three
major subfamilies of mitogen-activated protein kinases
(MAPKs), i.e., extracellular signal–regulated kinases (ERKs
[33–36]), c-Jun NH

 

2

 

-terminal kinases (JNKs [37, 38]), and
p38 (39), are activated upon Fc

 

e

 

RI cross-linking. In mast
cells, ERK1 and ERK2 are under the control of Syk and
Ras (39), whereas JNK1 and JNK2 are regulated in a Lyn/
Syk/Btk-dependent manner (38, 40). p38 is also regulated
by Btk (38). MAPKs regulate various transcription factors.
For example, JNK phosphorylates and activates c-Jun,
which dimerizes with Fos and binds to activator protein 1
(AP-1) sites in various gene promoters, including those for
cytokine genes (for a review, see reference 41). Promoters
in cytokine genes such as those coding for IL-2 and TNF-

 

a

 

contain other cis-elements that are bound by important
transcription factors such as nuclear factor of activated T
cells (NF-AT) and nuclear factor 

 

k

 

B (NF-

 

k

 

B [42–46]).
Nuclear location and activity of NF-AT are controlled by
Ca

 

2

 

1

 

-dependent phosphatase calcineurin and Ras (for a re-
view, see reference 47). NF-

 

k

 

B is activated by a variety of
inflammatory stimuli via the recently defined pathways
that involve NF-

 

k

 

B–inducing kinase (NIK [48, 49]), Cot/
Tpl-2 (50), and MEK kinase (MEKK)1, -2, and -3 (51–
54). These MAPK kinase kinases can activate the I

 

k

 

B ki-
nase (IKK) complex of serine/threonine kinases and a co-
factor (55–59). IKK in turn phosphorylates and induces the
degradation of I

 

k

 

B (an NF-

 

k

 

B–sequestering protein fam-
ily; for a review, see reference 60). However, signaling
pathways leading to the activation of NF-

 

k

 

B in mast cells
are little known.

In this study, we found that Akt is activated upon cross-
linking of Fc

 

e

 

RI in mast cells. Using primary cultured mast
cells and mast cell lines deficient in PTK critical for mast

 

cell activation, we investigated the requirements for Akt
activation. Downstream of Akt activation, the signaling
pathways to transcriptional activation of cytokine genes
were analyzed. Importantly, we revealed that Akt is criti-
cally involved in cytokine production induced by Fc

 

e

 

RI
stimulation.

 

Materials and Methods

 

Reagents.

 

Culture media and FCS were purchased from Life
Technologies. Sources of commercial antibodies are as follows:
anti-Btk (M-138), anti-Lyn (44), anti-Syk (C-20), anti–PLC-

 

g

 

2
(Q-20), anti-JNK1 (C-17), and anti-ERK1 (C-16) were from
Santa Cruz Biotechnology, Inc.; antiphosphotyrosine mAb 4G10,
anti–PLC-

 

g

 

1 mAbs, and anti-Akt antibody were from Upstate
Biotechnology; antiphospho-Akt (Ser473), antiphospho-Akt
(Thr308), antiphospho–I

 

k

 

B-

 

a

 

 (Ser32), and antiphospho-MAPK
were from New England Biolabs, Inc.; and antiphospho–glyco-
gen synthase kinase (GSK)-3

 

b

 

 (Ser9) and anti–GSK-3

 

a

 

/

 

b

 

 were
from Biosource International. A PTK inhibitor (genistein), PI3K
inhibitors (wortmannin and LY294002), and Pansorbin were
purchased from Calbiochem. Other chemicals of the highest
grade available were obtained from Sigma-Aldrich or Fisher Sci-
entific, unless otherwise mentioned.

 

Cells. btk

 

2

 

/

 

2 

 

and 

 

lyn

 

2

 

/

 

2

 

 mice, each on a mixed C57BL/6 

 

3

 

129/Sv genetic background, were mated to generate 

 

btk

 

1

 

/

 

2

 

lyn

 

1

 

/

 

2

 

F1 progeny. These F1 mice were mated to obtain wild-type (wt),

 

btk

 

2

 

/

 

2

 

, 

 

lyn

 

2

 

/

 

2

 

, and 

 

btk

 

2

 

/

 

2

 

lyn

 

2

 

/

 

2

 

 mice (61). Genotyping was done
by Southern blotting or PCR analysis of mouse tail–derived
DNAs. Mast cells were cultured as described previously (62). In
brief, bone marrow cells derived from femur of the 6–10-wk-old
mice were cultured in RPMI 1640 medium supplemented with
10% FCS, 100 

 

m

 

M nonessential amino acids, 50 

 

m

 

M 2-ME, and
8% conditioned medium of IL-3 gene-transfected cells (bone
marrow–derived mast cell [BMMC] medium). More than 95% of
the Trypan blue–excluding viable cells were mast cells after 4 wk
of culture. No discernible differences in morphology and expres-
sion of early signaling proteins, including Fc

 

e

 

RI

 

b

 

, Fc

 

e

 

RI

 

g

 

, Syk,
Grb2, PLC-

 

g

 

2, c-Cbl, and Shc were detected among these four
types of BMMCs (data not shown). Surface expression of Fc

 

e

 

RI
at similar levels was confirmed by flow cytometry using a FACS-
Calibur™ apparatus and CELLQuest™ software (Becton Dickin-
son). In acute (

 

#

 

60 min) Fc

 

e

 

RI stimulation experiments, BMMCs
were sensitized by an overnight incubation with 0.5–1 

 

m

 

g/ml
antidinitrophenyl (DNP) IgE mAb, washed once in Tyrode
buffer (112 mM NaCl, 2.7 mM KCl, 0.4 mM NaH

 

2

 

PO

 

4

 

, 1.6
mM CaCl

 

2

 

, 1 mM MgCl

 

2

 

, 10 mM Hepes [pH 7.5], 0.05% gela-
tin, 0.1% glucose), resuspended in Tyrode buffer to 2 

 

3

 

 10

 

7

 

 cells/
ml, and stimulated by polyvalent antigen, 100 ng/ml DNP con-
jugates of human serum albumin (DNP-HSA) for the indicated
time intervals.

Rat basophilic leukemia (RBL)-2H3 is a rat mast cell line used
extensively for studies on Fc

 

e

 

RI signal transduction. A Syk-defi-
cient RBL-2H3 variant and its 

 

syk

 

 cDNA-transfected cell line
(63) were provided by Dr. Reuben P. Siraganian (National Insti-
tutes of Health, Bethesda, MD).

 

Retroviral Transfection.

 

Hemagglutinin (HA)-tagged Akt cDNAs
were recloned into the EcoRI and XhoI sites of the retroviral
vector pMX-puro (38). These plasmids were transfected into
BOSC-23 packaging cells with Lipofectamine (Life Technolo-
gies) to generate recombinant retroviruses. BMMCs were in-
fected with the retroviruses in the presence of 10 

 

m

 

g/ml poly-
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brene, and drug selection was started 48 h after infection. Mass
populations of puromycin-resistant cells were grown and then
cultured in the absence of selection drug for 48 h before Fc

 

e

 

RI
stimulation.

 

Measurements of Secreted Cytokines.

 

For cytokine measure-
ments, mast cells were stimulated in BMMC medium instead of
Tyrode buffer. TNF-

 

a

 

 and IL-2 secreted into the culture medium
for 20 h were measured by ELISA kits (Endogen).

 

Immunoblotting and Immunoprecipitation.

 

Cells were lysed in
ice-cold 1% NP-40–containing lysis buffer (20 mM Tris-HCl
[pH 8.0], 0.15 M NaCl, 1 mM EDTA, 1 mM sodium orthovan-
adate, 1 mM phenylmethylsulfonyl fluoride, 10 

 

m

 

g/ml aprotinin,
10 

 

mg/ml leupeptin, 25 mM p-nitrophenyl p9-guanidinoben-
zoate, 1 mM pepstatin, and 0.1% sodium azide) immediately after
stimulation. Lysates were centrifuged in an Eppendorf microcen-
trifuge at 48C for 10 min. Protein concentrations were measured
using DC protein assay reagents (Bio-Rad Laboratories). Cleared
lysates were either directly analyzed by SDS-PAGE or immuno-
precipitated before SDS-PAGE analysis. For immunoprecipita-
tion, lysates were incubated on ice with an appropriate antibody
for 2–4 h, and immune complexes were recovered by brief cen-
trifugation after another 30-min incubation with Pansorbin for
rabbit polyclonal antibodies or anti–mouse immunoglobulin-
conjugated agarose (Sigma-Aldrich) for mouse mAbs. Immune
complexes were washed in lysis buffer four times before SDS-
PAGE analysis. Proteins separated by SDS-PAGE were electro-
phoretically transferred to polyvinylidene difluoride (PVDF)
membranes (NEN Life Science Products). Membranes were
blocked, then incubated consecutively with primary antibody
and horseradish peroxidase–conjugated secondary antibody, and
immunoreactive proteins were visualized by enhanced chemilu-
minescence reagents (NEN Life Science Products).

Immune Complex Kinase Assays. Akt kinase assays were per-
formed as described previously (64). In brief, cells were lysed on
ice for 15 min in ice-cold 1% NP-40–containing lysis buffer.
Cleared lysates were incubated with anti-Akt (Upstate Biotech-
nology) and protein G agarose (Santa Cruz Biotechnology, Inc.).
Akt immunoprecipitates were washed four times in the lysis
buffer and once with kinase buffer (20 mM 3-[N-morpholine]
propanesulfonic acid [MOPS], pH 7.2, 25 mM sodium b-glyc-
erophosphate, 1 mM dithiothreitol [DTT], 15 mM MgCl2, 5
mM EGTA, and 1 mM Na orthovanadate). Washed immuno-
precipitates were incubated at 308C for 15 min with kinase
buffer supplemented with 1 mg/ml microcystin (Sigma-Aldrich)
and 2.5 mg histone H2B in the presence of [g-32P]ATP. Reac-
tions were terminated with SDS sample buffer and analyzed by
SDS-PAGE, followed by electroblotting onto PVDF membranes
and autoradiography. ERK and JNK kinase assays were done as
described previously (38). Cells were lysed in 1% NP-40–con-
taining lysis buffer. Cleared lysates were immunoprecipiated with
anti-ERK1 (Zymed Laboratories) or JNK1 with an aid of Pan-
sorbin. Immunoprecipitates were washed three times with 1%
NP-40–containing lysis buffer and once with kinase buffer (20
mM Hepes [pH 7.4], 10 mM MgCl2, 22 mM DTT, 20 mM
b-glycerophosphate, and 50 mM Na3VO4). Immune complexes
were incubated with 3 mg myelin basic protein (for ERK assays)
or 3 mg of glutathione S-transferase (GST)-c-Jun(1–79) (for JNK
assays) in the kinase buffer in the presence of [g-32P]ATP. Reac-
tions were analyzed as above.

Transcriptional Activity Assay with Luciferase Reporter Con-
structs. Luciferase reporter constructs, the mouse IL-2 (2321)/
luc, the human TNF-a (2200)/luc, NF-kB/luc, AP-1/luc, and
NF-AT/luc were described previously (65). 1–1.5 3 107 mast

cells were transfected with 5–10 mg reporter plasmids singly or
together with 2 or 20 mg each of empty vector, wt Akt (66),
E40K Akt, K179M Akt (provided by Dr. P. Blume-Jensen, Salk
Institute, La Jolla, CA; reference 67), AAA Akt vectors (provided
by Dr. J.R. Woodgett, Ontario Cancer Institute, Toronto, Can-
ada; reference 68), dominant negative (DN) IkB-a (IkBaM; pro-
vided by Dr. Van Antwerp, Salk Institute, La Jolla, CA; reference
69), DN IKKa (provided by A. Altman, La Jolla Institute for Al-
lergy and Immunology, San Diego, CA; reference 70), or DN
GSK-3b (K85M/K86I mutant; provided by Dr. J.R. Woodgett
and Dr. G.R. Crabtree [Stanford University, Palo Alto, CA]; ref-
erence 71) by electroporation at 400 V, 950 mF using a Gene
Pulser II apparatus (Bio-Rad Laboratories). Both K179M Akt and
AAA Akt with K179A/T308A/S473A substitutions are DN mu-
tants. Transfected cells were sensitized overnight with anti-DNP
IgE and left unstimulated or stimulated with 30 ng/ml DNP-
HSA for 8 h before cell harvest. Cells were lysed in 0.2% Triton
X-100 in 100 mM potassium phosphate buffer (pH 7.8)/1 mM
DTT. Luminescence of cleared lysates was measured after addi-
tion of luciferin solution using a model Monolight 2010 lumi-
nometer (Analytical Luminescence Laboratory).

Results
Akt Activation by FceRI Cross-Linking in Mast Cells. Be-

cause Akt is activated by numerous stimuli, we investigated
whether FceRI cross-linking induces Akt activation. In situ
Akt activity was monitored before and after cell stimulation
by immunoblotting with a phosphospecific antibody to the
phosphorylated Ser-473 of Akt. Ser-473 phosphorylation is

Figure 1. Activation of Akt in mast cells by growth factor or FceRI
stimulation. (A) BMMCs sensitized overnight with anti-DNP IgE were
stimulated with 100 ng/ml DNP-HSA for the indicated amounts of time.
Cells were lysed, and lysates were analyzed by SDS-PAGE followed by
immunoblotting with antiphospho-Akt antibody that specifically recog-
nizes the phosphorylated Ser-473 residue and its flanking sequence. The
same blot was reprobed with anti-Akt antibody (left). Shown is the result
representative of at least five independent experiments. Cell lysates were
immunoprecipitated with anti-Akt, and immune complexes were sub-
jected to kinase assays using histone H2B as an exogenous substrate
(right). The kinase result is representative of three similar experiments.
Stim., stimulation. (B) IgE-sensitized BMMCs were pretreated with the
indicated concentrations of genistein, wortmannin, or LY294002 for 15
min before antigen (100 ng/ml DNP-HSA) stimulation (Stim.) for 10
min. Cell lysates were analyzed for Ser-473 phosphorylation as above.
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crucial for Akt activation. Antigen treatment of IgE-primed
BMMCs caused a remarkable phosphorylation of Ser-473
at its peak z3–10 min after antigen stimulation (Fig. 1 A,
left). Enzymatic activation of Akt in a time course similar
to that of Ser-473 phosphorylation was shown in in vitro
kinase assays on anti-Akt immunoprecipitates using histone
H2B as an exogenous substrate (Fig. 1 A, right). Depen-
dence of FceRI-induced Akt activation on PTK was re-
vealed by pretreatment of BMMCs with genistein, similar
to BCR-induced Akt activation (64, 72, 73). PI3K inhibi-
tors wortmannin and LY294002 also blocked Akt activa-
tion very efficiently, confirming the PI3K dependence of
Akt activation (Fig. 1 B). These results are consistent with
PI3K activation induced by the engagement of FceRI and
other related receptors that induces activation of several
PTKs as well (74–77).

Hyperphosphorylation of Akt in Lyn-deficient Cells and Re-
duced Akt Phosphorylation in Btk- and Syk-deficient Cells.
PTK dependence of Akt phosphorylation induced by
FceRI cross-linking was further studied using BMMCs de-
rived from lyn2/2 and btk2/2 mice and a Syk-deficient
variant of RBL-2H3 rat mast cells. Strikingly, lyn2/2 cells
showed a severalfold more robust and prolonged Akt Ser-
473 phosphorylation than wt cells (Fig. 2 A). In contrast,
btk2/2 mast cells exhibited a reduced phosphorylation of
Akt compared to wt cells (Fig. 2 B). btk2/2lyn2/2 double-

mutant cells showed a prolonged, but not stronger, phos-
phorylation compared with wt cells (Fig. 2 A), indicating
that the enhanced Akt phosphorylation in lyn2/2 cells is
dependent on Btk. On the other hand, wt RBL-2H3 cells
exhibited high basal levels of Akt Ser-473 phosphorylation
and further induction upon FceRI stimulation (Fig. 2 C),
consistent with the presence of active mutations of c-Kit,
the receptor for stem cell factor (SCF), in this and other
mast cell lines (78). But basal and induced levels of Akt
phosphorylation were significantly reduced in Syk-defi-
cient RBL-2H3 cells and enhanced in Syk-deficient cells
transfected with wt syk cDNA (Fig. 2 C). These results
demonstrate that Akt activity is regulated positively by Syk
and Btk and negatively by Lyn in mast cells.

Regulation of IL-2 and TNF-a Promoters by Akt. One of
the cardinal features of FceRI-induced mast cell activation
is the production and secretion of various cytokines in-
cluding IL-2 and TNF-a, at least partly through the tran-
scriptional activation of these cytokine genes. Our recent
studies indicate that this aspect of mast cell activation is ex-
aggerated in lyn2/2 cells (79), and Btk is required for opti-
mal production of these cytokines (80). Given the Akt
hyperphosphorylation in lyn2/2 cells and the Akt hypo-
phosphorylation in btk2/2 cells, we examined whether Akt
activity is involved in cytokine gene expression. To this
end, we cotransfected BMMCs with wt or DN Akt cDNA
expression vectors together with IL-2/luc or TNF-a/luc
reporter plasmids (Fig. 3). Overexpression of wt Akt en-
hanced twofold induction of IL-2 promoter–driven lu-
ciferase expression over the vector-transfected cells upon
FceRI cross-linking. FceRI-induced transcriptional activa-
tion was almost abrogated by two different DN Akt mu-
tants. Similar results were obtained with TNF-a/luc.
Given these results, together with higher transcriptional
activity of IL-2 and TNF-a promoters (Figure 8 in refer-
ence 79) and higher production of these cytokines (Figure
7 in reference 79) in lyn2/2 mast cells compared with wt

Figure 2. PTK dependence on Akt activation induced by FceRI cross-
linking. (A) BMMCs derived from wt, lyn2/2, and btk2/2lyn2/2 mice
were sensitized by IgE and stimulated with antigen for the indicated
amounts of time. Cells were analyzed for Akt Ser-473 phosphorylation
and Akt amounts. Stim., stimulation. (B) wt and btk2/2 BMMCs and (C)
Syk-deficient (syk2) and Syk-reconstituted (syk1) Syk-deficient RBL-
2H3 cells were similarly analyzed. Similar results shown in A–C were re-
produced in two more independent experiments. Stim., stimulation.

Figure 3. Akt regulation of IL-2 and TNF-a promoter activities. wt
BMMCs were transfected with IL-2/luc or TNF-a/luc reporter plasmids
together with an empty vector or a vector coding for wt, K179M, or
AAA Akt. 24 h later, cells were sensitized with IgE overnight. Cells were
then stimulated with antigen for the last 8 h before luciferase assays. The
IL-2/luc results are representative of three transfection experiments, and
the TNF-a/luc results are representative of two experiments. Stim.,
stimulation.
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cells, higher cytokine production in FceRI-stimulated
lyn2/2 cells may be accounted for at least partly by the
higher activation levels of Akt via the transcriptional regu-
lation. Indeed, overexpression of wt Akt in lyn2/2 cells en-
hanced the transcriptional activity of IL-2 and TNF-a pro-
moters more than that in wt cells, and DN Akt inhibited it
(data not shown).

Transcription Factor NF-kB Is under the Control of Akt.
Expression of IL-2 and TNF-a genes requires several tran-
scription factors, including NF-kB, AP-1, and NF-AT
(65). Therefore, we examined whether the activity of these
transcription factors is regulated by Akt in mast cells. First,
the luciferase gene under the control of multiple copies of
the NF-kB site (2206 to 2202, eight times) of the murine
IL-2 promoter was cotransfected into BMMCs with wt,
E40K, or DN Akt (Fig. 4 A). wt Akt transfection doubled
NF-kB–dependent transcription before stimulation, whereas
FceRI stimulation did not enhance it any further. Consti-
tutively active E40K mutant transfectants exhibited a fur-
ther enhancement in basal and induced levels of NF-kB ac-
tivity. Importantly, these activities were strongly inhibited
by DN Akt. Because of the possible general negative effect
of DN Akt expression, we evaluated whether DN Akt in-
duces apoptosis in BMMCs. Because the efficiency of tran-
sient transfection used in the above experiments was too
low (,20%), to address this issue, we made stable transfec-
tants using wt or DN Akt retroviral constructs. Puromycin-
resistant transfectants were stained with annexin V (to de-
tect early apoptotic cells) and propidium iodide (to detect
late apoptotic or dead cells), followed by FACS® analysis.
The results indicated no enhanced apoptosis in DN Akt–
transfected cells (data not shown; see Fig. 6 A for Akt ex-
pression). Therefore, these results indicate that Akt posi-
tively regulates the NF-kB activity.

IkB regulates NF-kB by sequestering NF-kB in the cy-
toplasm, and phosphorylation by IKK and subsequent deg-
radation of IkB releases this inhibition (60). Therefore, we
examined whether DN IkB-a (IkBaM) and DN IKKa
(K44M) affect NF-kB/luc reporter activity. As shown in
Fig. 4 B, transcriptional activation of NF-kB was strongly
inhibited by DN IkB-a or DN IKKa. In keeping with
these results and the enhanced Akt phosphorylation in
lyn2/2 cells, phosphorylation of Ser-32 in IkB-a (by IKK)
was severalfold higher in FceRI-stimulated lyn2/2 mast
cells than that in wt cells (Fig. 4 C). These data are also
consistent with a recent study that demonstrated that Akt
can directly phosphorylate IKKa at Ser-32 (81).

Transcription Factors NF-AT and AP-1 Are also Regulated
by Akt. Luciferase constructs driven by multiple copies of
other cis-elements of the IL-2 promoter, i.e., NF-AT
(2290 to 2261, seven times) and AP-1 (65), were also
tested by cotransfection with wt or DN Akt (Fig. 5, A and
B). NF-AT/luc activity was significantly enhanced in
FceRI-stimulated, wt Akt–transfected cells compared with
FceRI-stimulated, vector-transfected cells. Importantly,
these activities were inhibited by two DN Akt (K179M
and AAA) mutants, indicating a role for Akt in signal trans-
duction leading to activation of this transcription factor in

mast cells. AP-1/luc activity was also affected significantly,
albeit to a lesser extent, by wt or DN Akt expression.

JNK is involved in the regulation of both NF-AT and
AP-1 activities (41, 65). Therefore, effects of Akt on JNK
activity were examined with wt BMMCs stably transfected
with wt or DN Akt (Fig. 5 C). FceRI-induced JNK1 acti-
vation was not significantly affected by wt or DN Akt.
Similar to JNK activity, FceRI-induced ERK activation, as
measured by phosphorylation at the activation-loop Thr-
202 and Tyr-204 residues of ERK1 and ERK2, was barely
affected by wt and DN Akt.

These data suggest that the effect of Akt on NF-AT and
AP-1 activities is not through the regulation of JNK. GSK-3
controls the nuclear export of NF-AT (71). Phosphoryla-
tion at Ser-9 of GSK-3b by Akt inhibits its catalytic activity
and blocks the nuclear export of NF-AT. Therefore, we

Figure 4. Akt regulation of the NF-kB pathway. (A) wt BMMCs were
transfected with an NF-kB/luc reporter plasmid together with an empty
vector or a vector encoding wt, E40K, or K179M Akt. 24 h later, cells
were sensitized with IgE overnight. Cells were then stimulated with anti-
gen for the last 8 h before luciferase assays. Representative results out of
three transfection experiments are shown. (B) wt BMMCs were cotrans-
fected with NF-kB/luc and either an empty vector, DN IkB-a (IkBaM),
or DN IKKa (K44M). Results are representative of two experiments.
Stim., stimulation. (C) wt and lyn2/2 BMMCs were sensitized by IgE and
stimulated with antigen for the indicated amounts of time. Cell lysates
were analyzed by immunoblotting with antiphospho–IkB-a (phosphory-
lated Ser-32) antibody followed by reprobing with anti–IkB-a. Results
are representative of two similar experiments. Stim., stimulation.
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compared the phosphorylation status of Ser-9 of GSK-3b
between wt and lyn2/2 BMMCs. As shown in Fig. 5 D,
Ser-9 phosphorylation in GSK-3b was higher at z10–30
min after FceRI stimulation in lyn2/2 cells than in wt
counterparts. A slower mobility of GSK-3a on SDS gels
was observed at z10–30 min in wt cells, and this mobility
shift was more pronounced in lyn2/2 cells than in wt cells.
These data are consistent with the notion that Akt-medi-
ated NF-AT activation in FceRI-stimulated mast cells is
through the phosphorylation and inhibition of GSK-3 by
Akt. To further examine whether GSK-3 is involved in the
regulation of NF-AT activity, wt BMMC was transiently
cotransfected with DN GSK-3b and NF-AT/luc plasmids.
DN GSK-3b expression enhanced the FceRI-induced ac-
tivation of NF-AT–driven transcription (Fig. 5 A). Expres-
sion of DN GSK-3b also enhanced the FceRI-induced ac-
tivation of AP-1–driven transcription (Fig. 5 B). Given the
lack of the effect of Akt on the activity of JNK and ERK,
Akt-mediated AP-1 activation may also be through GSK-3,
as GSK-3 is known to inhibit AP-1 activity by phosphory-
lating Jun (82).

Akt Regulates Cytokine Production in Mast Cells. All the
above data suggest that cytokine production may be regu-
lated by Akt through the regulation of multiple transcrip-
tion factors including NF-kB, NF-AT, and AP-1. To di-

rectly test this possibility, we mused puromycin-resistant,
stable transfectants of wt BMMCs by retroviral infection
with empty vector, HA-tagged wt, or K179M Akt viruses.
Transfected Akt was expressed at approximately two- to
threefold more than the endogenous Akt level (Fig. 6 A).
Akt Ser-473 phosphorylation induced by FceRI stimula-
tion in wt Akt–transfected cells was higher than that in
control vector–transfected cells, whereas it was less pro-
nounced in K179M Akt–transfected cells (Fig. 6 A). More
than 98% of these trasnfected cells were viable in culture
medium containing IL-3 and SCF. Upon FceRI stimula-
tion, wt Akt transfectants secreted more IL-2 and TNF-a
than vector-transfected cells, whereas K179M Akt transfec-
tants secreted less than vector-transfectants (Fig. 6 B). lyn2/2

BMMCs transfected with wt or K179M Akt viruses exhib-
ited similar patterns of IL-2 and TNF-a production (data
not shown). Taken together, these data indicate that Akt
positively regulates IL-2 and TNF-a production and secre-
tion in mast cells.

Discussion
This study indicates that Akt is activated by FceRI stim-

ulation in mast cells. Extracellular stimuli that induce Akt
activation include growth factors, cytokines, and antigen

Figure 5. Akt regulation of NF-AT transcription factor. wt BMMCs were transfected with (A) NF-AT/luc or (B) AP-1/luc reporter plasmids to-
gether with an empty vector or a vector encoding wt Akt, K179M Akt, AAA Akt, or DN GSK-3b. 24 h later, cells were sensitized with IgE overnight.
Cells were then stimulated with antigen for the last 8 h before luciferase assays. Shown are the representative results of two transfection experiments.
Stim., stimulation. (C) wt BMMCs stably transfected with an empty vector, wt Akt or K179M Akt, were IgE sensitized and stimulated with antigen. Cell
lysates were either directly analyzed by SDS-PAGE followed by immunoblotting with anti-phospho-ERK (for ERK assays) or immunoprecipitated with
anti-JNK1 antibody before being subjected to kinase assays using GST-c-Jun as an exogenous substrate (for JNK1 assays). Equal expression of ERK1,
ERK2, JNK1, and JNK2 was confirmed by probing immunoblots of total cell lysates with appropriate antibodies. Stim., stimulation. (D) wt and lyn2/2

BMMCs were stimulated with IgE and antigen. Cell lysates were analyzed by immunoblotting with phosphospecific anti–GSK-3b (pSer9) antibody. The
same blot was then reprobed with anti–GSK-3a/b antibody. Stim., stimulation.
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receptors. Most, if not all, of these stimuli promote cell sur-
vival and proliferation. Indeed, FceRI cross-linking and
stimulation with SCF and IL-3, two major mast cell
growth factors, exhibited these properties, i.e., survival/
proliferation and Akt activation (Fig. 1; reference 83; data
on Akt phosphorylation by IL-3 and SCF not shown). Al-
though mechanisms by which Akt activation contributes to
cell proliferation are not fully understood, some of the
known Akt targets are involved in cell survival. A proapop-
totic member of the Bcl-2 family BAD is phosphorylated at
Ser-136 by Akt (67, 84, 85). The phosphorylated BAD be-
comes sequestered by 14-3-3 proteins and cannot het-
erodimerize with and inhibit the survival activity of the
proteins Bcl-2 or Bcl-XL. However, some cytokine-medi-
ated cell survival and Akt activation are not correlated with
BAD phosphorylation (86–88). Caspase-9, an initiator
caspase of apoptosis, is another target of Akt, and phosphor-
ylation of caspase-9 at Ser-196 by Akt inhibits its protease
activity (89). Another antiapoptotic mechanism by Akt is
phosphorylation of forkhead family transcription factors.
Phosphorylation of multiple sites in FKHRL1, AFX, and
FKHR1 transcription factors results in inhibiting their tran-
scriptional activity (90–92). FKHRL1 phosphorylated by
Akt is bound to 14-3-3 proteins and retained in the cyto-
plasm, and is prevented from activating the gene(s) in-

volved in apoptosis (90). It remains to be explored whether
any of these known antiapoptotic mechanisms contribute
to the mast cell survival/proliferation induced by FceRI
stimulation.

A hallmark of FceRI-induced mast cell activation is the
production and secretion of various cytokines including IL-1,
IL-2, IL-3, IL-4, IL-6, IL-9, IL-13, GM-CSF, TNF-a, etc.
Among this expanding list of cytokines, TNF-a is known
to play a critical role in late phase reactions of hypersensi-
tivity (19). Potential mechanisms for allergic inflammation
may include the antiapoptotic effect of TNF-a on mono-
cytes (93). Production of cytokines such as IL-2 and TNF-a
is regulated at several steps: gene transcription, mRNA sta-
bility, translation, and posttranslational modification. One
of the critical regulatory steps is transcription. As shown for
other cell types, numerous cis-transcriptional elements that
are binding sites for transcription factors are involved in
transcriptional activation of the IL-2 gene in FceRI-stimu-
lated mast cells (65). This study provides evidence that Akt
regulates transcriptional activity of NF-kB, NF-AT, and
AP-1 that is critical for the expression of the IL-2 and
TNF-a genes. Phosphorylation of the inhibitor IkB-a
seems to be under the control of Akt as a signaling inter-
mediary from Akt to NF-kB, because phosphorylation of
IkB-a at Ser-32 (the phosphorylation site by IKK) was en-
hanced in lyn2/2 mast cells in which Akt is hyperactivated.
Because DN IkB-a and DN IKKa inhibit FceRI-induced
NF-kB activity, Akt may phosphorylate and activate IKK,
and IKK in turn phosphorylates and promotes the degrada-
tion of IkB. Then free from IkB, NF-kB can translocate to
the nucleus. During the revision of this manuscript, two
groups showed that Btk regulates NF-kB in B cells (94,
95), in apparent agreement with our results in mast cells. As
several other kinases such as Cot, MEKK1-3, and NF-kB–
inducing kinase were shown to be capable of phosphorylat-
ing IKK, it will be interesting to determine whether Akt
directly phosphorylates IKKa in mast cells, as shown for
TNF- and platelet-derived growth factor (PDGF)-stimu-
lated cells (81, 96).

GSK-3 phosphorylation by Akt may be involved in
NF-AT and AP-1 activation in mast cells. Akt can phos-
phorylate and inhibit GSK-3 (71). Consistent with this es-
tablished fact, phosphorylation of GSK-3b at Ser-9 was en-
hanced in lyn2/2 mast cells, which exhibit hyperactive Akt
upon FceRI stimulation. GSK-3 in turn is known to phos-
phorylate NF-AT and regulate the nuclear exit of this tran-
scription factor. GSK-3 is also known to phosphorylate Jun
proteins to inhibit AP-1 activity (82). Although Akt over-
expression exhibited little effect on ERK and JNK activity,
it significantly affected the activities of NF-AT and AP-1
(Fig. 5). Therefore, Akt-dependent phosphorylation of
GSK-3 may regulate NF-AT and AP-1 without substan-
tially affecting the canonical MAPK activation pathways,
i.e., the Raf-1/MEK/ERK and MEKK/MAPK kinase 4
(or MAPK kinase 7)/JNK pathways.

In summary, we provide the first evidence for the in-
volvement of Akt in FceRI-induced production of IL-2
and TNF-a. Production of these cytokines is critical to late

Figure 6. Akt regulates cytokine secretion in FceRI-stimulated mast
cells. Retroviruses coding for HA-tagged wt or K179M Akt were used to
overexpress Akt proteins in stably transfected wt BMMCs. (A) Expression
of HA-tagged Akt and endogenous Akt proteins was confirmed by im-
munoblot analysis of lysates or immune complexes precipitated with anti-
HA or anti-Akt. Stable transfectants were sensitized with anti-DNP IgE
and stimulated with DNP-HSA for the indicated periods of time. Cell ly-
sates were also analyzed for Akt Ser-473 phosphorylation. Stim., stimula-
tion; vec, vector. (B) Transfectants were sensitized with anti-DNP IgE
and stimulated with the indicated concentrations of DNP-HSA for 20 h.
IL-2 and TNF-a secreted into culture media were measured by ELISA.
Values of secreted cytokines varied ,10% from the averages among trip-
licate samples, and therefore SDs were not shown. Similar results were
observed in another set of transfectants.
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phase reactions of IgE-dependent hypersensitivity. Al-
though Akt itself may not be a target for pharmaceutical in-
terference to control allergic reactions and immunological
diseases, our findings of Akt as a novel component of the
signaling pathways leading to cytokine production have
provided new insight into the exquisite networks of signal-
ing molecules for mast cell activation.

We thank Drs. Amnon Altman, Gerald R. Crabtree, Peter Blume-
Jensen, and James R. Woodgett for providing plasmids. We also
thank Drs. Masayuki Fujimoto, Masami Narita, and Min Yang for
providing some BMMC preparations.

This work was supported in part by National Institutes of Health
grants AI-33617 and AI-38348 (to T. Kawakami). This article is
publication no. 362 from the La Jolla Institute for Allergy and Im-
munology.

Submitted: 25 February 2000
Revised: 16 June 2000
Accepted: 17 July 2000

References
1. Jones, P.F., T. Jakubowicz, F.J. Pitossi, F. Maurer, and B.A.

Hemmings. 1991. Molecular cloning and identification of a
serine/threonine protein kinase of the second-messenger sub-
family. Proc. Natl. Acad. Sci. USA. 88:4171–4175.

2. Coffer, P.J., and J.R. Woodgett. 1991. Molecular cloning
and characterization of a novel putative protein-serine kinase
related to the cAMP-dependent and protein kinase C fami-
lies. Eur. J. Biochem. 201:475–481.

3. Bellacosa, A., J.R. Testa, S.P. Staal, and P.N. Tsichlis. 1991.
A retroviral oncogene, akt, encoding a serine-threonine ki-
nase containing an SH2-like region. Science. 254:274–277.

4. Franke, T.F., D.R. Kaplan, and L.C. Cantley. 1997. PI3K:
downstream AKTion blocks apoptosis. Cell. 88:435–437.

5. Marte, B.M., and J. Downward. 1997. PKB/Akt: connecting
phosphoinositide 3-kinase to cell survival and beyond. Trends
Biochem. Sci. 22:355–358.

6. Downward, J. 1998. Mechanisms and consequences of acti-
vation of protein kinase B/Akt. Curr. Opin. Cell. Biol. 10:
262–267.

7. Hemmings, B.A. 1997. Akt signaling: linking membrane
events to life and death decisions. Science. 275:628–630.

8. Coffer, P.J., J. Jin, and J.R. Woodgett. 1998. Protein kinase
B (c-Akt): a multifunctional mediator of phosphatidylinositol
3-kinase activation. Biochem. J. 335:1–13.

9. Chan, T.O., S.E. Rittenhouse, and P.E. Tsichlis. 1999.
AKT/PKB and other D3 phosphoinositide-regulated kinases:
kinase activation by phosphoinositide-dependent phosphory-
lation. Annu. Rev. Biochem. 68:965–1014.

10. Alessi, D.R., S.R. James, C.P. Downes, A.B. Holmes, P.R.J.
Gaffney, C.B. Reese, and P. Cohen. 1997. Characterization
of a 3-phosphoinositide-dependent protein kinase which
phosphorylates and activates protein kinase Ba. Curr. Biol.
7:261–269.

11. Stokoe, D., L.R. Stephens, T. Copeland, P.R.J. Gaffney,
C.B. Reese, G.F. Painter, A.B. Holmes, F. McCormick, and
P.T. Hawkins. 1997. Dual role of phosphatidylinositol-3,4,5-
trisphosphate in the activation of protein kinase B. Science.
277:567–570.

12. Stephens, L., K. Anderson, D. Stokoe, H. Erdjument-Brom-

age, G.F. Painter, A.B. Holmes, P.R.J. Gaffney, C.B. Reese,
F. McCormick, P. Tempst, et al. 1998. Protein kinase B ki-
nases that mediate phosphatidylinositol 3,4,5-trisphosphate-
dependent activation of protein kinase B. Science. 279:710–
714.

13. Franke, T.F., D.R. Kaplan, L.C. Cantley, and A. Toker.
1997. Direct regulation of the Akt proto-oncogene product
by phosphatidylinositol-3,4-bisphosphate. Science. 275:665–
668.

14. Klippel, A., W.M. Kavanaugh, D. Pot, and L.T. Williams.
1997. A specific product of phosphatidylinositol 3-kinase di-
rectly activates the protein kinase Akt through its pleckstrin
homology domain. Mol. Cell. Biol. 17:338–344.

15. Andjelkovic, M., T. Jakubowicz, P. Cron, X.F. Ming, J.W.
Han, and B.A. Hemmings. 1996. Activation and phosphory-
lation of a pleckstrin homology domain containing protein
kinase (RAC-PK/PKB) promoted by serum and protein
phosphatase inhibitors. Proc. Natl. Acad. Sci. USA. 93:5699–
5704.

16. Konishi, H., H. Matsuzaki, M. Tanaka, Y. Ono, C.
Tokunaga, S. Kuroda, and U. Kikkawa. 1996. Activation
of RAC-protein kinase by heat shock and hyperosmolarity
stress through a pathway independent of phosphatidylinositol
3-kinase. Proc. Natl. Acad. Sci. USA. 93:7639–7643.

17. Filippa, N., C.L. Sable, C. Filloux, B. Hemmings, and E. Van
Obberghen. 1999. Mechanism of protein kinase B activation
by cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 19:
4989–5000.

18. Konishi, H., T. Fujiyoshi, Y. Fukui, H. Matsuzaki, T. Yama-
moto, Y. Ono, M. Andjelkovic, B.A. Hemmings, and U.
Kikkawa. 1999. Activation of protein kinase B induced by
H2O2 and heat shock through distinct mechanisms dependent
and independent of phosphatidylinositol 3-kinase. J. Biochem.
(Tokyo). 126:1136–1143.

19. Galli, S.J., and C.S. Lantz. 1998. Allergy. In Fundamental Im-
munology. 4th ed. W. Paul, editor. Lippincott-Raven Pub-
lishers, Philadelphia. 1127–1174.

20. Ravetch, J.V., and J.-P. Kinet. 1991. Fc receptors. Annu.
Rev. Immunol. 9:457–492.

21. Jouvin, M.-H., M. Adamczewski, R. Numerof, O. Letour-
neur, A. Valle, and J.-P. Kinet. 1994. Differential control of
the tyrosine kinases Lyn and Syk by the two signaling chains
of the high affinity immunoglobulin E receptor. J. Biol.
Chem. 269:5918–5925.

22. Kihara, H., and R.P. Siraganian. 1994. Src homlogy 2 do-
mains of Syk and Lyn bind to tyrosine-phosphorylated sub-
units of the high affinity IgE receptor. J. Biol. Chem. 269:
22427–22432.

23. Rowley, R.B., A.L. Burkhardt, H.-G. Chao, G.R. Mat-
sueda, and J.B. Bolen. 1995. Syk protein-tyrosine kinase is
regulated by tyrosine-phosphorylated Iga/Igb immunore-
ceptor tyrosine activation motif binding and autophosphory-
lation. J. Biol. Chem. 270:11590–11594.

24. Cambier, J.C. 1995. New nomenclature for the Reth motif
(or ARH1/TAM/ARAM/YXXL). Immunol. Today. 16:110.

25. Pribluda, V., C. Pribluda, and H. Metzger. 1994. Transphos-
phorylation as the mechanism by which the high-affinity re-
ceptor for IgE is phosphorylated upon aggregation. Proc. Natl.
Acad. Sci. USA. 91:11246–11250.

26. Kimura, T., H. Sakamoto, E. Appella, and R.P. Siraganian.
1996. Conformational changes induced in the protein ty-
rosine kinase p72syk by tyrosine phosphorylation or by bind-
ing of phosphorylated immunoreceptor tyrosine-based acti-



737 Kitaura et al.

vation motif peptides. Mol. Cell. Biol. 16:1471–1478.
27. El-Hillal, O., T. Kurosaki, H. Yamamura, J.-P. Kinet, and

A.M. Scharenberg. 1997. syk kinase activation by a src ki-
nase-initiated activation loop phosphorylation chain reaction.
Proc. Natl. Acad. Sci. USA. 94:1919–1924.

28. Takata, M., and T. Kurosaki. 1996. A role for Bruton’s ty-
rosine kinase in B cell antigen receptor–mediated activation
of phospholipase C-g2. J. Exp. Med. 184:31–40.

29. Fluckiger, A.-C., Z. Li, R.M. Kato, M.I. Wahl, H.D. Ochs,
R. Longnecker, J.-P. Kinet, O.N. Witte, A.M. Scharenberg,
and D.J. Rawlings. 1998. Btk/Tec kinases regulate sustained
increases in intracellular Ca21 following B-cell receptor acti-
vation. EMBO (Eur. Mol. Biol. Organ.) J. 17:1973–1985.

30. Nishizuka, Y. 1984. The role of protein kinase C in cell sur-
face signal transduction and tumour promotion. Nature. 308:
693–698.

31. Nishizuka, Y. 1995. Protein kinase C and lipid signaling for
sustained cellular responses. FASEB J. 9:484–496.

32. Ozawa, K., Z. Szallasi, M.G. Kazanietz, P.M. Blumberg, H.
Mischak, J.F. Mushinski, and M.A. Beaven. 1993. Ca21-
dependent and Ca21-independent isozymes of protein kinase
C mediate exocytosis in antigen-stimulated rat basophilic
RBL-2H3 cells. Reconstitution of secretory responses with
Ca21 and purified isozymes in washed permeabilized cells. J.
Biol. Chem. 268:1749–1756.

33. Fukamachi, H., M. Takei, and T. Kawakami. 1993. Activa-
tion of multiple protein kinases including a MAP kinase upon
FceRI cross-linking. Int. Arch. Allergy Immunol. 102:15–25.

34. Hirasawa, N., F. Santini, and M.A. Beaven. 1995. Activation
of the mitogen-activated protein kinase/cytosolic phospholi-
pase A2 pathway in a rat mast cell line. J. Immunol. 154:5391–
5402.

35. Tsai, M., R.-H. Chen, S.-Y. Tam, J. Blenis, and S.J. Galli.
1993. Activation of MAP kinases, pp90rsk and pp70-S6 ki-
nases in mouse mast cells by signaling through the c-kit re-
ceptor tyrosine kinase or FceRI: rapamycin inhibits activa-
tion of pp70-S6 kinase and proliferation in mouse mast cells.
Eur. J. Immunol. 23:3286–3291.

36. Offermanns, S., S.V.P. Jones, E. Bombien, and G. Schultz.
1994. Stimulation of mitogen-activated protein kinase activ-
ity by different secretory stimuli in rat basophilic leukemia
cells. J. Immunol. 152:250–261.

37. Ishizuka, T., A. Oshiba, N. Sakata, N. Terada, G.L. Johnson,
and E.W. Gelfand. 1996. Aggregation of the FceRI on mast
cells stimulates c-Jun amino-terminal kinase activity. A re-
sponse inhibited by wortmannin. J. Biol. Chem. 271:12762–
12766.

38. Kawakami, Y., T. Miura, R. Bissonnette, D. Hata, W.N.
Khan, T. Kitamura, M. Maeda-Yamamoto, S.E. Hartman, L.
Yao, F.W. Alt, and T. Kawakami. 1997. Bruton’s tyrosine
kinase regulates apoptosis and JNK/SAPK kinase activity.
Proc. Natl. Acad. Sci. USA. 94:3938–3942.

39. Hirasawa, N., A.M. Scharenberg, H. Yamamura, M.A. Beaven,
and J.-P. Kinet. 1995. A requirement for Syk in the activa-
tion of the microtubule-associated protein kinase/phopholi-
pase A2 pathway by FceRI is not shared by a G protein-cou-
pled receptor. J. Biol. Chem. 270:10960–10967.

40. Kawakami, Y., J. Kitaura, S.E. Hartman, C.A. Lowell, R.P.
Siraganian, and T. Kawakami. 2000. Regulation of protein
kinase CbI by two protein-tyrosine kinases, btk and Syk.
Proc. Natl. Acad. Sci. USA. 97:7423–7428.

41. Karin, M. 1995. The regulation of AP-1 activity by mitogen-
activated protein kinases. J. Biol. Chem. 270:16483–16486.

42. Shaw, J.-P., P.J. Utz, D.B. Durand, J.J. Toole, E.A. Emmel,
and G.R. Crabtree. 1988. Identification of a putative regula-
tor of early T cell activation genes. Science. 241:202–205.

43. Rooney, J.W., Y.-L. Sun, L.H. Glimcher, and T. Hoey.
1995. Novel NFAT sites that mediate activation of the inter-
leukin-2 promoter in response to T-cell receptor stimulation.
Mol. Cell. Biol. 15:6299–6310.

44. Goldfeld, A.E., P.G. McCaffrey, J.L. Strominger, and A.
Rao. 1993. Identification of a novel cyclosporin-sensitive el-
ement in the human tumor necrosis factor a gene promoter.
J. Exp. Med. 178:1365–1379.

45. Tsai, E.Y., J. Jain, P.A. Pesavento, A. Rao, and A.E. Gold-
feld. 1996. Tumor necrosis factor alpha gene regulation in ac-
tivated T cells involves ATF-2/Jun and NFATp. Mol. Cell.
Biol. 16:459–467.

46. Tsai, E.Y., J. Yie, D. Thanos, and A.E. Goldfeld. 1996. Cell-
type-specific regulation of the human tumor necrosis factor
alpha gene in B cells and T cells by NFATp and ATF-2/
JUN. Mol. Cell. Biol. 16:5232–5244.

47. Rao, A., C. Luo, and P.G. Hogan. 1997. Transcription fac-
tors of the NFAT family: regulation and function. Annu. Rev.
Immunol. 15:707–747.

48. Song, H.Y., C.H. Regnier, C.J. Kirschning, D.V. Goeddel,
and M. Rothe. 1997. Tumor necrosis factor (TNF)-mediated
kinase cascades: bifurcation of nuclear factor-kB and c-jun
N-terminal kinase (JNK/SAPK) pathways at TNF receptor-
associated factor 2. Proc. Natl. Acad. Sci. USA. 94:9792–9796.

49. Malinin, N.L., M.P. Boldin, A.V. Kovalenko, and D.
Wallach. 1995. MAP3K-related kinase invoved in NF-kB
induction by TNF, CD95 and IL-1. Nature. 385:540–544.

50. Lin, X., E.T. Cunningham, Jr., Y. Mu, R. Geleziunas, and
W.C. Greene. 1999. The proto-oncogene Cot kinase partic-
ipates in CD3/CD28 induction of NF-kB acting through the
NF-kB-inducing kinase and IkB kinases. Immunity. 10:271–
280.

51. Nakano, H., M. Shindo, S. Sakon, S. Nishinaka, M. Mihara,
H. Yagita, and K. Okumura. 1998. Differential regulation of
IkB kinase a and b by two upstream kinases, NF-kB-induc-
ing kinase and mitogen-activated protein kinase/ERK kinase
kinase-1. Proc. Natl. Acad. Sci. USA. 95:3537–3542.

52. Lee, F.S., R.T. Peters, L.C. Dang, and T. Maniatis. 1998.
MEKK1 activates both IkB kinase a and IkB kinase b. Proc.
Natl. Acad. Sci. USA. 95:9319–9324.

53. Nemoto, S., J.A. DiDonato, and A. Lin. 1998. Coordinate
regulation of IkB kinases by mitogen-activated protein kinase
kinase kinase 1 and NF-kB-inducing kinase. Mol. Cell. Biol.
18:7336–7343.

54. Zhao, Q., and F.S. Lee. 1999. Mitogen-activated protein ki-
nase/ERK kinase kinases 2 and 3 activate nuclear factor-kB
through IkB kinase-a and IkB kinase-b. J. Biol. Chem. 274:
8355–8358.

55. DiDonato, J.A., M. Hayakawa, D.M. Rothwarf, E. Zandi,
and M. Karin. 1997. A cytokine-responsive IkB kinase that
activates the transcription factor NF-kB. Nature. 388:548–
554.

56. Regnier, C.H., H.Y. Song, X. Gao, D. Goeddel, Z. Cao,
and M. Rothe. 1997. Identification and characterization of an
IkB kinase. Cell. 90:373–383.

57. Zandi, E., D.M. Rothwarf, M. Delhase, M. Hayakawa, and
M. Karin. 1997. The IkB kinase complex (IKK) contains two
kinase subunits, IKKa and IKKb, necessary for IkB phos-
phorylation and NF-kB activation. Cell. 91:243–252.

58. Woronicz, J.D., X. Gao, Z. Cao, M. Rothe, and D.V. Goed-



738 Akt Activation in Mast Cells

del. 1997. IkB kinase-b: NF-kB activation and complex for-
mation with IkB kinase-a and NIK. Science. 278:866–869.

59. Mercurio, F., H. Zhu, B.W. Murray, A. Shevchenko, B.L.
Bennett, J. Li, D.B. Young, M. Barbosa, M. Mann, A. Man-
ning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine-acti-
vated IkB kinases essential for NF-kB activation. Science. 278:
860–866.

60. Ghosh, S., M.J. May, and E.B. Kopp. 1998. NF-kB and Rel
proteins: evolutionarily conserved mediators of immune re-
sponses. Annu. Rev. Immunol. 16:225–260.

61. Satterthwaite, A.B., C.A. Lowell, W.N. Khan, P. Sideras,
F.W. Alt, and O.N. Witte. 1998. Independent and opposing
roles for Btk and Lyn in B and myeloid signaling pathways. J.
Exp. Med. 188:833–844.

62. Kawakami, T., N. Inagaki, M. Takei, H. Fukamachi, K.M.
Coggeshall, K. Ishizaka, and T. Ishizaka. 1992. Tyrosine
phosphorylation is required for mast cell activation by FceRI
cross-linking. J. Immunol. 148:3513–3519.

63. Zhang, J., E.H. Berenstein, R.L. Evans, and R.P. Siraganian.
1996. Transfection of Syk protein tyrosine kinase reconsti-
tutes high affinity IgE receptor-mediated degranulation in a
Syk-negative variant of rat basophilic leukemia RBL-2H3
cells. J. Exp. Med. 184:71–79.

64. Craxton, A., A. Jiang, T. Kurosaki, and E.A. Clark. 1999.
Syk and Bruton’s tyrosine kinase are required for B cell anti-
gen receptor-mediated activation of the kinase Akt. J. Biol.
Chem. 274:30644–30650.

65. Hata, D., J. Kitaura, S.E. Hartman, Y. Kawakami, T. Yokota,
and T. Kawakami. 1998. Bruton’s tyrosine kinase-mediated
interleukin-2 gene activation in mast cells. Dependence on
the c-Jun N-terminal kinase activation pathway. J. Biol.
Chem. 273:10979–10987.

66. Konishi, H., T. Shinomiya, S. Kuroda, Y. Ono, and U.
Kikkawa. 1994. Molecular cloning of rat RAC protein kinase
a and b and their association with protein kinase C z. Bio-
chem. Biophys. Res. Commun. 205:817–825.

67. Blume-Jensen, P., R. Janknecht, and T. Hunter. 1998. The
Kit receptor promotes cell survival via activation of
PI3-kinase and subsequent Akt-mediated phosphorylation of
Bad on Ser136. Curr. Biol. 8:779–782.

68. Wang, Q., R. Somwar, P.J. Bilan, Z. Liu, J. Jin, J.R.
Woodgett, and A. Klip. 1999. Protein kinase B/Akt partici-
pates in GLUT4 translocation by insulin in L6 myoblasts.
Mol. Cell. Biol. 19:4008–4018.

69. Van Antwerp, D.J., S.J. Martin, T. Kafri, D.R. Green, and
I.M. Verma. 1996. Suppression of TNF-a-induced apoptosis
by NF-kB. Science. 274:787–789.

70. Lin, X., Y. Mu, E.T. Cunningham, Jr., K.B. Marcu, R.
Geleziunas, and W.C. Greene. 1998. Molecular determinants
of NF-kB-inducing kinase action. Mol. Cell. Biol. 18:5899–
5907.

71. Beals, C.R., C.M. Sheridan, C.W. Turck, P. Gardner, and
G.R. Crabtree. 1997. Nuclear export of NF-ATc enhanced
by glycogen synthase kinase-3. Science. 275:1930–1934.

72. Li, H.-L., W.W. Davis, E.L. Whiteman, M.J. Birnbaum, and
E. Pure. 1999. The tyrosine kinases Syk and Lyn exert op-
posing effects on the activation of protein kinase Akt/PKB in
B lymphocytes. Proc. Natl. Acad. Sci. USA. 96:6890–6895.

73. Gold, M.R., M.P. Scheid, L. Santos, M. Dang-Lawson, R.A.
Roth, L. Matsuuchi, V. Duronio, and D.L. Krebs. 1999. The
B cell antigen receptor activates the Akt (protein kinase B)/
glycogen synthase kinase-3 signaling pathway via phosphati-
dylinositol 3-kinase. J. Immunol. 163:1894–1905.

74. Yano, H., S. Nakanishi, K. Kimura, N. Hanai, Y. Saitoh, Y.
Fukui, Y. Nonomura, and Y. Matsuda. 1993. Inhibition of
histamine secretion by wortmannin through the blockade of
phosphatidylinositol 3-kinase in RBL-2H3 cells. J. Biol.
Chem. 268:25846–25856.

75. Eiseman, E., and J.B. Bolen. 1992. Engagement of the high-
affinity IgE receptor activates src protein-related tyrosine ki-
nases. Nature. 355:78–80.

76. Hutchcroft, J.E., R.L. Geahlen, G.G. Deanin, and J.M. Ol-
iver. 1992. FceRI-mediated tyrosine phosphorylation and ac-
tivation of the 72-kDa protein-tyrosine kinase, PTK72, in
RBL-2H3 rat tumor mast cells. Proc. Natl. Acad. Sci. USA.
89:9107–9111.

77. Kawakami, Y., L. Yao, T. Miura, S. Tsukada, O.N. Witte,
and T. Kawakami. 1994. Tyrosine phosphorylation and acti-
vation of Bruton tyrosine kinase upon FceRI cross-linking.
Mol. Cell. Biol. 14:5108–5113.

78. Tsujimura, T., T. Furitsu, M. Morimoto, K. Isozaki, S. No-
mura, Y. Matsuzawa, Y. Kitamura, and Y. Kanakura. 1994.
Ligand-independent activation of c-kit receptor tyrosine ki-
nase in a murine mastocytoma cell line P-815 generated by a
point mutation. Blood. 83:2619–2626.

79. Kawakami, Y., J. Kitaura, A.B. Satterthwaite, R.M. Kato, K.
Asai, S.E. Hartman, M. Maeda-Yamamoto, C.A. Lowell,
D.J. Rawlings, O.N. Witte, and T. Kawakami. 2000. Re-
dundant and opposing functions of two tyrosine kinases, btk
and lyn, in mast cell activation. J. Immunol. 165:1210–1219.

80. Hata, D., Y. Kawakami, N. Inagaki, C.S. Lantz, T. Kita-
mura, W.N. Khan, M. Maeda-Yamamoto, T. Miura, W.
Han, S.E. Hartman, et al. 1998. Involvement of Bruton’s ty-
rosine kinase in FceRI-dependent mast cell degranulation
and cytokine production. J. Exp. Med. 187:1235–1247.

81. Ozes, O.N., L.D. Mayo, J.A. Gustin, S.R. Pfeffer, L.M. Pfef-
fer, and D.B. Donner. 1999. NF-kB activation by tumour
necrosis factor requires the Akt serine-threonine kinase. Na-
ture. 401:82–85.

82. Nikolakaki, E., P.J. Coffer, R. Hemelsoet, J.R. Woodgett,
and L.H.K. Defize. 1993. Glycogen synthase kinase 3 phos-
phorylates Jun family members in vitro and negatively regu-
lates their transactivating potential in intact cells. Oncogene.
8:833–840.

83. Nechushtan, H., and E. Razin. 1996. Regulation of mast cell
growth and proliferation. Crit. Rev. Oncol. Hematol. 23:131–
150.

84. Datta, S.R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh,
and M.E. Greenberg. 1997. Akt phosphorylation of BAD
couples survival signals to the cell-intrinsic death machinery.
Cell. 91:231–241.

85. del Peso, L., M. Gonzalez-Garcia, C. Page, R. Herrera, and
G. Nunez. 1997. Interleukin-3-induced phosphorylation of
BAD through the protein kinase Akt. Science. 278:687–689.

86. Scheid, M.P., and V. Duronio. 1998. Dissociation of cyto-
kine-induced phosphorylation of Bad and activation of PKB/
akt: involvement of MEK upstream of Bad phosphorylation.
Proc. Natl. Acad. Sci. USA. 95:7439–7444.

87. Hinton, H.J., and M.J. Welham. 1999. Cytokine-induced
protein kinase B activation and Bad phosphorylation do not
correlate with cell survival of hemopoietic cells. J. Immunol.
162:7002–7009.

88. Dijkers, P.F., T.B. van Dijk, R.P. de Groot, J.A.M. Raaij-
makers, J.-W.J. Lammers, L. Koenderman, and P.J. Coffer.
1999. Regulation and function of protein kinase B and MAP
kinase activation by the IL-5/GM-CSF/IL-3 receptor. Onco-



739 Kitaura et al.

gene. 18:3334–3342.
89. Cardone, M.H., N. Roy, H.R. Stennicke, G.S. Salvesen,

T.F. Franke, E. Stanbridge, S. Frisch, and J.C. Reed. 1998.
Regulation of cell death protease caspase-9 by phosphoryla-
tion. Science. 282:1318–1321.

90. Brunet, A., A. Bonni, M.J. Zigmund, M.Z. Lin, P. Juo, L.S.
Hu, M.J. Anderson, K.C. Arden, J. Blenis, and M.E. Green-
berg. 1999. Akt promotes cell survival by phosphorylating
and inhibiting a Forkhead transcription factor. Cell. 96:857–
868.

91. Kops, G.J.L.P., N.D. de Ruiter, A.M.M. De Vries-Smits,
D.R. Powell, J.L. Bos, and B.M.Th. Burgering. 1999. Direct
control of the Forkhead transcription factor AFX by protein
kinase B. Nature. 398:630–634.

92. Biggs, W.H., III, J. Meisenhelder, T. Hunter, W.K. Cave-
nee, and K.C. Arden. 1999. Protein kinase B/Akt-mediated
phosphorylation promotes nuclear exclusion of the winged

helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA.
96:7421–7426.

93. Katoh, N., S. Kraft, J.H.M. Wessendorf, and T. Bieber.
2000. The high-affinity IgE receptor (FceRI) blocks apopto-
sis in normal human monocytes. J. Clin. Invest. 105:183–190.

94. Bajpai, U.D., K. Zhang, M. Teutsch, R. Sen, and H.H.
Wortis. 2000. Bruton’s tyrosine kinase links the B cell recep-
tor to nuclear factor kB activation. J. Exp. Med. 191:1735–
1744.

95. Petro, J.B., S.M.J. Rahman, D.W. Ballard, and W.N. Khan.
2000. Bruton’s tyrosine kinase is required for activation of
IkB kinase and nuclear factor kB in response to B cell recep-
tor engagement. J. Exp. Med. 191:1745–1753.

96. Romashkova, J.A., and S.S. Makarov. 1999. NF-kB is a tar-
get of AKT in anti-apoptotic PDGF signalling. Nature. 401:
86–90.


