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Mapping molecular subtype specific alterations in
breast cancer brain metastases identifies clinically
relevant vulnerabilities
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Adrian V. Lee 2,7, Fergus J. Couch4,9✉ & Leonie S. Young 1,9✉

The molecular events and transcriptional plasticity driving brain metastasis in clinically

relevant breast tumor subtypes has not been determined. Here we comprehensively dissect

genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and

unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype

specific hub genes and functional processes, central to disease-affected networks in brain

metastasis. Importantly, in luminal brain metastases we identify homologous recombination

deficiency operative in transcriptomic and genomic data with recurrent breast mutational

signatures A, F and K, associated with mismatch repair defects, TP53 mutations and

homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in

patient-derived brain metastatic tumor explants we functionally validate HRD as a key vul-

nerability. Here, we demonstrate a functionally relevant HRD evident at genomic and tran-

scriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of

potential translational significance.
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Breast cancer brain metastases (BCBM) are a frequent and
aggressive form of metastatic spread, with treatment
options limited for each of the clinically relevant breast

cancer subtypes1. Breast cancer cells exhibit exceptional plasticity,
capable of adapting to sequential bouts of therapeutic pressure, as
well as the vastly changing microenvironmental landscape. These
adaptations can be immediate or delayed, often depending on
whether tumors are ER-positive or ER-negative2. Breast cancer
brain metastases diverge from their primary breast tumors both
genomically and phenotypically. At a most basic level, this is
observed in frequent clinical and molecular subtype switching
reported in brain metastases3,4. The receptor discordance is most
prominent in luminal (ER-positive) tumors that may inform
subtype-directed therapeutic approaches. Furthermore, despite
differences in the rate of BCBM recurrence amongst different
breast cancer subtypes, the presentation of BCBM carries with it
the highest risk of death which remains comparable between ER-
positive and ER-negative tumors2. The molecular diversity of
BCBM and its relationship to tumor subtype has not been elu-
cidated, especially in the context of BCBM originating from
luminal tumors. While luminal tumors are less aggressive, they
are by far the largest molecular subtype and therefore represent a
significant number of metastatic cases and deaths1,5, under-
scoring the necessity for a greater understanding of molecular
drivers and the underlying biology.

Numerous studies have made use of gene expression profiling
of triple-negative and HER2+ve BCBM-homing cell line models
to identify drivers of various BCBM-related processes, some of
which are associated with brain relapse-free survival in primary
tumors6–11. On the other hand, investigations exploring the
genomic landscape of resected BCBM tumors have attempted to
investigate putative driver mutations, clonality, and genetic
divergence. Acquired driver genomic alterations in BCBM pre-
dominantly consist of the HER, PI3K, and cyclin-dependent
kinase (CDK) pathways; many of which are enriched compared
to the primary tumor12–14. Although this general strategy has
classified potentially clinically informative adaptations, only a
handful of studies have investigated these mutations in experi-
mental models or in patients, especially in the context of all
breast tumor subtypes. As such, there remains an uncertainty
about the functional relevance of these events and their specifi-
city for BCBM.

In this work, as part of a multi-institutional effort, we have
profiled genetic and transcriptomic features of longitudinal
patient-matched BCBMs with corresponding comprehensive
clinical annotation including full treatment history and patient
outcomes at each step of progression. Whilst the genomic and
transcriptomic landscape of BCBM is widespread it converges on
several key pathways and effectors demonstrating the value of
interrogating these processes collectively. In this study, our cohort
allowed us to characterize and map breast cancer subtype-specific
BCBM alterations through interrogation of DNA and RNA-
sequencing data combined with a network analysis-based
approach. DNA repair pathway defects, including homologous
recombination deficiency (HRD), are extensively profiled and
functionally validated in luminal BCBMs.

Results
Subtype-specific BCBM transcriptome. To date, BCBM mole-
cular drivers have not been characterized for each individual
clinical breast subtype potentially missing key insights into the
biology and heterogeneity of the disease. To map subtype-specific
alterations in BCBM, we analyzed patient-matched primary breast
and brain metastatic RNA and DNA samples from a cohort of 45
and 39 patients respectively (Fig. 1a). 13 ER+/HER2− (which we

designate as luminal) (29%), 16 HER2+ (ER+/−) (35.5%) and 16
TNBC (35.5%) tumors underwent RNA-sequencing and are pre-
sented with fully annotated clinicopathological characteristics
(Table 1, Supplementary Figs. 1–3, Supplementary Data 1).
Consistent with previous reports3,4,15, we observed both intrinsic
molecular subtype switching and clinical subtype switching from
primary breast to BCBM for ~27% (12/45) and 22% (10/45) cases
respectively (Fig. 1b–d and Supplementary Data 2, Supplementary
Fig. 4). We analyzed the tumor pairs with regard to clinical sub-
types which exhibited discrete transcriptional programs (differ-
entially expressed in BCBM compared to patient-matched
primaries, log2FC ± 2.0; adjusted P-value < 0.05) (Fig. 2a and
Supplementary Data 3–5). We identified commonly differentially
expressed genes (106 up-; 379 downregulated in BCBM, Supple-
mentary Data 6) enriched for pathways associated with the brain
tumor microenvironment (GSEA; FDR < 0.25; NES ± 1.0),
including GFAP, glial fibrillary acidic protein (a marker of reactive
astrocytes), gene targets of NR2E1 (TLX), nuclear receptor sub-
family 2 group E member 1(encoded protein regulates adult
neural stem cell proliferation), and PTPRC, protein tyrosine
phosphatase receptor C (signaling molecules that regulate multiple
cellular processes16–18) (Fig. 2b and Supplementary Data 7).

In clinical subtype-specific transcriptome analysis, unsupervised
clustering identified distinct BCBM expressed gene clusters
(Fig. 2c–e, see “Methods” section). GSEA revealed luminal subtype
(ER+/HER2−)-specific gene expression changes in BCBM, enriched
for downregulated NOTCH, AKT, and p53 signaling pathways,
with upregulation of myogenesis (KLF2) and response to oxygen
associated pathways (Supplementary Data 8). HER2+ BCBM show
downregulation of focal adhesion cellular processes, ECM, and
members of the neuroactive ligand-receptor signaling pathway. We
found a significant positive enrichment for metabolic and hypoxia
associated function in HER2+ BCBM, driven primarily by the
upregulation of ALDOA, GPI, and ENO1 genes. TNBC BCBM
demonstrate downregulation of ITGAL, cytotoxic T cell, and
interferon-gamma-associated pathways, with upregulation of cell
cycle and LEF1 transcription factor WNT signaling (Supplementary
Data 8).

Functionally, genes do not act in isolation and as such, we
next prioritized identification of BCBM gene co-expression
networks for each clinical subtype using the WGCNA framework
(see “Methods” section, Supplementary Fig. 4). We identified
8 gene co-expression modules (n = 197 genes) in luminal
(ER+/HER2−), 9 modules (n = 231 genes) in HER2+ and 4
modules (n = 229 genes) TNBC subtypes, all of which were
present in both primary tumor and BCBM (Fig. 3a–c and
Supplementary Fig. 5). Focusing on functionally related gene
networks altered with BCBM, differential gene co-expression
network analysis (DGCA), further defined 17 luminal (n = 164
genes), 13 HER2+ (n = 186 genes) and 3 TNBC (n = 34 genes)
differential gene co-expression modules (Supplementary Figs. 5
and 6). We observe overall, TNBC gene networks are less
divergent compared to luminal and HER2+ subtypes, with
network connectivity strongly driven by gene networks present
both in primary and BCBM (Fig. 3d–f). This could partly be due
to the heterogeneity present within the TNBC tumors themselves
as evidenced by their Lehman subtyping classifications (Supple-
mentary Data 2). Most of the network structure captured here
reflects the often-observed tumor heterogeneity within clinical
subtypes. To query whether these modules were BCBM-specific
rather than a general metastatic alteration we analyzed several
breast gene expression data sets with multiple annotated
metastatic sites including brain, bone, lung, liver, and other
sites14,19,20. By comparing ssGSEA score for each gene module in
the brain versus all other metastatic sites notably, we found that
~79% (26/33; adjusted P-value < 0.05) of the gene modules were
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significantly enriched in BCBM over other sites (Fig. 4a, b and
Supplementary Fig. 7, Supplementary Data 9).

Pathway activity of these modules recapitulated some known
characteristics of each clinical subtype, but we also observed
alterations in pathways previously not reported (Fig. 4c and
Supplementary Data 10). HER2+ subtype brain-specific gene
networks show downregulation of TNF-α/NFK-α, INHBA-
mediated immune response, ECM proteins, and mammary stem

cell-related pathways. Consistent and complementary to differ-
ential gene expression in HER2+ BCBM versus matched primary
breast tumor, one module (module_1) was brain-specific and
enriched for ENO1-mediated metabolic reprogramming and
mTORc related signaling. The second-largest HER2+ BCBM-
specific gene module (module_2) shows upregulation of comple-
ment cascade (C1QA/B/C), with depletion of NOTCH1 (BIRC3,
CD3G, CD74, CD2), MYC targets (PTPRC, CD2, CD74), and T
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Fig. 1 Methodological overview and BCBM subtyping. a, b Graphical methodological overview of the subtype-specific analysis of exome capture RNA-Seq
(45 cases; 90 samples) and DNA whole-exome sequencing for 18/45 cases. c Bar chart shows the frequency of intrinsic molecular subtype: Luminal A, B,
Her2-enriched, Basal-like, and Normal for primary breast and brain metastatic tumors (left). The intrinsic molecular subtype of each tumor was called by
applying the PAM50 subtype predictor to gene expression data, adjusted for sequencing center batch-driven effect. Sankey flow diagram of molecular
sample switching from primary breast tumors to brain metastases (Right). Dark gray edges of the flow diagram represent those samples that switched
intrinsic molecular subtype. d Bar chart of percent samples annotated as either ER+/HER2+, HER2+, TNBC tumor subtype, defined based on
immunohistochemistry (IHC) status for ER, PR, and HER2 genes when available for 90 samples. Source data are provided as a Source Data file.
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cell receptor signaling. For patients with TNBC, the BCBM-
specific gene module (c8_3) is strongly associated with SER-
PINF1, INHBA-enriched cell death, and differentiation function.
TNBC gene module 1 was enriched for pathways related to
interferon-gamma response, cell cycle G2/M phase (VCAM1,
IDO1), and T cell differentiation (CARD11, LCK, B2M) function
(Fig. 4c). Notably, in the luminal cohort, a BCBM-specific gene
co-expression network module (module 1) genes are enriched for
mitotic cytokinesis, p53 signaling, RB1 gene, and AURKA related
cell proliferation function and BRCA1-mediated cell cycle
regulation (gene ontology tubulin/chromatin binding) (Fig. 4c).
Indeed, annotating co-expression module genes according to the
Drug-Gene Interaction database (DGIdb)21 categories revealed
the highest proportion of DNA repair genes belonged to the
luminal subtype network genes (Supplementary Fig. 8). More-
over, further manual annotation of luminal module 1 network
genes with DGIdb categories revealed several known DNA repair
pathway genes including BRCA1, BRCA2, CHEK1, and AURKA
(Fig. 4d). Though germline and somatic mutations in BRCA1 and
BRCA2 genes are known to be associated with HRD, here,
transcriptomic network irregularities in BRCA driven pathways
could also be utilized to identify tumors potentially harboring
irregularities in these pathways. Taken together, harmonization of
subtype-specific approaches exposes transcriptome network
irregularities revealing hard-to-detect and potentially biologically
significant networks.

Homologous recombination deficiency is enriched in brain
metastases. We next sought to determine whether DNA altera-
tions in BCBM impacted comparable pathways. We performed

WXS on 18/45 of BCBM cases (18 trios consisting of BCBM and
matched primary tumor and normal tissue) and analyzed an
additional independent BCBM WXS cohort (N = 21 cases)12

(Supplementary Data 11). Somatic copy number alteration
(SCNA) analysis between patient-matched cases revealed both
shared and distinct large-scale amplifications and deletions (q-
value < 0.001) (Fig. 5a, b and Supplementary Data 12). Notably,
arm level amplifications (chr20p, 20q, chr6p; q-value < 0.25) were
enriched in primary breast tumors, with brain metastasis-specific
recurrent arm level alterations enriched for copy number loss and
deletions (chr5q, 19p,19q,9q,10q,18q; q-value < 0.25) (Supple-
mentary Data 12). Fifteen regions of recurrent focal amplifica-
tions (including chr17q12, 8p11.23, 8q23.3, and 20q13.2) versus
47 regions of focal deletions (including chr4p11) were identified
as significantly altered in brain metastases (q-value < 0.10)
(Fig. 5b and Supplementary Data 13, 14). Gene level variant
calling identified, copy number changes in BCBM including
amplifications in ERBB2, MYC, AURKA with deletions in tumor
suppressor genes such as NF1, PTEN, along with SNVs in TP53,
PIK3CA, and BRCA2 (Fig. 5c, d and Supplementary Data 15). In
most BCBM cases, regions of significant SCNA (both broad and
focal alterations) were largely comprised of deletions, potentially
indicative of genomic instability. The observed genomic
instability in BCBM tumors and in particular the prevalence of
deletions, is consistent with probable defects in DNA repair
pathway function and maybe reflective of the accumulated
treatment history as has been reported elsewhere22. In our data
set, however, we see no association in terms of types of therapies
or number of therapies having an influence on the specific
mutational landscape.

We subsequently investigated mutational processes active in
BCBM using a recently described organ-specific framework for
mutational signature analyses23. Overall BCBM tumors were
composed of Breast A (RefSigMMR1; mismatch repair deficiency
(MMR)), Breast F (RefSig18; reported associated driver mutations
TP53, APC, NOTCH and NFE2L2), Breast G (RefSig30; TP53
driver mutation associated), Breast K (RefSig3; HRD-related;
reported associated driver mutations BRCA2, TP53, BRCA1, MYC,
ARID1, NF1) and Breast J (RefSig 1; ageing associated; associated
driver mutations TP53, KRAS, CDKN2B, CDKN2A, EGFR, SMA4,
APC, BRD4), with a minority of tumors with Breast D (RefSig
MMR2; associated driver mutations CTNNB1, ALB), Breast B
(RefSig2, APOBEC) and Breast C (RefSig13, APOBEC; associated
driver mutations TP53, PIK3CA, FAT1) (Fig. 6a and Supplemen-
tary Fig. 9, Supplementary Data 16, 17).

Mutational signatures Breast A (MMR1), Breast K (HRD), and
Breast F were significantly enriched in BCBM compared to
matched primary breast tumor with the relative contribution of
Breast J (Ageing associated) decreased in BCBM (Fig. 6b; paired
Wilcoxon rank-sum test; P < 0.05). We employed a benchmark-
ing strategy to establish a threshold to define Breast K signature
status23. Using the defined cut-off of relative contribution greater
>0.9, we detected Breast K in 13 out of 39 BCBM of which 9 cases
did not have Breast K present in the matched primary tumor
indicating a HRD-associated signature gained in BCBM (Fig. 6a
and Supplementary Fig. 9c, Supplementary Data 17). Intriguingly,
HRD mutational signature Breast K was found in 54% (6/11) of
luminal type BCBM independently of somatic or germline
BRCA1/2/PALPB2 mutations, with 31% (6/19) in HER2+ and
11% (1/9) in triple-negative subtype (Supplementary Data 17).
We found that ~21% (6/39) of BCBM cases had the presence of
Breast K signature mutually exclusive to the other BCBM
enriched mutational signatures, independently of somatic or
germline BRCA1/2/PALPB2 mutations and tumor mutational
burden (Fig. 6a and Supplementary Fig. 10; Supplementary
Data 17). Of note, we observed one pathogenic germline BRCA2

Table 1 Demographic and clinical characteristics of brain
metastases cohort.

Clinical subtype ER+/HER2− HER2+ TNBC

Number of
patients

13 16 16

Age at
diagnosis*

53 [40, 63] 50 [26, 67] 46 [26, 66]

Age group (%)
<40 0 (0.0) 4 (25.0) 5 (31.2)
40–59 10 (76.9) 9 (56.2) 8 (50.0)
≥60 3 (23.1) 3 (18.8) 3 (18.8)

Vital status (%)
Alive 1 (7.7) 1 (6.2) 2 (12.5)
Dead 12 (92.3) 15 (93.8) 14 (87.5)

Overall survival* 74 [32, 223] 58 [18, 225] 42 [18, 173]
BMFS* 53 [12, 216] 31 [5, 151] 25 [13, 89]
SPBM* 18 [5, 65] 22 [3, 74] 12 [3, 147]
Other metastases (%)
Yes 10 (76.9) 10 (62.5) 8 (50.0)
No 3 (23.1) 6 (37.5) 8 (50.0)

Histological subtype (%)
IDC 11 (84.6) 12 (75.0) 16 (100.0)
ILC 1 (7.7) 1 (6.2) 0 (0.0)
Other 1 (7.7) 3 (18.8) 0 (0.0)

PAM50 subtype (%)
LumA 7 (53.8) 3 (18.8) 1 (6.2)
LumB 3 (23.1) 5 (31.2) 0 (0.0)
Her2 0 (0.0) 8 (50.0) 1 (6.2)
Basal 2 (15.4) 0 (0.0) 14 (87.5)
Normal 1 (7.7) 0 (0.0) 0 (0.0)

BMFS brain metastases-free survival in months (time from primary breast diagnosis to brain
metastatic disease diagnosis), SPBM survival post brain metastases in months (time from brain
metastases diagnosis to death or follow up), IDC invasive ductal carcinoma, ILC invasive lobular
carcinoma,
*Median [min, max].
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Fig. 3 Clinical subtype-specific gene networks in BCBM. a–c Correlation heatmaps of gene-gene correlation coefficients, i.e., the strength and direction of
gene co-expression in each clinical subtype, from left to right, Luminal, HER2+, and TNBC. Module membership is labeled. Positive spearman correlation
coefficient colored in red, with negative correlation coefficient colored in blue. (Benjamini–Hochberg (BH) adjusted P-value < 0.05). d–f Network plots of
clinical subtype-specific gene co-expression and differential co-expression networks identified for Luminal, HER2+, and TNBC subtype (Left-right). For each
network (d–f) gene nodes are colored according to gene module membership, with gene node size proportional to node degree value. Larger degree values
indicate those genes which are highly connected to other genes in the network and are most likely hub genes.
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mutation and two somatic BRCA2 and/or PALB2 mutations in
only 2/13 HRD BCBM cases, along with several germline variants
of uncertain significance in BRCA1/2 and PALB2 genes across all
39 cases which did not associate with the HRD-related signatures
we detected (annotated by ClinVar database; Fig. 6a and
Supplementary Fig. 10, Supplementary Data 18). Likewise, the
transcript levels of BRCA1, RAD51, and RAD51C were largely
unaltered in BCBM samples harboring high levels of HRD-related
signatures (Supplementary Fig. 9e). Therefore, we conclude that

the HRD mutational signature detected here is independent of
known germline and somatic BRCA1/2 and PALB2 mutations.

To further define the increased presence of HRD in BCBM
tumors, we also calculated a combined genomic scar score, a
marker of genomic instability associated with a double-strand
break (DSB) repair and HRD24,25, including HRD loss of
heterozygosity (HRD-LOH), large state transitions (LST) and
the number of telomeric allelic imbalance (ntAI) (see “Methods”
section). The combined “genomic scar” score was significantly

Fig. 4 Brain-specific gene networks. a Summary of the breast cancer brain metastases publicly available data sets utilized for ssGSEA testing of gene co-
expression network modules. b Tile plot of those significantly enriched network gene modules for each subtype in independent breast cancer metastases
gene expression data sets. Tile color corresponds to adjusted P-value from testing for differences in ssGSEA gene module scores between brain metastatic
samples versus other metastatic sites (two-sided Wilcoxon rank-sum (Mann–Whitney U) test used; Benjamini–Hochberg adjusted P-value < 0.05, exact P
and Q values provided in Supplemental Data 10). c Enrichment Map plot of functional annotation of significantly enriched gene modules using GSEA and
the Molecular Signatures database (MSigDB) (Normalized enrichment score (NES) ±1.0; BH adjusted P-value < 0.10). P-values are based on a gene-
permutation test and adjusted using the Benjamini–Hochberg procedure (see “Methods”, “Gene set enrichment analysis”). Functional pathway term
similarity colored by green edges; nodes colored per NES score (red indicates positive enrichment in brain metastases vs primary breast tumors, with blue
indicating negative enrichment). d Luminal gene network module 1 vignette shown, with manually curated DNA repair-associated genes labeled.
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increased in BCBM compared to matched primary breast tumor
(Fig. 6c, d; one-sided paired Wilcoxon rank-sum test, P < 0.05).
Interestingly, in the BCBM cases where we detect Breast K, 11/13
BCBM samples are also called HR deficient by the genomic scar
method (score > 41) (Supplementary Data 17). Collectively, these
data are consistent with a model where DNA repair pathways
represent a key genomic dependency enriched in luminal and
other BCBM and these alterations might endow a survival
advantage for breast tumors.

To ascertain whether HRD is functionally represented in the
BCBM transcriptome, we first calculated the GSVA HR pathway
score for each tumor in the full BCBM RNA-Seq cohort (N = 45
patient-matched samples; Fig. 6e and Supplementary Fig. 10a,
Supplementary Data 19). Consistent with the genomic analysis,
high HR pathway scores were detected in BCBM relative to
matched primary breast tumors in a detailed HR pathway
analysis scoring for HR (P = 0.002), HRD230 (a 230 gene
signature derived from HRD tumors)26 (P = 0.001), MMR (P =
0.001) and base excision repair (BER) (P < 0.0001) pathways
(Fig. 6e and Supplementary Fig. 10B). In cases profiled for both

RNA and DNA, we observe that majority of the Breast K
mutational signature positive cases can also be detected using the
RNA-based HR pathway analysis (Supplementary Fig. 10c). Of
note, and similar to the mutational-based HRD methods, we do
not observe an association with the enrichment of these pathways
and diseases latency marked by brain metastasis-free survival
(BMFS) or overall survival (OS) (Fig. 6e). However, the
substantial enrichment in BCBM for molecular alterations, both
at DNA and RNA level, impacting the HR pathway presents
BCBM patients as potential candidates for PARP inhibitor
therapy.

HRD is functionally relevant in BCBM. To understand the
biological significance of this we further tested the functionality of
the HRD in luminal BCBM using patient-derived tumor explants
(PDTEs)27 and patient-derived organoid cultures (Supplementary
Data 20). PDTEs were established from brain metastatic tissue
from 3 breast cancer patients: T347 (ER+/HER2− primary breast
to ER+/HER2 amplified in BCBM), T638 (ER+/HER2− primary

Fig. 5 Genomic landscape of breast to brain metastasis. a Summary of GISTIC broad arm level alterations shared between primary and BCBM, exclusive
to primary (Prim) or exclusive to BCBM (Mets) annotated by chromosome arm. Significant if q-value < 0.25. P-values are based on a gene-permutation
test and adjusted using the Benjamini–Hochberg procedure. Exact P and Q values are provided in Supplemental Data 12. (see “Methods”, “Identification of
recurrent somatic copy number alterations”). b GISTIC2 chromPlot shows the frequency and magnitude (G-Score) of recurrent somatic copy number
alterations (SCNA) identified in BCBM across chromosomes 1–22 (left-right). Copy number (CN) gains and amplifications colored in red, with CN loss and
deletions colored in blue. Significant (FDR < 0.10) GISTIC2 recurrent SCNA labeled. c, d Oncoplot of recurrent SCNA and SNVs detected in brain
metastatic tumors. Samples annotated by brain metastatic clinical subtype and tumor mutational burden (TMB). SNVs annotated by their associated
dNdScv –log10 q-value, from testing for SNV’s positively selected for in brain metastases and likely a driver mutation.
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breast tumor to ER+; gained HER2 expression in BCBM, HER2
non-amplified), T328 (ER+/HER2− in both primary breast and
brain metastatic tumors) and from independent pleural/lung
metastatic material in 2 of the samples HCI05 (ER+/HER2+) and
HCI-011 (ER+/HER2−), all expanded in the mammary fat pad.
WXS was performed on metastatic tumors for these patients, to
identify somatic SNVs for mutational signature analysis using the
Signal framework (Fig. 7a, Supplementary Data 20, see “Methods”

section). In three BCBM models, we detected mutational sig-
nature Breast K (HRD), Breast E (analogous to RefSig), Breast D
(MMR2), and Breast H (RefSig17;) alongside somatic BRCA1/2
mutations of uncertain clinical significance. HCI05 and HCI11
harbored low Breast K and additionally Breast I (RefSig N1;
CTNNB1 driver mutation associated) and Breast J (RefSig 1) and
no BRCA1/2 mutations. Breast G (TP53 driver mutation asso-
ciated) was detected in T328, HCI05, and HCI11 (Fig. 7b). PDTEs
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were treated for 72h in the presence or absence of PARP inhibitor
(PARPi), niraparib, followed by IHC staining for ki67 cell pro-
liferation marker. A significant anti-proliferative response to
niraparib was observed in the T347 and T638 models (two-sided
t-test; P < 0.01), but not in the T328, HCI05, and HCI11 models,
commonly harboring Breast G, the TP53 associated mutational
signature (Fig. 7c). In addition, using the expression of RAD51, a
core mediator of homologous recombination28, as an indicator of
PARPi sensitivity, T347, and T638 models demonstrated low
basal RAD51 (indicative of HR pathways defect and PARPi
sensitivity) which elevated upon PARPi treatment. PDTEs T328,
HCI05, and HCI11 models had strong RAD51 expression (HR
proficient function, low/no sensitivity) were unaltered with
treatment (Fig. 7d). We further extended our observations using
organoid models of luminal breast cancer (Fig. 7e). We subjected
the organoid lines to PARPi niraparib and assessed cell viability.
We first verified all our explant experiments and demonstrated
PARPi responses in T638 and T347 models (Breast K high and
Breast G negative) and no response in HCI05 and HCI11 (lung/
Pleural effusions; Breast K low/ Breast G high) (Fig. 7f, g). Fur-
thermore, in patient-derived organoids from Breast K negative
models, PDO-066 and PDO-083 (primary and ovarian metas-
tasis); we observe no response to PARPi (Fig. 7g and Supple-
mentary Fig. 11). Finally, we recapitulate the response observed in
T328 in two models harboring Breast K high/ Breast G high
profile (ie PD-102 and PDO-109). Similar to the T328 model, we
see no response to PARPi (Fig. 7g). Therefore, understanding the
relative contribution of specific mutational signatures in combi-
nation with RAD51 expression in BRCA1/2/PALPB2 wild-type
tumors may have significance in predicting response to PARPi in
luminal BCBM.

Discussion
Despite research efforts to decipher the intricacies of
BCBM6,10,12,13,15, our understanding of brain metastatic disease
especially in the context of individual clinical subtypes, has been
remarkably limited. In this study, we have elucidated subtype-
specific alterations in BCBM. Specifically, our data shows features
of luminal BCBM leading to a complete remodeling of the BCBM
transcriptomic and mutational landscape characterized by wide-
spread alterations of HRD pathways.

Our results demonstrate unprecedented subtype-specific tran-
scriptomic and genetic heterogeneity across a large cohort of
BCBM patients, revealing biologically and potentially ther-
apeutically significant pathways, alongside findings that will
function as a critical reference to further advance the under-
standing of breast cancer brain metastases. While single-cell
RNA-sequencing and multi-omics have been recently used for the

profiling of the brain tumor microenvironment (TME)8,29 here,
we employed a complementary approach using data-driven net-
work analysis strategy in longitudinal patient samples revealing
insight into dynamic BCBM gene programs. This approach pre-
sents evidence in support of metabolic reprogramming30 and
dysregulation of immune response pathways31 for the HER2+

and TNBC subtype respectively. Notably, our findings also
identify a brain-specific gene co-expression network in luminal
BCBMs, enriched for cell cycle and BRCA1-mediated transcrip-
tional regulation.

Previous studies have described BRCA1/2-mediated effects
on the tumor in the context of both DNA damage repair defi-
ciency and the tumor microenvironment32, while DNA repair
deficiency has been reported in the context of brain
metastases33 and BCBM34,35. Moreover, there is a reported
association between BRCA1/2 mutations and brain metastases
in breast and ovarian cancer36,37. Our findings show DNA
repair defect at both the DNA and RNA level. Strikingly, of the
~33% (13/39) of patients where we detect a mutational sig-
nature associated with HRD, >50% (6/11) were luminal. Within
our BCBM samples where we find BREAST K signature enri-
ched we observe that 75% of them are gained in BCBM com-
pared to patient-matched primary. 8/13 samples have TP53
mutations (not all of known functional significance) while we
also see high (7/13) co-occurrence with NF1 deletions. NF1
mutations are associated with endocrine resistance38 which
may partly explain the high co-occurrence in mostly luminal
(endocrine-resistant) tumors. We found characteristic genomic
imprints enriched in brain metastases, indicative of DNA repair
deficiency corroborated by genomic scar scores and GSVA
pathway activity. It is not yet clear whether the DNA-level HRD
alterations are brain metastasis-specific alterations or general
metastasis acquired traits as the current series did not contain
patient-matched cases of extracranial tumors. Similarly, while
we see no associations between mutational signature incidence
and BCBM latency or treatment history, it is an important
consideration given it has been reported that radiotherapy itself
is associated with a ‘deletion signature’22.

The finding that BCBM tumors harbor high-frequency
alterations in HRD pathways indicates that HRD brain meta-
static tumors, in particular luminal subtypes, may benefit from a
PARPi with intracranial activity39,40. HRD and PARPi sensitivity
has previously been reported in the context of non-sporadic,
familial, germline BRCA1/2 mutated, and sporadic advanced
breast cancer41–43.

Recently, results from the Phase II TBCRC-048 trial, have
shown that PARP inhibition was effective for patients with
germline PALB2 and somatic BRCA1/2 (independently of

Fig. 6 Homologous recombination deficiency is enriched in breast cancer brain metastases. a Stacked bar chart of the relative contribution [0–1] of
breast cancer mutational signatures (Breast A-K) detected in BCBM (N = 39 patients). Black tile plot indicates enrichment in BCBM over patient-matched
primary. Tumor mutational burden (TMB), somatic and germline SNV’s detected in BCBM tumors for BRCA2, RAD51, and PALB2 genes are displayed.
b Relative contribution values for mutational signatures significantly altered in BCBM (yellow) compared to matched primary tumor (P) (blue) (paired two-
sided Wilcoxon test P < 0.05). Mismatch repair (MMR1; Breast A), Ageing associated signature (Breast J), a signature of unknown etiology (Breast F), and
HRD-associated signature (Breast K). c Boxplot of the combined genomic scar score calculated using allele-specific copy number calling with FACETS from
BCBM WXS DNA seq Cohort (N = 39 patients). Paired one-sided Wilcoxon test was used to compare HRD score in matched primary breast (blue) and
BCBM tumors (yellow). Dashed line indicates HRD cut-off score of 42. The upper and lower limits of the box correspond to the 1st and 3rd quartile score
distribution with whiskers extending to 1.5 times the range from top/bottom of the box. d HRD status of the primary tumor (top) and brain metastasis
(bottom). The charts represent the percentage of tumors that are scored as proficient or deficient in both primary and how this status is altered in BCBM.
e Heatmap of hierarchical clustering of sample and GSVA pathway scores in RNA-Seq BCBM Cohort (N = 90 samples). From top-bottom on the heatmap,
GSVA scores for HR, HRD230, MMR KEGG, BER and NHEJ DNA repair pathways from KEGG. (Paired two-sided Wilcoxon test. HR, P = 0.0002; HRD230,
P = 0.0013; MMR, P = 0.0001; BER, P = 0.0009; NHEJ, P = 0.93). OS overall survival; BMFS brain metastases-free survival; SPBM survival post brain
metastasis all in months. The ranges are included in the legend. Disease status indicates sample type (primary = primary tumor or Mets = BCBM). Source
data are provided as a Source Data file.
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germline BRCA mutations)44. Consistent with the concept of
BRCAness45, our findings here, define operative HRD in BCBM,
independent of identifiable germline and/or somatic BRCA1/2
mutations. Future studies will need to decipher the contribution
of epigenetic silencing on HRD-associated signatures. In our
expression analysis of BRCA1/2 and RAD51/c, we did not
observe any significant evidence of expression loss in BCBM.

However, BRCA1 hypermethylation is known to confer a HRD
and a transcriptional phenotype similar to TNBC tumors with
BRCA1-inactivating variants. Additionally, epigenetic silencing of
RAD51C and BRCA1 by promoter methylation is also associated
with Signature 3 (analogous to Breast K) and were shown to be
highly enriched in TNBC46. Moreover, the number of samples
with high Signature 3 that harbor epigenetic events in BRCA1 and
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RAD51C is comparable to the number of germline events in
BRCA1/246.

We functionally validate our findings and report PARPi anti-
tumor response in pre-clinical BCBM models harboring HRD
mutational signatures. Interestingly, models enriched for the
Breast G signature (RefSig30; TP53 driver mutation associated)
alongside the HRD signature were non-responders to PARPi.
PARPi resistance in TP53 mutated tumors has been reported47,48,
however, further studies are needed to elucidate this association
in the context of TP53 driven mutational signature and its rela-
tionship with HRD-related signatures.

Work described here indicates that functionally relevant HRD
signatures exist in BCBM independently of somatic and germline
BRCA1/2/PALB2 mutations and this presents an opportunity to
extend the benefits of PARPi to a wider population of patients. In
conclusion, this work opens further translational avenues for
therapeutic interventions guided by subtype-specific HRD tran-
scriptomic and genomic signatures and we believe these findings
should inform future clinical studies.

Methods
Ethical issues. Institutional review boards from all three participating Institutions
University of Pittsburgh, Royal College of Surgeons in Ireland and Mayo Clinic
approved collection and analysis of specimens. For sequencing studies, the
requirement for informed consent was waived by all three institutional review
boards, considering all samples were de-identified, there was no more than mini-
mal risk to human subjects, and all tissue was obtained as part of routine clinical
care. Freshly resected breast cancer brain metastatic tumors utilized in tumor
explant and organoid studies were collected with fully informed consent from
patients and studied under approved IRB protocol #13/09/ICORG09/07 at the
Royal College of Surgeons in Ireland. All procedures using animals were reviewed
and approved by the Institutional Animal Care and Use Committee and the HPRA.

Sample acquisition. The study population involves female breast cancer patients
from three independent institutions, not pre-selected. A description of the cov-
ariate relevant study population and tumor characteristics including age, clinical
tumor subtypes, pre- and post-menopausal status age groups, lines of treatment,
and other clinical characteristics can be found in Supplementary Data 1. Patients
had primary breast cancer and had subsequently developed brain metastasis. Only
patients with FFPE tissue available for both primary breast and brain metastatic
tumors were eligible to be included in the sequencing study. DNA/RNA was
extracted from formalin-fixed paraffin-embedded (FFPE) tissue from patient-
matched primary breast tumors and resected brain metastases using the Qiagen
GeneRead DNA FFPE kit using standard protocols. Sample quality and con-
centration were assessed by Qubit and fragment analysis.

Whole-exome DNA sequencing
Library preparation. For whole-exome sequencing (WXS), sheared DNA was
processed using a SureSelect Human XT (low input) Human Exome v5 + UTR
(v.5U) protocol (Agilent Technologies). Indexed, pooled libraries (4 per lane) were
sequenced on an Illumina HiSeq4000 system (150-bp paired-end reads).

Sequence alignment and pre-processing. Sequencing reads were mapped to the
human reference genome (hg19/GRCh37) using the Burrows-Wheeler Aligner
(bwa mem v.0.7.13) using default parameters. According to the GATK4 best
practice pipeline, read duplicates were marked using Picard (v.1.140). Sorted and
de-duplicated alignments were next processed by base quality score recalibration
(BQSR).

Brastianos et al.12 WXS BCBM Cohort. Whole-exome sequencing data for 21 breast
cancer brain metastases cases (63 trios of matched normal (buffy coat plasma-
derived germline), primary breast and brain metastatic tumor) from the Brastianos
et al.12 study were downloaded from the database of Genotypes and Phenotypes
(dbGap) (accession number phs000730.v1.pl)12. Sequencing reads were aligned to
human reference genome hg19 using bwa mem v.0.7.13, with post-processing of
sequence alignment files according to GATK4 best practice pipeline49.

Allele-specific DNA copy number inference. Total and allele-specific copy
number states were inferred for all tumor samples using FACETS Suite (v2.0.8) and
FACETS (v.0.6.1) (https://github.com/mskcc/facets-suite). Tumor and matched
normal bam files were pre-processed using snp-pileup (v.0.6.1) with parameters
–q15 –Q20 –P100 –r25,0. A two-pass implementation of FACETS using snp-pileup
files as input, was utilized were a low sensitivity run (cval = 150) first infers the
purity and log-ratio related to diploidy, as per50 methodology. A second higher
sensitivity run (cval = 25) to detect focal events, determines the copy number state
of each gene.

Calculation of genomic scar scores. Genomic instability can be measured by
genomic scar scores i.e., unique fingerprints embedded in tumor samples from
copy number alteration profiles. For homologous recombination deficient (HRD)
tumors, the copy number alteration profile is distinct, marred by characteristics
that can distinguish them from HR proficient tumors: three genomic scar scores:
HRD loss of heterozygosity (HRD-LOH), large state transitions (LST), and number
of telomeric allelic imbalance (ntAI), each an independent marker of chromosomal
and genomic instability associated with HRD. The three genomic scar scores were
calculated from allele-specific copy number calls in FACETS: (1) fraction of
chromosome which contains loss of heterozygosity (LOH), (2) Large state transi-
tions (LST), (3) Number telomeric allele imbalance (ntAI) events. Combined
genomic scar score was calculated as per Telli et al.25 HR deficiency was defined as
high HRD score (above the HRD threshold, > 42). HRD score was defined as the
unweighted sum of LOH, TAI, and LST scores: HRD = LOH + TAI + LST.
Details of the individual LOH, TAI, and LST scores, as well as the combined HRD
score, are described in Supplementary Data 17.

Identification of recurrent somatic copy number alterations. Segmentation files
from FACETS allele-specific copy number calling were used as input for identifi-
cation of recurrent amplifications and deletions using GISTIC2.0 (version 2.0.23)
(https://github.com/broadinstitute/gistic2)51. GISTIC2 was run separately on the
primary breast tumors (N = 39 samples) and brain metastatic tumors (N =
39 samples) in order to identify recurrent SCNA specific to disease status. GIS-
TIC2.0 parameters used were amplification and deletion thresholds (ta,td) = 0.1;
qvt < 0.25; maxseg 4000; brlen(broad length cutoff) = 0.5; confidence level of 90%;
genegistic 1; armpeel 1. GISTIC2.0 outputs both significant broad (arm) level and
focal regions of significant SCNA. Significant broad arm level alterations were
defined as follows. High-level amplifications >6 copies, gain >2 copies; loss is >copy
loss and deletion >2 copy homozygous deletion. Focal SCNA are labeled as
−2,−1,0,1,2 where −2 refers to homozygous deletions, 2 refers to high-level

Fig. 7 Ex vivo PARP inhibitor intervention study. a Schematic of ex vivo PARPi study. b Stacked bar chart of the relative contribution [0–1] of breast
cancer-specific reference mutational signatures (Breast A-K) detected in each tumor explant. c PARPi demonstrates significant anti-tumor activity in
patient-derived BCBM tumor explants (PDTEs). PDTEs were treated for 72 h with DMSO or 500 nM niraparib and ki67% (proliferation index) analyzed.
Bar chart displays ki67% positivity (Representative ki67 images shown, Scale bars, 50 μm). Error bars represent mean ± s.e.m. (n= 3 biologically
independent samples). Two-sided unpaired t-test with Welch’s correction (T347ex, P = 0.008; T638ex, P < 0.0001; T328ex, P = 0.38; HCI05ex, P = 0.01;
HCI11ex, P = 0.588). d RAD51 IHC staining at 60x is displayed. Bar chart displays RAD51 nuclear positivity percentage. Zoomed in images of T347ex
niraparib representative sample demonstrating RAD51+ve manual counts (+ve cells = green plus sign; –ve cells = red minus sign). (Black scale bars,
50μm; red scale bars 10 μm). IHC experiments were quantified from multiple tumor areas and at least 500 cells were assessed in each case. Two-sided
unpaired t-tests with Welch’s correction (T347ex, P = 0.0002; T638ex, P = 0.003; T328ex, P = 0.06, HCI05ex, P = 0.59, HCI11ex, P = 0.48) (n = 3
biologically independent samples). Error bars represent mean ± s.e.m. e Representative images of the fully established organoid cultures. Scale bars are
50 μm. (n = 4–8 biologically independent organoids). f A dose response curve for niraparib (0–5 µM). Each dot represents 4–8 replicates with the area of
standard error illustrated by the dashed line. Cell viability is quantified by Cell Titer Glo 3D assay to measure ATP content. g Bar chart shows response to
500 nM niraparib for each of the organoid lines alongside key tumor characteristics and mutational signature content (Green fill color marks positive
identification and red fill color marks negative identification). Error bars represent mean ± s.e.m. (n = 4–8 biologically independent organoids). Two-tailed
unpaired t-test with Welch’s correction (T638org, P = 0.0006; T347org, P = 0.0002; T328ex, P = 0.06, HCI05org, P = 0.57, HCI11org, P = 0.94; PDO-
066, P = 0.608; PDO-083, P = 0.32; PDO-102, P = 0.298; PDO-066, P = 0.075; PDO-066, P = 0.608; MDA-MB-436, P < 0.0001). Source data are
provided as a Source Data file.
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amplifications, −1 hemizygous i.e., gene loss, with 1 referring to copy number gain
and 0: no SCNA.

Somatic mutation calling. Somatic single nucleotide variants (SNVs), insertions,
and deletions (indels) were called using Mutect2 (v.4.1.2)49 and Strelka52 (v. 2.9.8)
respectively from matched normal and tumor pairs. In order to filter for false-
positive somatic mutation calls, Mutect2 and Strelka calls were filtered against a
panel of normal (PON) samples, generated using the Create-
SomaticPanelOfNormals function part of the GATK4 best practice pipeline. As the
N = 18 and N = 21 WXS BCBM cases were generated from different library
preparation methods, sequencing technology, and centres, we generated a PON
separately for the N = 18 and N = 21 normal tissues. FFPE samples are known to
contain mutational biases in the C > T/G > A transition. OxoG filter was applied
through the read orientation bias model with Mutect2 to remove mutations with
FFPE strand bias. Bcftools [http://samtools.github.io/bcftools/bcftools.html] norm
function was used to left align and normalize indels. Additional filtering was
applied for FFPE false-positive calls using the ffpe-filter of ngs filter [https://
github.com/mskcc/ngs-filters], with variants also filtered according to germline
variants reported in ExAC at a population minor allele frequency > 0.05. Variants
passing quality control were annotated using MSK vcf2maf [https://github.com/
mskcc/vcf2maf] and variant effect predictor (VEP) using GRCh37, which outputs
both a.vcf and.maf file format. Annotated maf files were used by MAFTools53 for
downstream somatic mutation analysis, with annotated.vcf used as input for
mutational signature analysis. Cancer cell fraction (CCF) of mutations were cal-
culated using FACETS Suite based on the McGranahan et al. methodology54.

Identification of driver mutations. dNdScv was used to analyze annotated
somatic SNVs and indels for evidence of positive selection based on mutation
frequency above background rate (the ratio of non-synonymous to synonymous
mutations (dN/dS))55. Driver mutations were detected using the dndscv R package
with default parameters: using a Poisson-based dN/dS model (under the full tri-
nucleotide context model 192 rate substitution model); max_coding_mut-
s_per_sample = 3000 (hypermutator samples are removed to improve driver
mutation sensitivity) (https://github.com/im3sanger/dndscv). Statistically sig-
nificant driver genes were called based on a global q-value < 0.1.

Estimation of tumor mutational burden. Tumor mutational burden (TMB) is
defined here as the number of somatic mutations per megabase of exome. The
mutation rate per Mb was calculated using maftools as the total number of coding
variants (SNVs, indels) divided by the length of the capture in megabases (50 Mb).

Data sets for BCBM associated genomic alterations. Focal somatic copy
number alterations and statistically significant somatic driver mutations identified
using dNdScv (q-value < 0.1) were cross-referenced to previously reported breast
cancer brain metastatic genomic alterations12,56. Along with genomic alterations in
BCBM reported in the Brastianos et al. study12, Supplementary Table 4 was
downloaded from the Rinaldi et al.56 targeted sequencing study of approx. 11,000
unmatched primary breast, local recurrence and distant metastatic tumors using
the FoundationOne assay. Supplementary Table 4 details genomic alterations
enriched by site of metastases, including 238 brain metastatic tumors, relative to
primary breast tumor and local recurrence alteration frequency. coMut python
library was used to visualize co-occurrence and frequency of SCNA and SNVs in
brain metastatic tumors57.

Germline mutation calling. Germline mutation calling was performed for the
DNA repair genes, BRCA1, BRCA2 and PALB2, using GATK HaplotypeCaller (v.
4.1.2), in GVCF mode, from germline normal sample BAM files. Germline variants
were filtered using the VariantFiltration function by applying the following cutoffs
to (a) SNPs: QD < 2.0; FS > 60.0; MQ < 40.0; MQRankSum < −12.5; Read-
PosRankSum < −8.0; SOR > 3.0 and (b) INDELS: QD < 2.0; FS > 200.0; Read-
PosRankSum < −20.0; SOR > 10.0. Germline variants which passed quality based
filtering were extracted using GATK SelectVariants, followed by annotation using
Variant Effect Predictor (VEP) GRCh37, prioritized based on described clinical
significance and pathogenicity in the NCBI ClinVar Database and IMPACT
annotation. Only those variants annotated as ClinVar annotation predicted: “likely
pathogenic”, “pathogenic” or “variant of uncertain significance (VUS)” were
reported.

Mutational signatures. Somatic point mutations from matched normal-tumor
mutation calling were used for mutational signature analysis. Signal23 [https://
signal.mutationalsignatures.com/analyse] a framework for organ-specific muta-
tional signature analysis was used with the following parameters: non-PASS var-
iants filtered out, GRCh37 human genome reference. For SignatureFit algorithm:
breast originating organ, number of bootstraps 100, threshold k = 5, P-value <
0.05. Somatic single base substitutions are categorized by their trinucleotide context
to generate a 96-channel mutational profile. Regions of clustered substitutions i.e.,
kaetegis regions were filtered. Extraction of mutational signatures from somatic
mutation catalogs in cancer was performed using the Signal framework optimal

mutational signature extraction algorithm. Fitted signatures were compared to
organ-specific mutational profiles in the Signal database using cosine similarity
measure. The SignatureFit algorithm determines the relative contribution of each
signature by bootstrapping (n = 100 iterations) the tumor somatic mutation cat-
alog (vcf), generating multiple SignatureFit solutions in order to estimate the
empirical probability distribution of an exposure to be larger or equal to a given
threshold (i.e., 5% of mutations of a sample). From bootstrapped solutions, a point
estimate of the mutation count for each signature is extracted, where the point
estimate is the median of the distribution of counts for a candidate signature. Those
candidate mutational signatures with a point estimate below a threshold (5% of the
total number of mutations in the sample), will have signature point estimates set to
0. In text, when describing the organ-specific signatures Breast A-K, reference
signatures are also annotated according to ref. 23. Reference signatures were
numbered according to the most similar COSMIC substitution signature when
possible without ambiguity. For instance, RefSig 1 is equivalent to COSMIC sig-
nature 1 (v3.1).

Exome capture RNA sequencing
Library preparation. Library preparation for RNA-seq was performed using 100 ng
of total RNA and a TruSeq Stranded Total RNA (Degraded RNA) v2 RNA Exome
Library and TS RNA Access capture protocol (Illumina). Indexed, pooled libraries
(3 per lane) were sequenced on an Illumina HiSeq4000 system (100 bp paired-end
reads). Details of sample acquisition, tissue processing, and RNA-sequencing
library preparation for patient-matched primary breast and brain metastatic tumor
samples for N = 21/ 45 patients (N = 42 samples; PITT-RCSI Cohort) are detailed
here15.

Exome capture RNA sequencing data processing. FastQC was used to assess
quality control metrics for paired-end sequencing reads (FASTQ) for all 90 samples.
For PITT-RCSI FASTQ, if fastQC flags indicated adapter contamination and/or poor
quality base calls, BBDuk (version 38) from the BBMap toolkit was used for Illumina
sequencing adapter removal and read trimming using the following parameters:
minlen = 50, qtrim= rl, trimq = 10, ktrim = r, k = 25, mink = 11, hdist= 1, tpe tbo.
Salmon (v.0.91) was used to perform quasi-mapping of sequencing reads, with seqBias
and gcBias corrections enabled, using a 31bp k-mer index of the GRCh38.p10
(GENCODE v.27) human reference transcripts, to estimate transcript abundance for
each sample. In order to quantify comprehensive mapping rates and other quality
control metrics, adjunct to Salmon read mapping, two-pass read alignment was
performed using STAR (v2.6.1a), followed by RSeQC and MultiQC for visualization
and assessment.

Gene expression quantification. Tximport package was used to import transcript
abundance estimates from quant.sf files, generated by Salmon read mapping into R
statistical programming environment for gene expression quantification. Tran-
script abundance estimates were collapsed to gene-level gene expression counts.
TXI data objects for MAYO and PITT-RCSI RNA-Seq cohort, containing
unprocessed Salmon read counts, transcript per million (TPM), and gene length
values were combined for subsequent downstream analysis. Gene filtering, nor-
malization and batch correction methods are fully described in Supplementary
Information.

Unsupervised hierarchical clustering. For evaluation of potential batch-driven
effect, unsupervised hierarchical clustering was performed using the hclust function
in R. A matrix of sample-to-sample Euclidean distance values was calculated from
log2 variance stabilized transformed (VST) gene expression counts using the dist
function. The ward D2 linkage algorithm was used for sample clustering. Sample
clustering was visualized as a dendrogram using plotDendroAndColors() function
from WGCNA R package, with the sample tree annotated with clinicopathological
variables: disease status (primary breast or brain metastases), sequencing batch
(#1–5), ER status by IHC (ER+/−), IHC subtype (ER+/HER2−, HER2+, TNBC and
histological subtype (IDC, ILC, Other)).

Intrinsic molecular subtyping using PAM50. Prior to subtype classification, test
set bias due to proportion of ER+ to ER− tumor class imbalance was assessed58.
The proportion of ER+ to ER− tumor subtypes for all 90 samples were ~43 to 57%.
The intrinsic molecular subtype of each tumor was called using the genefu R
package59, by applying the Parker et al.60 PAM50 subtype predictor to gene
expression data. Batch corrected log2 normalized counts (log2 CPM TMM)
were used as input to the molecular.subtyping() function, setting a seed prior to
classification for reproducibility. Discrete subtype assignment (LumA/LumB/
Her2-E/Basal/Normal) for each tumor was made based on the max probability
score, calculated from Spearman correlation of gene expression profile to its
closest centroid. A confusion matrix showed 98% (41/42) of samples that had a
previously predicted subtype call for 21/45 cases in the RNA-Seq Cohort15, agreed
with PAM50 subtype classification performed here. Note, on manual inspection
of PAM50 subtype calls, sample MAYO_BM_11 was changed from Basal to Her2
PAM50 subtype, based on the IHC subtype call and probability score which was
borderline. Subtype distribution across primary and brain metastatic tumors was
plotted using ggpubr, with Sankey diagram generated using SankeyMATIC to

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-27987-5 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:514 | https://doi.org/10.1038/s41467-022-27987-5 | www.nature.com/naturecommunications 13

http://samtools.github.io/bcftools/bcftools.html
https://github.com/mskcc/ngs-filters
https://github.com/mskcc/ngs-filters
https://github.com/mskcc/vcf2maf
https://github.com/mskcc/vcf2maf
https://github.com/im3sanger/dndscv
https://signal.mutationalsignatures.com/analyse
https://signal.mutationalsignatures.com/analyse
www.nature.com/naturecommunications
www.nature.com/naturecommunications


visualize intrinsic molecular subtype switching, with labeling added using Adobe
Illustrator.

Subtype-specific differential gene expression. For subtype-specific differential
gene expression (DGE) testing, patients were first stratified based on the IHC
subtype of their primary tumor: ER+/HER2− (Luminal); HER2+; Triple-negative
breast cancer (TNBC). For each patient/IHC subtype group, differential gene
expression testing was carried out using DESeq261, comparing brain metastatic
(BM) tumor to primary breast tumor, using the following formulae for the design
matrix: ~SV1+ patientID + tumourID (BCBM vs Primary), where SV1 is a coef-
ficient weight vector included in the model to adjust for batch driven effect. Non-
negative, filtered, un-normalized protein coding gene expression integer value
counts from Salmon were used as input to DESeq2. The statistical distribution used
to model RNA-Seq count data (characterized by overdispersion: variance > mean)
is the negative binomial distribution. The DESeq2 negative binomial model cor-
rects counts for sequencing library size. A gene was defined as differentially
expressed based on a Benjamini & Hochberg adjusted P-value < 0.05 (Wald test)
and a log2 Fold Change (FC) ± 2.0.

DGE clustering and heatmap. For each subtype-specific comparison, unsu-
pervised hierarchical clustering and heatmap visualization was performed using
ComplexHeatmap in R62. Genes identified as differentially expressed were clustered
using the ward D2 linkage method, based on the (1-Pearson correlation coefficient)
dissimilarity distance metric, with samples clustered based on Euclidean distance
metric. In order to split the gene clustering dendrogram generated by Heatmap
function, genes were first clustered using the partitioning around medoids (PAM)/
k-medoids method, as part of the cluster R package, in which each gene was
assigned to a cluster with the nearest medoid. In this method, each cluster is
represented by a medoid, which is a gene that corresponds to the most centrally
located point within the gene expression cluster as a whole. In order to objectively
select the number of clusters k for PAM, the NbClust function in R was used
with the following parameters: min.nc = 2, max.nc = 10, distance = “euclidean”,
method = “kmeans”.

Weighted gene co-expression network analysis (WGCNA). The WGCNA
method63 was used to identify subtype-specific gene co-expression networks
separately for primary breast and brain metastatic tumors. Batch corrected log2
variance stabilized transformed (VST) gene expression counts, filtered by TPM,
were used for correlation network analysis. Full details in addition to gene module
preservation analysis and differential gene co-expression network analysis are
provided in the Supplementary Information file.

Network union and visualization. For each molecular subtype-specific analysis,
the network containing preserved gene modules was assigned Graph G1, with the
network containing differential co-expression network modules assigned Graph G2.
The igraph R graph.union() function was used to generate the union of Graph G1

and G2 which represents the gene network that contains both preserved and
enriched gene co-expression network modules in breast cancer brain metastases.
The network degree statistic was calculated using igraph degree() function. For
network visualization, the ggnetwork (https://briatte.github.io/ggnetwork/) and
viridis (https://github.com/sjmgarnier/viridis) R package were used.

Gene set enrichment analysis (GSEA). To identify functional processes and
pathways significantly enriched or depleted in brain metastases compared to pri-
mary breast tumors, gene set enrichment analysis (GSEA) was applied separately to
each k-medoid cluster (Cluster 1,2) identified from subtype-specific significantly
differentially expressed genes. Genes in each cluster were ranked according to
median gene expression z-score in brain metastatic tumor samples. GSEA was also
performed on gene modules identified from network analysis, where genes were
pre-ranked based on log2 fold change values from DGE. For GSEA, fgsea R package
was used with molecular signature database (MSigDB v.6.2) and the following gene
sets: hallmarks, curated (C2), cancer orientated (C4), oncogenic signatures derived
from gene perturbation studies (C6), immune-related signatures (C7), KEGG
pathways, Gene Ontology (BP, MF pathways). fgsea was run with these parameters:
minSize = 5, maxSize = 500, number of permutations = 10,000. Significantly
enriched pathways were defined based on an FDR < 0.25 and absolute normalized
enrichment score (NES) > 1.0. Cytoscape (v.3.7) EnrichmentMap plugin was used
to visualize statistically significant pathways for each subtype from GSEA of net-
work gene modules (FDR < 0.01; NES ± 1.0).

Breast cancer metastases gene expression data sets
Siegel et al.14 RNA-Seq Cohort. FASTQ files for previously published total RNA-Seq
data of patient-matched primary breast with multi-organ metastatic tumor (N = 16
patients; 68 metastases) were downloaded from the NCBI’s genotypes and phe-
notypes database (dbGaP) (accession number phs000676)14. Paired-end sequen-
cing reads were processed using the same methodology for MAYO-PITT-RCSI
Cohort above.

Microarray data. Microarray-derived RMA normalized gene expression matrices of
multi-organ breast metastatic tumors (GSE1401764, GSE1401864) and GSE14018
generated on the Affymetrix HGU133plus2 and HGU133A chips, respectively,
were downloaded from Gene Expression Omnibus (GEO) using the GEOquery R
package. For each gene profiled, the probe with the greatest variability (IQR) across
samples was selected using the genefilter::findLargest() function in R. Probe IDS
were mapped to gene symbol using biomaRt65 and the Affymetrix HGU133plus2
and HUG133A probe annotation databases.

Single sample GSEA (ssGSEA) of gene modules. For each subtype-specific gene
network module, normalized gene expression values from publicly available,
independent, multi-organ breast cancer metastases data sets, were used to calculate
a single sample gene set enrichment score (ssGSEA) using the gsva() function
(method = ‘ssgsea’) apart of the GSVA R package. The Wilcoxon Rank-Sum test
was used to test if ssGSEA score for each gene module was significantly different
(adjusted P-value < 0.05) in brain metastases versus all other metastatic tumor
scores. The ggplot2 geom tile_plot() was used to visualize results.

DNA repair pathway gene sets. DNA repair pathway gene sets downloaded from
KEGG database using the MSigDB gene signature and pathway repository (v.6.2)
(https://www.gsea-msigdb.org/gsea/msigdb) were: homologous recombination
(HR), mismatch repair (MMR), base excision repair (BER), non-homologous end
joining (NHEJ). A 230 member gene signature associated with homologous
recombination deficiency (HRD230) was obtained from26. Network genes were
cross-referenced against genes in the “DNA Repair” category of the Drug-Gene
Interaction database (https://www.dgidb.org/) version 3.0 (DGIdb 3.0).

Gene set variation analysis (GSVA). Batch corrected log2 normalized counts
(TPM) were used to calculate GSVA scores for DNA repair pathway gene sets for
each sample in the RNA-Seq BCBM cohort (N = 90 samples), using the GSVA R
package. GSVA normalized enrichment scores [−1,1] represent the relative
enrichment of a gene set in each sample relative to all other tumors of the analyzed
cohort. A paired Wilcoxon signed-rank test (P-value < 0.05) was used to compare
GSVA pathway score in patient-matched brain metastatic vs primary breast tumor
for each gene set. GSVA scores were plotted using the ggpubr function ggpaired()
for boxplots and/or as heatmap using the ComplexHeatmap R package.

Patient-derived tumor explant models. Tumor tissues were processed under
sterile conditions and tumor fragments were implanted into the mammary fat pad
of female NOD-SCID (NOD.CB17-Prkdc<scid>/NcrCrl) (mice (N = 5)) to
establish patient-derived xenografts and amplify the brain metastatic tissue66,67.
ER+ tumors were supplemented with estradiol. When tumors reached 1.5 cm in
diameter they were harvested and viably biobanked. HCI05 and HCI-011 models
were a kind gift from Alana Welm lab67. Patient-derived tumor explant (PDTEs) of
luminal brain metastasis (T347, T638 and T328) were established by culturing 2–4
mm3 biobanked tumor fragments on hemostatic gelatin dental sponges (Vetspon,
Novartis) pre-soaked with human mammary epithelial media as described
previously27. The PDTEs were treated with Niraparib or DMSO for 72 h after
which they were paraffin-embedded and profiled with immunohistochemistry
(IHC). Niraparib treatment concentration of 500 nM was selected representing
approximately the peak plasma concentration measured in patients receiving a
daily oral dose of 300 mg68. IHC for RAD51 (1:200; mouse monoclonal, Genetex,
GTX70230) and ki67 (1:50 MIB-1 clone, Dako, M7240) was carried out using a
Dako EnVisionTM Kit with antigen retrieval carried out as per manufacturer’s
instructions. Positivity scores were assessed and scored utilizing Aperio Image-
Scope software using the positive pixel algorithm. The viability of the tumors was
evaluated by utilizing ki67 as a proliferation marker to identify proliferating cells.

Patient-derived tumor organoids. Organoids were established from tumors col-
lected and processed under IRB approval from both participating institutions Uni-
versity of Pittsburgh and the Royal College of Surgeons in Ireland. Organoid lines
were generated from tumors following Sachs et al.’s protocol69 with the addition of
estradiol supplementation for ER+ tumors. Established organoids were dissociated
into single cells and seeded in organoid media with 5% of Cultrex® Reduced Growth
Factor Basement Membrane Matrix, type 2 (BME, Trevigen, 3533-001-02) for the
intervention experiment. 24hrs after seeding, organoids were treated with vehicle or
niraparib (N = 4–8). Cell viability was measured 7 days post-treatment using Cell-
Titer-Glo® 3D Cell Viability assay (Promega). MDA-MB-436 (ATCC) cells were
utilized as positive control. Cells used were authenticated (SourceBioScience) and
regularly tested for mycoplasma contamination (LT07-118, Lonza).

WXS sequencing. DNA was extracted from tumors using the Qiagen GeneRead
DNA FFPE kit using standard protocols. Sheared gDNA was processed using the
KAPA library preparation kits, and subsequently, the libraries were captured using
Agilent SureSelect Human All Exon v.5 (Agilent Technologies). Sequencing was
carried out using the BGISEQ sequencing system followed by initial data pre-
processing by BGI Genomics (Hong Kong). HCI tumors used to establish the PDXs
and organoid lines were WES profiled using the Agilent SureSelectXT Human All
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Exon V6+COSMIC or Agilent Human All Exon 50 Mb library preparation pro-
tocol Sequencing was carried out on Illumina HiSeq 2500 instrument. Paired-end
sequencing reads (FASTQ file format) were aligned to the hg19 reference human
genome using BWA read alignment. Aligned sequenced reads were pre-processed
using the best practise GATK pipeline. Single nucleotide variants (SNVs) were
called using Mutect2 using tumor-only mode (no matched normal sample)
(v.4.1.2)49. SNVs were filtered against a previously generated panel of normal
(PON) followed by previously described variant filtering steps and annotation

Statistics and reproducibility. Statistical analyses were performed using the base
stats R package. Reported q values represent Benjamini–Hochberg corrected P-
values. All statistical tests (paired Wilcoxon Rank-sum (Mann–Whitney U-test),
Student’s t-test etc) were two-sided unless otherwise stated. No statistical method
was used to predetermine sample size. The investigators were blinded for immu-
nohistochemical analyses.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
In line with Institutional Review Board approvals from all three participating Institutions
including the University of Pittsburgh, Royal College of Surgeons in Ireland, and Mayo
Clinic, raw RNA (N = 45 patients/N = 90 breast cancer brain metastasis cases) and WES
DNA (N = 18 matched normal, primary breast and brain metastatic tumor) data was not
deposited in a public repository as informed consent was not available with these
samples. Raw RNA and DNA sequencing data for the paired primary and metastatic
samples will be made available upon request and under regulatory compliance via data
usage agreement (DUA). Please contact the corresponding author with data access
requests that will be granted once the DUA is signed. Processed RNA-sequencing data
for all cases reported in the study (N = 45 patients/N = 90 breast cancer brain metastasis
cases) is deposited in the Gene Expression Omnibus under the accession number
GSE184869. For the WES DNA (N = 18 matched normal, primary breast and brain
metastatic tumor) samples newly generated as part of the study, the processed files are
available on figshare [https://doi.org/10.6084/m9.figshare.16685680.v1]. WES data for 21
of the 39 breast cancer brain metastases cases (matched normal, primary breast, and
brain metastatic tumor) has been described previously and are available to download
upon request from the database of Genotypes and Phenotypes (dbGap) (accession
number phs000730.v1.pl). RNA-Seq data from Siegel et al.14 (N = 16 patients; 68
metastases) were downloaded from the dbGaP (accession number phs000676).
Supplementary Table 4 from the Rinaldi et al.56 targeted sequencing study of approx.
11,000 unmatched primary breast, local recurrence, and distant metastatic tumors using
the FoundationOne assay is available at https://doi.org/10.1371/journal.pone.0231999.
For GSEA the molecular signature database (MSigDB v.6.2) is available at https://
www.gsea-msigdb.org/gsea/msigdb. The 230 member gene signature associated with
homologous recombination deficiency (HRD230) was obtained from https://
www.nature.com/articles/ncomms4361#Sec22. Network genes were cross-referenced
against genes in the “DNA Repair” category of the Drug-Gene Interaction database
[https://www.dgidb.org/] version 3.0 (DGIdb 3.0). The microarray-derived gene
expression data for the multi-organ breast metastatic tumors is available for download on
GEO using the accession IDs: GSE14017 and GSE14018. Source data are provided with
this paper.
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