
The Impact of Salsalate Treatment
on Serum Levels of Advanced
Glycation End Products in Type 2
Diabetes

OBJECTIVE

Salsalate is a nonacetylated salicylate that lowers glucose levels in people with
type 2 diabetes (T2D). Here we examined whether salsalate also lowered serum-
protein-bound levels of early and advanced glycation end products (AGEs) that
have been implicated in diabetic vascular complications.

RESEARCH DESIGN AND METHODS

Participants were from the Targeting Inflammation Using Salsalate for Type 2
Diabetes (TINSAL-T2D) study, which examined the impact of salsalate treatment
on hemoglobin A1c (HbA1c) and a wide variety of other parameters. One hundred
eighteen participants received salsalate, 3.5 g/day for 48 weeks, and 109 received
placebo. Early glycation product levels (HbA1c and fructoselysine [measured as
furosine]) and AGE levels (glyoxal and methylglyoxal hydroimidazolones [G-1H,
MG-1H], carboxymethyllysine [CML], carboxyethyllysine [CEL], pentosidine) were
measured in patient serum samples.

RESULTS

Forty-eight weeks of salsalate treatment lowered levels of HbA1c and serum
furosine (P < 0.001) and CML compared with placebo. The AGEs CEL and G-1H and
MG-1H levels were unchanged, whereas pentosidine levels increased more than
twofold (P < 0.001). Among salsalate users, increases in adiponectin levels were
associated with lower HbA1c levels during follow-up (P < 0.001). Changes in renal
and inflammation factor levels were not associated with changes in levels of early
or late glycation factors. Pentosidine level changes were unrelated to changes in
levels of renal function, inflammation, or cytokines.

CONCLUSIONS

Salsalate therapy was associated with a reduction in early but not late glycation
end products. There was a paradoxical increase in serum pentosidine levels sug-
gestive of an increase in oxidative stress or decreased clearance of pentosidine
precursor.
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The diabetic milieu of hyperglycemia
leads to nonenzymatic glycation of long-
lived proteins (1,2). Early reaction
products produced by these reactions,
called Amadori products, include
hemoglobin A1c (HbA1c), an adduct on
the hemoglobin molecule, and
fructoselysine (fructosamine), a glucose
adduct in blood and tissue proteins.
Late-stage products, called advanced
glycation end products (AGEs), are
brought about by glycoxidative/
lipoxidative processes in the presence
of reactive oxygen and nitrosylating
species, free metals, and
rearrangements of the Amadori
products (3). AGEs includemodifications
of arginine residues by glyoxal and
methylglyoxal (G-1H and MG-1H,
respectively), lysine adducts such as
N´-carboxymethyllysine (CML) and
N´-carboxyethyllysine (CEL), and
pentosidine. The latter is a lysine-
arginine AGE crosslink derived from
oxidized glucose or dehydroascorbic
acid, an oxidation product of vitamin C.
The formation and accumulation of
AGEs are implicated in the progression
of age-related diseases and the
microvascular and macrovascular
complications of type 2 diabetes (T2D)
(4,5). These glycation products, in
addition to causing structural changes
in long-lived proteins, increase
vascular permeability, interfere with
nitric oxide–mediated vasodilation,
oxidize LDL, and bind to surface
receptors for AGEs on macrophages
and endothelial cells to induce the
secretion of cytokines, growth factors,
and reactive oxygen species (5).

Pilot studies have shown that
salsalate, a nonacetylated salicylate,
lowers blood glucose levels in patients
with T2D (6,7). The Targeting
Inflammation Using Salsalate for Type 2
Diabetes (TINSAL-T2D) trials were larger
studies conducted to determine the
efficacy of salsalate as a treatment
modality for T2D, as well as to assess
parameters of safety. Stage 1 of TINSAL-
T2D was a dose-ranging study that
treated patients with T2D for 14 weeks
(n = 128); all three doses (3.0, 3.5,
and 4.0 g/day) of salsalate showed
decreased HbA1c and fasting glucose
levels (8). Stage 2 of TINSAL-T2D (n =
286) was conducted for 48 weeks to

assess the magnitude and durability of
glycemic efficacy over 1 year,
tolerability, and an array of safety
parameters relevant to patients with
diabetes. It showed decreased HbA1c
and fasting glucose levels as well as
markers of inflammation (9). In this
ancillary study of stage 2 TINSAL-T2D,
we measured levels of early and late
serum glycation products in a subset of
subjects enrolled in the parent trial. We
reasoned that if salsalate reduces levels
of glucose and early glycation products
as well as markers of inflammation, then
levels of AGEs might also be lower. We
also examined if changes in markers of
inflammation, many of which are
related to oxidative stress, were related
to changes in levels of early glycation-
reaction products and AGEs.

RESEARCH DESIGN AND METHODS

Stage 2 of TINSAL-T2D (9) was a single-
masked placebo lead-in, randomized,
double-masked, placebo-controlled
clinical trial of adult patients #75 years
old with HbA1c levels of 7.0 to 9.5% at
screening. Treatment included 1 week
of screening, a 4-week single-masked
placebo run-in, pretreatment baseline
evaluation, and a 48-week treatment
period. Salsalate was administered at
3.0 g/day for 2 weeks, then escalated to
3.5 g/day, as tolerated, divided into
three daily doses, or a matching
placebo. During the initial 24 weeks of
the trial, it was suggested that patients
maintain stable dosages of diabetes,
lipid-lowering, and hypertension
medications to assess drug efficacy.
Reductions in doses of diabetes
medications were made, however, if the
patient experienced hypoglycemia.
Subsequent adjustments followed good
clinical practice with planned “rescue
therapy” for poorly controlled diabetes.

All participating institutions in the study
obtained institutional review board
approval, and all participants signed
informed consent.

Measurement of AGEs
Serum AGEs, early and advanced (CML,
CEL, furosine, G-1H, and MG-1H), were
determined in acid hydrolyzed fractions
essentially as previously published (10),
except that quantitation was performed
using liquid chromatography (LC) mass
spectrometry (MS) as described by

Fan et al. (11). Briefly, an aliquot of
serum (90 mL) was mixed with 90 mL
cold trichloroacetic acid and left on ice
for 20 min. Samples were centrifuged at
15,000 rpm for 10 min, and the pellet
was washed three times with cold ether.
The pellet was transferred to a Pyrex
tube with Teflon cap, and 3 mL of
deoxygenated 6 N HCl was added. Test
tubes were blanketed with argon and
heated to 1108C for 17 h. Samples were
dried under vacuum and reconstituted
in 1 mL of water. Samples were cleaned
over Spin-X filters, and ninhydrin assay
was used for estimation of 100 mg
aliquots of sample using leucine
content. Aliquots of 100 mg were
combined with added isotopically
labeled internal standards, and 40 mg
was injected into the LC-MS/MS
instrument.

Pentosidine was also measured in the
acid hydrolysate (12) for selected serum
samples (n = 12) that were increased
from baseline to weeks 12 and 48 of
treatment. This was done to validate
the fluorescence method. First, we
synthesized D8-labeled pentosidine as
an internal standard as follows. Na-t-
BOC-L-arginine (;3.0 mmol, 880 mg)
and DL-lysine-3,3,4,4,5,5,6,6,-d8 2HCl
(;1 mmol, 227 mg) along with D-ribose
(5mmol, 750mg) were dissolved in 2mL
of 1 mol/L ammonium bicarbonate (pH
;8.0). O2 was bubbled overnight into
the solution held in awater bath at 508C.
The reaction mixture was frozen and
lyophilized. After 25 mL of 3 mol/L HCl
was added, the mixture was brought to
1008C with a stream of N2 to evaporate
the HCl. The residue was reconstituted
with 50 ml H2O and passed over a
Dowex cation W50 exchange resin in
H+ form. Elution was initiated by adding
two bed volumes of 100mmol/L HCl and
two bed volumes of 500 mmol/L HCl
followed by pyridine acetate 0.5 mol/L
pH 5.1. Fractions of 15 mL were
collected. Fluorescent material was
monitored by thin-layer
chromatography with a Woods
ultraviolet lamp. Fractions corresponding
to product were pooled, evaporated, and
reconstituted in 1.0 mL of water and
injected for pentosidine analysis.

D8-pentosidine purification was carried
using a Discovery C18 BIO Wide Pore
25 cm 3 10 mm, 5 mm semipreparative
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column. The mobile phase was 1%
trifluoroacetic acid, 2.5% acetonitrile in
water (0–2 min) with a linear gradient
(2–25 min) to 47% solvent B (60%
acetonitrile). Theflowratewas2.0mL/min,
and eluate fluorescence was monitored
at 335/385 nm. The material eluting
between 20 and 28minwas, repetitively,
collected and lyophilized to dryness. It
was reconstituted in 1 mL H2O to make
stock. Stock was calibrated by
fluorescence high-performance LC using
unlabeled pentosidine standard.

We performed pentosidine analysis by
LC-MS/MS using isotope dilution
technique as follows. Samples were
assayed by LC-MS/MS using a 2690
separation module with a Quattro
Ultima triple quadrupole mass
spectrometric detector (Waters-
Micromass). A 5-mm, 2.1 3 50-mm2

Hypercarb (Thermo Scientific) column
was used. The mobile phase was 0.1%
trifluoroacetic acid with a linear
gradient of 10–50% acetonitrile from
0 to 15 min and isocratic 50%
acetonitrile thereafter. The flow rate
was 0.2 mL/min. The ionization source
temperature was 1208C, and the
desolvation gas temperature was 3508C.
The cone gas and desolvation gas
flow rates were 200 and 600 L/h,
respectively. The capillary voltage was
3.20 kV, and the cone voltage was 60 V.
Argon gas (2.7 3 1023) was in the
collision cell. Eighty micrograms of
protein equivalent was injected with
2 pmol of internal standard spike.
Native pentosidine MS/MS fragment
was monitored for the transition m/z
379.48 . 250.46 at retention time
of 24.79 min. D8-pentosidine fragment
was monitored at 387.7 . 250.68 at
retention time of 24.74 min. Comparison
of pentosidine values measured by
LC/MS versus fluorescence had a linear
correlation with regression equation
y = 1.056 3 –0.338 (P , 0.0001),
validating thereby the fluorescence
measurements.

Statistical Analysis
Baseline characteristics between the
salsalate and placebo groups were
compared using t tests for continuous
traits and x2 or Fisher exact tests for
categorical traits. The log transform of
triglyceride was used because this
variable is not normally distributed.

General estimating equations were used
to compare the baseline characteristics
of this subsample to the parent TINSAL-
T2D cohort.

In intention-to-treat analysis, we
estimated mean treatment group
differences for each AGE measurement
(CML, CEL, furosine, G-1H, MG-1H, and
pentosidine) in linear regression mixed
models, adjusted for baseline levels
over the 48-study-week period. Values
were adjusted for the presence of
retinopathy and coronary artery disease
(CAD). Under such a model, we assumed
that the correlation within each
participant follows an autoregressive
covariance pattern. This pattern
assumes that the variability in AGE is
constant regardless of when it was
measured. It also assumes that the
closer in time two AGE values are
measured, the correlation will be higher
than from time points farther apart in
time. This method allows use of data for
all patients until the point of dropping
out of the trial or completing the trial.

We used linear regression models to
test the association between changes in
early and late glycation product levels
with changes in inflammation factor,
renal function, albumin-to-creatinine
ratio, and lipid-level changes. Repeated
measures mixed models were used to
test associations between changes
in AGE levels with markers of
inflammation and renal function within
each treatment group.

All analyses were done at the George
Washington University Biostatistics
Center using SAS version 9.2. A P value
#0.05 was considered statistically
significant.

RESULTS

There were 227 participants from the
286 stage 2 TINSAL-T2D participants
who had fructoselysine (as furosine) and
AGE levels measured. These 227
participants were older (56.4 6 9.6 vs.
55.8 6 9.6 years; P = 0.04), were more
likely to be white (57.3 vs. 52.8%; P =
0.004) and less likely to be black (28.6 vs.
33.2%; P = 0.004), were more likely to
have hypertension (76.7 vs. 72.7%; P =
0.01), and were more likely to be using
lifestyle only for the treatment of T2D
(5.7 vs. 4.5%; P = 0.0006) than the

cohort as a whole (Supplementary
Table 1).

Baseline characteristics of the substudy
cohort, categorized by treatment, are
shown in Table 1. The average age was
56 years, 43% were female, and 57%
were white. There were few differences
between participants who did and did
not receive salsalate therapy except that
those who received salsalate had a
higher heart rate (74.16 10.8 vs. 71.06
9.1; P = 0.02) and used less non-ACE/
angiotensin receptor blocker
hypertension medications (33.1 vs.
46.8%; P = 0.03) than those who
received placebo. There were no
statistically significant differences
between the treatment groups with
respect to levels of creatinine, cystatin
C, cystatin-C-based estimated
glomerular filtration rate (eGFR), or
albumin-to-creatinine ratios.

The association of AGEs with baseline
measures of inflammation, cytokines,
and renal function is shown in
Supplementary Table 2. There were no
significant associations other than CEL
levels with adiponectin. Given the
multiplicity of analyses, this finding
should be interpreted with caution.

The changes in selected variables from
baseline to the end of follow-up
between participants who received
salsalate or a placebo are shown in Table
2. In participants receiving salsalate,
levels of creatinine rose, while cystatin C
levels decreased. The cystatin-based
eGFR change was not significantly
different between those receiving
salsalate and those receiving placebo.
As previously reported (9), salsalate
therapy was associated with increased
urine albumin-to-creatinine ratio levels
(P, 0.001), LDL cholesterol (P, 0.001),
and total cholesterol (P = 0.043) compared
with levels in those receiving placebo.

Mean treatment group differences,
using linear regression mixed models
adjusted for baseline levels,
retinopathy, and CAD, are shown in
Table 3. As previously reported (9),
participants who received salsalate
had significantly lowered HbA1c.
Compared with participants who
received placebo, participants who
received salsalate also had significantly
lower furosine (P , 0.001) and CML
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(P = 0.022) levels, while CEL, G-1H, and
MG-1H levels remained unchanged.
Pentosidine levels increased
significantly (P , 0.001). In order to

exclude the presence of a fluorescent
artifact, the 12 highest values of
pentosidine (Supplementary Figure 1)
were verified by LC/MS/MS using

isotope dilution with standard 13C6-
pentosidine prepared from 13C-6 lysine
and D-ribose as described in the
Supplementary Data. The results were

Table 1—Baseline characteristics of the TINSAL-T2D subcohort that had AGE testing stratified into those receiving
salsalate therapy or placebo

Total
n = 227

Salsalate
n = 118

Placebo
n = 109 P value

Baseline characteristics
Age (years) 56.4 6 9.6 56.1 6 9.3 56.7 6 9.9 0.64
Female sex, n (%) 97 (42.7) 47 (39.8) 50 (45.9) 0.36

Race/ethnicity, n (%)
White 130 (57.3) 64 (54.2) 66 (60.6) 0.34
Black 65 (28.6) 35 (29.7) 30 (27.5) 0.72
Other 32 (14.1) 19 (16.1) 13 (11.9) 0.37

Weight (kg) 96.7 6 22.8 97.7 6 23.2 95.5 6 22.4 0.47

BMI (kg/m2) 33.0 6 7.0 33.0 6 7.0 33.0 6 7.0 0.88

Time since diabetes diagnosis (years) 6.9 6 6.0 6.9 6 6.3 6.9 6 5.7 0.95

Medical history, n (%)
Established CAD 27 (11.9) 15 (12.7) 12 (11.0) 0.69
Hypertensive 174 (76.7) 90 (76.3) 84 (77.1) 0.89
Dyslipidemia 162 (71.4) 83 (70.3) 79 (72.5) 0.72
Retinopathy requiring laser therapy 39 (17.2) 22 (18.6) 17 (15.6) 0.54
Family history of type 1 diabetes 11 (4.8) 7 (5.9) 4 (3.7) 0.54#
Family history of T2D 149 (65.6) 79 (66.9) 70 (64.2) 0.80
Family history of cardiovascular disease 129 (56.8) 63 (61.2) 66 (66.0) 0.28

Blood pressure (mmHg)
Systolic 127 6 13.0 126 6 13.0 127 6 14.0 0.66
Diastolic 77.0 6 8.0 76.0 6 9.0 77.0 6 8.0 0.33

Heart rate (bpm) 72.6 6 10.1 74.1 6 10.8 71.0 6 9.1 0.02

Laboratory values
Creatinine (mmol/L) 73.5 (14.4) 73.2 (14.8) 73.8 (14.0) 0.74
Cystatin (mg/mL) 0.96 6 0.20 0.96 6 0.20 0.97 6 0.20 0.69
Cystatin-based eGFR (mL/min/1.73 m2) 90.6 (17.8) 89.6 (17.6) 90.6 (17.8) 0.67
Albumin (g/dL) 4.4 6 0.27 4.4 6 0.27 4.4 6 0.27 0.32
Log urinary albumin-to-creatinine

ratio (mg/mg) 9.6 (2.8) 9.9 (3.0) 9.2 (2.6) 0.60
HbA1c (%) 7.7 6 0.7 7.7 6 0.7 7.7 6 0.7 0.81
Fasting glucose (mg/dL) 151 6 39.0 153 6 39.0 149 6 39.0 0.39
Triglycerides (mmol/L)* 142 (486) 138 (468) 143 (465) 0.88**
Cholesterol (mmol/L) 165 6 39.0 163 6 37.0 167 6 41.0 0.51
HDL (mmol/L) 47. 6 13.0 46.0 6 13.0 48.0 6 12.0 0.35
LDL (mmol/L) 102 6 33.0 100 6 31.0 103 6 34.0 0.50

Medications, n (%)
Metformin 197 (86.8) 101 (85.6) 96 (88.1) 0.58
Insulin secretagogue 121 (53.3) 69 (58.5) 52 (47.7) 0.10
a-Glucosidase inhibitor 1 (0.4) 1 (0.8) 0 (0.0) 1.00#
Dipeptidyl peptidase-4 inhibitor 33 (14.5) 18 (15.3) 15 (13.8) 0.75
Monotherapy 90 (39.6) 45 (38.1) 45 (41.3) 0.63
Dual therapy 110 (48.5) 57 (48.3) 53 (48.6) 0.96
Lifestyle only 13 (5.7) 6 (5.1) 7 (6.4) 0.78#

On lipid medication, n (%)
On statin 138 (60.8) 74 (62.7) 64 (58.7) 0.54
On other lipid medication 23 (10.1) 12 (10.2) 11 (10.1) 0.98

On antihypertensive medication, n (%)
On ACE/angiotensin receptor blocker 132 (58.1) 69 (58.5) 63 (57.8) 0.92
On other antihypertensive 90 (39.6) 39 (33.1) 51 (46.8) 0.03

On low-dose aspirin, n (%) 93 (41.0) 46 (39.0) 47 (43.1) 0.53

Boldface data indicate statistical significance at the P, 0.05 level. #Fisher exact test. *Median (interquartile range). **Based on a t test using log
triglyceride.
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consistent with the fluorescence high-
performance LC findings.

The changes in early and late glycation
products in relation to changes in levels
of adiponectin, inflammation factor
levels, renal function, albuminuria, and
lipid levels are shown in Table 4. Owing
to themany analyses, a P value of,0.05
should be interpreted with caution.
Changes in HbA1c levels were
significantly and inversely related to

adiponectin and cystatin C levels in
salsalate users. Thus for every 1 mg/mL
increase in adiponectin, the HbA1c level
declined 0.07% (95% CI20.12 to20.02;
P = 0.003) during follow-up. There was a
positive (P = 0.04) association of HbA1c
change with C-reactive protein (CRP)
change and a negative association (P =
0.02) with HDL cholesterol change.
Changes in furosine levels among
salsalate users were positively related to

CRP and tumor necrosis factor (TNF)-a
level changes and trended inversely
with changes in adiponectin. CML levels
trended positively in relation to
increased CRP levels. There were no
other significant relationships between
changes in other glycation product level
and changes in levels of inflammation
factors, adiponectin, lipids, renal
function, and albuminuria, including
pentosidine.

Table 2—Mean differences in selected laboratory values from baseline to the end of follow-up of TINSAL-T2D
participants who had AGE testing stratified by receiving salsalate therapy or placebo

Salsalate Placebo Mean difference (95% CI)**

P value* P value* P value*

Creatinine (mmol/L) 0.92 (20.55 to 2.38) 0.22 21.20 (22.69 to 0.29) 0.11 2.12 (0.03–4.21) 0.047

Cystatin (mg/L) 20.023 (20.42 to 20.004) 0.018 20.14 (20.34 to 0.005) 0.14 20.009 (20.31 to 0.02) 0.527

Cystatin C eGFR
(mL/min/1.73 m2) 2.6 (0.70–4.40) 0.008 1.1 (20.80 to 3.00) 0.28 1.5 (21.2 to 4.1) 0.28

Urinary albumin-to-
creatinine ratio (mg/mg) 8.0 (2112.0 to 257)# <0.001§ 1.0 (2106 to 479)# 0.18§ <0.001§

LDL (direct) (mmol/L) 0.24 (0.15–0.33) <0.001 20.03 (20.11 to 0.06) 0.57 0.27 (0.14–0.39) <0.001

HDL (mmol/L) 0.02 (20.01 to 0.05) 0.18 0.04 (0.01–0.06) 0.012 20.02 (20.06 to 0.02) 0.38

Total cholesterol (mmol/L) 0.17 (0.07–0.27) <0.001 0.03 (20.07 to 0.13) 0.58 0.14 (0.00–0.29) 0.043

Boldface data indicate statistical significance at the P , 0.05 level. **3.5 g salsalate minus placebo. *H0, u = 0. #Median (minimum–maximum).
§Wilcoxon rank test.

Table 3—Mean differences in early glycation product and AGE levels in TINSAL-T2D participants treated with salsalate
or who received placebo over 48 weeks

AGE outcome by
treatment group

Mean D***
(95% confidence limits) P value*

Mean difference***
between salsalate and

placebo groups
(95% confidence limits)# P value**

HbA1c (%) 20.37 (20.54 to 20.19) <0.001
Placebo 0.01 (20.12 to 0.13) 0.89
3.5 g 20.36 (20.48 to 20.24) <0.001

Furosine (mmol/mol) 20.11 (20.16 to 20.05) <0.001
Placebo 0.06 (0.02–0.10) 0.002
3.5 g -0.05 (20.08 to 20.01) 0.018

CML (mmol/mol) 27.63 (214.2 to 21.04) 0.023
Placebo 4.95 (0.24–9.65) 0.04
3.5 g 22.68 (27.26 to 1.90) 0.25

CEL (mmol/mol) 20.24 (20.60 to 0.12) 0.20
Placebo 0.12 (20.14 to 0.0.38) 0.37
3.5 g 20.12 (20.37 to 0.13) 0.35

G-1H (mmol/mol) 1.15 (20.24 to 2.54) 0.11
Placebo 20.27 (21.26 to 0.72) 0.59
3.5 g 0.87 (20.10 to 1.85) 0.08

MG-1H (mmol/mol) 7.66 (210.3 to 25.63) 0.40
Placebo 3.81 (28.97 to 16.58) 0.56
3.5 g 11.46 (21.18 to 24.11) 0.08

Pentosidine (nmol/mol) 553.2 (408.1–698.3) <0.001
Placebo 24.00 (2108 to 99.87) 0.94
3.5 g 549.2 (448.1–650.4) <0.001

Boldface data indicate statistical significance at the P, 0.05 level. Models are adjusted for retinopathy and CAD. ***Testing the null hypothesis that
D (change from baseline) = 0. *Models are adjusted for history of CAD and retinopathy. **AGEs are expressed per mol amino acidmodified. #Testing
the null hypothesis that salsalate minus placebo = 0.
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Table 4—Change in early glycation product and AGE levels over 48 weeks of follow-up as related to changes in inflammation
factors (CRP, TNF-a, WBC, and types of WBC), free fatty acid, adiponectin, cystatin C, albumin-to-creatinine levels, and
cholesterol and its subfractions categorized by treatment

AGE measurement (D)

Placebo 3.5 g

Estimate (95% CI) P value Estimate (95% CI) P value

HbA1c (%)
CRP (mg/mL) 0.00 (20.01 to 0.01) 0.97 0.01 (0.00–0.03) 0.04
Adiponectin (mg/mL) 20.03 (20.10 to 0.04) 0.34 20.07 (20.12 to 20.02) 0.003
Cystatin C (mg/mL) 20.93 (21.73 to 20.14) 0.02 21.27 (21.95 to 20.58) <0.001
Cystatin C eGFR (mL/min) 0.01 (0.00–0.02) 0.04 0.01 (0.01–0.02) <0.0001
Albumin-to-creatinine ratio (mg/mg) 20.00 (20.00 to 0.00) 0.77 0.00 (20.00 to 0.00) 0.94
FFA conc. (mmol/L) 20.04 (20.38 to 0.30) 0.81 0.08 (20.21 to 0.37) 0.59
TNF-a (pg/mL) 0.01 (20.22 to 0.25) 0.91 0.07 (20.20 to 0.34) 0.61
WBC (3109 cells/L) 0.03 (20.06 to 0.12) 0.51 20.04 (20.13 to 0.05) 0.37
Lymphocytes (mL 31023) 0.19 (20.04 to 0.42) 0.11 0.04 (20.21 to 0.29) 0.75
Neutrophils (mL 31023) 20.01 (20.11 to 0.09) 0.87 20.03 (20.12 to 0.06) 0.51
LDL (mmol/L) 0.11 (20.05 to 0.27) 0.16 0.03 (20.14 to 0.20) 0.71
HDL (mmol/L) 0.20 (20.46 to 0.86) 0.55 20.81 (21.48 to 20.14) 0.02
Cholesterol (mmol/L) 0.14 (0.01–0.26) 0.04 0.05 (20.09 to 0.20) 0.47

Furosine (mmol/mol)
CRP (mg/mL) 20.00 (20.01 to 0.00) 0.46 0.00 (0.00–0.01) 0.04
Adiponectin (mg/mL) 0.00 (20.03 to 0.03) 0.92 20.01 (20.02 to 0.00) 0.10
Cystatin C (mg/mL) 20.16 (20.48 to 0.16) 0.33 0.07 (20.13 to 0.27) 0.49
Cystatin C eGFR (mL/min) 0.01 (20.01 to 0.02) 0.39 0.00 (20.01 to 0.01) 0.56
Albumin-to-creatinine ratio (mg/mg) 0.00 (20.00 to 0.00) 0.62 20.00 (20.00 to 0.00) 0.65
FFA conc. (mmol/L) 0.13 (20.01 to 0.26) 0.07 0.04 (20.05 to 0.12) 0.37
TNF-a (pg/mL) 20.03 (20.12 to 0.07) 0.57 0.08 (0.00–0.15) 0.05
WBC (3109 cells/L) 20.01 (20.04 to 0.03) 0.70 20.01 (20.03 to 0.01) 0.44
Lymphocytes (mL 31023) 0.07 (20.01 to 0.16) 0.10 0.01 (20.06 to 0.08) 0.79
Neutrophils (mL 31023) 20.02 (20.06 to 0.01) 0.19 20.01 (20.04 to 0.01) 0.31
LDL (mmol/L) 20.01 (20.06 to 0.05) 0.86 0.04 (20.00 to 0.09) 0.08
HDL (mmol/L) 0.00 (20.25 to 0.25) 0.99 20.14 (20.32 to 0.04) 0.14
Cholesterol (mmol/L) 20.00 (20.05 to 0.05) 0.85 0.04 (20.00 to 0.08) 0.05

CML (mmol/mol)
CRP (mg/mL) 0.14 (20.40 to 0.68) 0.60 0.49 (20.02 to 1.00) 0.06
Adiponectin (mg/mL) 2.53 (20.29 to 5.36) 0.08 20.27 (22.00 to 1.47) 0.76
Cystatin C (mg/mL) 8.78 (224.60 to 42.17) 0.60 22.54 (227.84 to 22.76) 0.84
Cystatin C eGFR (mL/min) 20.10 (20.44 to 0.25) 0.58 20.06 (20.33 to 0.21) 0.64
Albumin-to-creatinine ratio (mg/mg) 20.03 (20.12 to 0.06) 0.52 0.00 (20.04 to 0.05) 0.88
FFA conc. (mmol/L) 4.42 (29.73 to 18.57) 0.54 1.98 (28.76 to 12.73) 0.72
TNF-a (pg/mL) 22.31 (211.99 to 7.37) 0.64 2.41 (27.07 to 11.90) 0.61
WBC (3109 cells/L) 21.01 (24.60 to 2.58) 0.58 21.66 (24.69 to 1.38) 0.28
Lymphocytes (mL 31023) 1.85 (27.36 to 11.06) 0.69 3.88 (24.70 to 12.46) 0.37
Neutrophils (mL 31023) 21.32 (25.00 to 2.36) 0.48 22.20 (25.29 to 0.90) 0.16
LDL (mmol/L) 0.28 (25.76 to 6.33) 0.93 23.88 (29.65 to 1.90) 0.19
HDL (mmol/L) 18.60 (28.04 to 45.24) 0.17 28.49 (231.38 to 14.39) 0.46
Cholesterol (mmol/L) 20.10 (25.09 to 4.89) 0.97 21.39 (26.29 to 3.52) 0.58

CEL (mmol/mol)
CRP (mg/mL) 0.01 (20.03 to 0.05) 0.74 0.01 (20.04 to 0.05) 0.79
Adiponectin (mg/mL) 0.02 (20.19 to 0.24) 0.82 0.07 (20.08 to 0.23) 0.37
Cystatin C (mg/mL) 21.28 (23.71 to 1.14) 0.30 21.55 (23.79 to 0.68) 0.17
Cystatin C eGFR (mL/min) 0.01 (20.02 to 0.03) 0.49 0.02 (20.01 to 0.04) 0.20
Albumin-to-creatinine ratio (mg/mg) 0.00 (20.00 to 0.01) 0.55 20.00 (20.01 to 0.00) 0.40
FFA conc. (mmol/L) 0.30 (20.73 to 1.33) 0.56 20.38 (21.36 to 0.59) 0.44
TNF-a (pg/mL) 0.03 (20.66 to 0.72) 0.93 20.48 (21.32 to 0.36) 0.26
WBC (3109 cells/L) 20.15 (20.40 to 0.11) 0.27 20.03 (20.31 to 0.25) 0.82
Lymphocytes (mL 31023) 20.08 (20.74 to 0.58) 0.82 0.14 (20.65 to 0.93) 0.73
Neutrophils (mL 31023) 20.14 (20.41 to 0.13) 0.30 20.04 (20.33 to 0.25) 0.80
LDL (mmol/L) 20.34 (20.78 to 0.11) 0.14 20.33 (20.86 to 0.19) 0.21
HDL (mmol/L) 20.60 (22.54 to 1.34) 0.54 20.64 (22.68 to 1.40) 0.53
Cholesterol (mmol/L) 20.30 (20.67 to 0.07) 0.11 20.30 (20.75 to 0.15) 0.19

G-1H (mmol/mol)
CRP (mg/mL) 0.09 (20.04 to 0.22) 0.19 0.05 (20.10 to 0.20) 0.54

Continued on p. 1089
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CONCLUSIONS

Stage 2 of the TINSAL-T2D trial showed
that treatment with salsalate reduced

HbA1c levels over the 48 weeks of the

study (9). Anti-inflammatory effects of

salsalate were evident by reductions in

white blood cell (WBC), neutrophil, and

lymphocyte counts. In this substudy of

stage 2 of TINSAL-T2D, we report lower

HbA1c and furosine levels at 12 and 48

weeks of therapy as compared with

baseline levels and as compared with

levels in participants who received

placebo. Both HbA1c and furosine are

early glucose-derived factors (Amadori
products) that are directly influenced by
glycemia. Reductions in levels of these
adducts, we reasoned, together with
lower levels of inflammation factors,
could lead to lower serum AGE levels
downstream. We found that most AGE
levels did not change with salsalate
therapy. Plasma CML levels were lower
in salsalate compared with placebo-
treated groups. Change in CEL, G-1H,
andMG-1H levels did not differ between
treatment groups. On the other hand,
pentosidine levels unexpectedly rose at
both time points studied. Changes in

HbA1c levels were strongly and inversely
related to cystatin C and adiponectin

level changes, and furosine and CML

levels had a weaker positive association

with changes in CRP levels.

Most serum-protein-bound AGE levels
(with the exception of CML) did not

change significantly despite salsalate

therapy’s glycemia-lowering effect. It

may be argued that the duration of the

trial was too short to expect changes in

AGE levels. However, Ahmed et al. (13)

found a correlation between lowered

HbA1c and plasma protein levels of CML,

Table 4—Continued

AGE measurement (D)

Placebo 3.5 g

Estimate (95% CI) P value Estimate (95% CI) P value

Adiponectin (mg/mL) 20.07 (20.78 to 0.64) 0.85 0.33 (20.15 to 0.81) 0.17
Cystatin C (mg/mL) 1.57 (26.47 to 9.61) 0.70 0.36 (26.65 to 7.38) 0.92
Cystatin C eGFR (mL/min) 20.01 (20.10 to 0.07) 0.75 20.04 (20.12 to 0.04) 0.29
Albumin-to-creatinine ratio (mg/mg) 0.00 (20.02 to 0.03) 0.72 20.00 (20.01 to 0.01) 0.70
FFA conc. (mmol/L) 3.68 (0.33 to 7.03) 0.03 0.22 (22.90 to 3.34) 0.89
TNF-a (pg/mL) 21.31 (23.69 to 1.07) 0.28 0.29 (22.16 to 2.75) 0.81
WBC (3109 cells/L) 0.02 (20.78 to 0.82) 0.96 20.38 (21.24 to 0.47) 0.38
Lymphocytes (mL 31023) 20.58 (22.61 to 1.45) 0.57 2.19 (20.22 to 4.59) 0.07
Neutrophils (mL 31023) 0.03 (20.81 to 0.87) 0.95 20.62 (21.52 to 0.27) 0.17
LDL (mmol/L) 1.21 (20.26 to 2.68) 0.11 0.10 (21.60 to 1.79) 0.91
HDL (mmol/L) 6.81 (0.50–13.12) 0.04 25.75 (211.85 to 0.35) 0.06
Cholesterol (mmol/L) 0.89 (20.33 to 2.11) 0.15 20.60 (22.06 to 0.86) 0.42

Log MG-1H (mmol/mol)
CRP (mg/mL) 20.00 (20.01 to 0.01) 0.60 20.00 (20.02 to 0.01) 0.67
Adiponectin (mg/mL) 20.03 (20.08 to 0.03) 0.29 20.01 (20.05 to 0.04) 0.80
Cystatin C (mg/mL) 20.35 (20.97 to 0.28) 0.28 0.02 (20.57 to 0.61) 0.95
Cystatin C eGFR (mL/min) 0.00 (20.01 to 0.01) 0.70 20.00 (20.01 to 0.00) 0.50
Albumin-to-creatinine ratio (mg/mg) 20.00 (20.00 to 0.00) 0.72 20.00 (20.00 to 0.00) 0.24
FFA conc. (mmol/L) 20.09 (20.35 to 0.18) 0.51 20.03 (20.30 to 0.23) 0.82
TNF-a (pg/mL) 0.06 (20.12 to 0.24) 0.50 20.06 (20.26 to 0.14) 0.57
WBC (3109 cells/L) 20.02 (20.08 to 0.05) 0.64 0.01 (20.06 to 0.08) 0.79
Lymphocytes (mL 31023) 20.05 (20.22 to 0.12) 0.58 0.18 (20.02 to 0.39) 0.08
Neutrophils (mL 31023) 20.01 (20.08 to 0.06) 0.78 20.03 (20.11 to 0.04) 0.42
LDL (mmol/L) 0.03 (20.08 to 0.15) 0.58 0.05 (20.09 to 0.20) 0.46
HDL (mmol/L) 0.16 (20.34 to 0.65) 0.53 0.13 (20.42 to 0.67) 0.65
Cholesterol (mmol/L) 0.03 (20.06 to 0.13) 0.50 0.07 (20.06 to 0.19) 0.30

Log pentosidine (nmol/mol)
CRP (mg/mL) 20.24 (22.43 to 1.95) 0.83 20.09 (21.42 to 1.25) 0.90
Adiponectin (mg/mL) 0.78 (210.75 to 12.32) 0.89 21.76 (29.36 to 5.84) 0.65
Cystatin C (mg/mL) 23.87 (2151.54 to 143.79) 0.96 210.72 (276.77 to 55.33) 0.75
Cystatin C eGFR (mL/min) 0.10 (21.40 to 1.61) 0.89 0.15 (20.79 to 1.09) 0.75
Albumin-to-creatinine ratio (mg/mg) 0.01 (20.28 to 0.30) 0.95 20.01 (20.21 to 0.18) 0.89
FFA conc. (mmol/L) 14.87 (252.14 to 81.89) 0.66 23.91 (242.05 to 34.24) 0.84
TNF-a (pg/mL) 16.47 (239.95 to 72.89) 0.56 23.21 (238.61 to 32.19) 0.86
WBC (3109 cells/L) 20.17 (213.38 to 13.05) 0.98 20.21 (29.56 to 9.15) 0.97
Lymphocytes (mL 31023) 211.90 (260.95 to 37.15) 0.63 29.47 (260.12 to 41.18) 0.71
Neutrophils (mL 31023) 1.67 (213.33 to 16.67) 0.83 20.90 (218.72 to 16.92) 0.92
LDL (mmol/L) 21.61 (236.35 to 33.13) 0.93 3.02 (220.57 to 26.61) 0.80
HDL (mmol/L) 17.80 (2100.08 to 135.68) 0.76 210.94 (2100.45 to 78.56) 0.81
Cholesterol (mmol/L) 2.24 (218.42 to 22.90) 0.83 0.23 (216.88 to 17.34) 0.98

Given the multiplicity of tests (n = 182), a Bonferroni-adjusted significant P value (0.05/182) is,0.001. Boldface data indicate statistical significance
at the P , 0.001 level. FFA conc., free fatty acid concentration.
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G-1H, and hemoglobin-linked CML and
pentosidine in type 1 diabetes after only
2 months of intensified insulin therapy.
The reason we did not find a change in
late glycation products is uncertain. One
possibility is that metformin, which was
taken by more than 85% of participants,
was scavenging the AGE oxoaldehyde
precursors glyoxal and methylglyoxal,
thereby masking further decreases in
CML and CEL/MG-1H levels, respectively
(14). In vitro, metformin can trap glyoxal
to form guanidine-glyoxal adducts (15).
High doses of metformin, taken for 2
months, are reported to lower
methylglyoxal plasma levels in people
with diabetes (16). Another explanation
is that AGEs in serummay originate from
multiple pathways that are only
indirectly glucose dependent, such as
glyoxal for CML and G-1H and
dehydroascorbic acid for pentosidine.
Last, reductions in antihyperglycemic
medications in salsalate-treated
patients for mild hypoglycemic events
and addition of antihyperglycemic
treatments in placebo-treated patients
for exceeding hyperglycemic safety
thresholds may have diminished
glycemic and thus AGE differences
between groups.

The increase in pentosidine levels was
unexpected. While salicylates have
intrinsic fluorescence, we do not believe
that this confounded measures of
pentosidine levels, as we confirmed
higher values in some samples by LC/MS
methods. One might anticipate
reductions in this AGE based on the
results of one study in which HbA1c was
reduced 40% over a 2-month period of
time, and pentosidine and other AGE
levels were decreased by 12.2 and
25.2%, respectively (17,18). Possible
explanations for the rise in pentosidine
include excess production of a
pentosidine precursor, such as the
vitamin C oxidation product
dehydroascorbate. This pathway was
recently shown to explain pentosidine
formation in mice in which the human
vitamin C transporter had been
expressed in the lens (10). There is both
chemical and biological precedence for
the possibility that antioxidants can
paradoxically increase AGE levels.
Glycation reactions that are carried out
in the presence of antioxidants or

aminoguanidine can increase
pentosidine and CML formation (19,20).
Similarly, salicylates have been shown
to increase mitochondrial hydrogen
peroxide formation (21), i.e., a
mechanism that could explain increased
ascorbate oxidation and pentosidine
formation. We note that in one clinical
study, ingestion of acetylsalicylate
(aspirin) inhibited intestinal absorption
of exogenous ascorbic acid, possibly
altering ascorbic acid metabolism (22).
We also note that people with diabetes
relative to people without diabetes have
lower ascorbate levels as a consequence
of the disease itself (23). Thus increased
pentosidine level could be due to an
increased dehydroascorbate-over-
ascorbate ratio. Also, in the course of a
clinical trial, many factors may change,
such as use of over-the-counter
antioxidant medications and diet. It is
known that dietary factors (which were
not collected in the study) can impact
AGE levels (24). However, there is no
reason to believe that these factors
should have differed between the
two study groups. Last, few studies,
to our knowledge, have examined
simultaneously as many AGEs as were
done here, so it is not known for certain
whether digression in AGE levels with a
certain intervention is the exception or
the rule.

Stage 2 of TINSAL-T2D trial reported
that salsalate leads to decreases in the
WBC count and lymphocyte and
neutrophil numbers plus an increase in
adiponectin levels (9) and that the
reduction in HbA1c level was positively
related to reduction in CRP and inversely
with adiponectin change. Here we show
that changes in furosine levels from
baseline to the end of follow-up were
positively associated with changes in
CRP and TNF-a levels, and CML levels
trended to being positively associated
with CRP levels. Changes in other AGE
levels were not related to changes in
these inflammation markers and
cytokine. This latter finding may be
explained by the fact that serum
inflammation markers are indirect
markers of oxidative stress (25), which
drive AGE formation in the tissue and
thus do not necessarily reflect systemic
oxidative stress (26). Finally, we note
that changes in renal function and

albuminuria were not associated with
changes in late glycation factor levels.

In conclusion, salsalate therapy was
associated with a reduction in early
glycation end product levels of HbA1c
and furosine and the later product CML
as compared with placebo. In contrast,
other AGE products did not change,
while pentosidine levels increased. The
clinical significance of the increase in the
biomarker pentosidine remains
uncertain.
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