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Abstract
The MAF family transcription factors are homologs of v-Maf, the oncogenic component of

the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins,

according to their structure, function, and molecular size. MAFK is a member of the small

MAF family and acts as a dominant negative form of large MAFs. In previous research we

generated transgenic mice that overexpress MAFK in order to suppress the function of

large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adult-

hood due to impairment of glucose-stimulated insulin secretion. The aim of the current

study is to examine the effects of β-cell-specificMafk overexpression in endocrine cell

development. The developing islets ofMafk-transgenic embryos appeared to be disorga-

nized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-

cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased

levels of β-cell-related genes whose expressions are known to be controlled by large MAF

proteins. Additionally, these changes were accompanied with a significant increase in key

β-cell transcription factors likely due to compensatory mechanisms that might have been

activated in response to the β-cell loss. Finally, microarray comparison of gene expression

profiles between wild-type and transgenic pancreata revealed alteration of some uncharac-

terized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important

roles during pancreatic endocrine development. Taken together, these results suggest that

Mafk overexpression impairs endocrine development through a regulation of numerous β-

cell-related genes. The microarray analysis provided a unique data set of differentially

expressed genes that might contribute to a better understanding of the molecular basis that

governs the development and function of endocrine pancreas.
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Introduction
Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting
from defects in insulin secretion, insulin action, or both, which eventually leads to a series of
complications in various organs [1]. Type 1 diabetes (T1D) results from the destruction of β-
cells by a β-cell-specific autoimmune reaction. In type 2 diabetes (T2D), the peripheral tissues
are resistant to insulin action and the disease is often accompanied by obesity and hyperlipid-
emia. For decades, several approaches have been developed for the treatment of diabetes
including insulin-secretion stimulants, improving insulin preparations, and islet transplanta-
tion, yet many unexamined avenues of research remain [2].

During pancreatic development, a subset of the pancreatic epithelial cells starts to express
the proendocrine factor Ngn3 and gives rise to all types of endocrine cells [3–6]. The hormone-
expressing cells are produced during 2 sequential stages, the primary and secondary transi-
tions. The primary transition begins before E13.5, and is characterized by an appearance of
hormone+ cells that are not fully functional. During the secondary transition starting from
around E13.5, the differentiating endocrine cells expand markedly, then migrate into mesen-
chyme, and eventually aggregate to form Langerhans islets [7]. The expression of a cascade of
different transcription factors stimulates the differentiation into distinct endocrine lineages. α-
cell-related transcription factors includeMafb, Nkx2.2, Pax6, Foxa2, Pou3f4, and Arx, whereas
β-cell differentiation is controlled by Pdx1,Mafb, Pax4, Pax6, Nkx2.2, and Nkx6.1 [8].

The MAF family transcription factors belong to the activator protein 1 (AP1) superfamily
of basic leucine zipper (bZIP) proteins. It derives its name from v-Maf—the oncogenic compo-
nent of the avian retrovirus AS42 that was originally isolated from chicken musculoaponeuro-
tic fibrosarcoma [9]. The MAF family is subdivided into 2 groups according to their molecular
size: the small MAF proteins comprising MAFG, MAFF, and MAFK; and large MAF proteins,
including MAFA, MAFB, c-MAF, and NRL. All MAF proteins contain basic leucine zipper
domain that allows DNA binding. Compared to the other bZIP proteins, MAF proteins can
recognize a longer palindromic sequence of DNA (Maf-recognition element, MARE) [10–12].
Increasing numbers of studies on endocrine development reveal that the expression of large
MAF proteins is tightly regulated in a spatiotemporal manner [13–15].Mafb gene knockout
(Mafb−/−) mice show around a 50% reduction of α- and β-cell numbers at E18.5. In contrast,
no developmental defects were observed inMafa gene knockout (Mafa−/−) mice [16, 17]. Small
MAF proteins are also found to display a complex expression pattern during embryogenesis
[18]. They are able to form a homodimer or a heterodimer with other bZIP factors such as the
cap’n’collar (CNC) family and play a role in many biological processes like hematopoiesis, neu-
ronal function, and oxidative stress response [19–22]. Unlike the large MAF proteins, the small
MAF proteins lack a transactivation domain and when they are expressed in large amounts,
the homodimeric proteins compete with the binding of large MAF proteins to the cis-element
of target genes at MARE sites, resulting in a dominant-negative effect [23].

Our previous studies demonstrated that β-cell-specificMafk transgenic (Mafk-Tg) mice
exhibited hyperglycemia due to an impaired insulin secretion during early postnatal life [24].
When these mice are crossed withMafa−/− mice, the double mutants display destructive β-cell
development and an overt diabetic phenotype with typical characteristics of human diabetic
nephropathy [25]. The aim of the current study was to characterize and evaluate the impact of
Mafk overexpression on the genetic pathways governing β-cell development usingMafk-Tg
andMafa−/−;Mafk-Tg mice embryos. In theMafk-Tg mutants we observed abnormalities in β-
cell development and islet morphogenesis along with a reduction of β-cell proliferation. In
addition, we also performed a microarray analysis in order to investigate the factors that
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contribute to the phenotypic alteration in theMafk-Tg mice at E15.5, to gain insights into the
mechanisms controlling endocrine cell development and function.

Materials and Methods

Mice
The mice were maintained in specific pathogen-free conditions, in the Laboratory Animal
Resource Center at the University of Tsukuba. This study was carried out in strict accordance
with the recommendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. The protocol was approved by the Committee on the Ethics of
Animal Experiments of the University of Tsukuba (Permit Number: 14–049). All mice were
euthanized with carbon dioxide gas, and all efforts were made to minimize suffering. The gen-
erations ofMafa knockout (Mafa−/−) mice, transgenic mice expressingMafk under the control
of rat Insulin 1 promoter (Mafk-Tg), R26GRR mice, and Ins1-Cre25 mice have previously been
described [16, 24, 26, 27]. Double mutantMafa−/−;Mafk-Tg mice were generated by mating
Mafa+/− females withMafa+/−;Mafk-Tg males. DNA extraction and embryo genotyping were
performed by NaOH extraction methods from tails as previously described [16, 24].

Immunohistochemistry
The embryos were collected, washed in cold PBS, fixed in 4% PFA, and then embedded in par-
affin. Immunohistochemistry was performed on 5-μm paraffin sections according to the stan-
dard histological methods. The sections were blocked in appropriate serum for 1 hour and
incubated overnight at 4°C with the following primary antibodies: guinea pig anti-insulin
(ab7842, 1:1000, Abcam, Cambridge, UK), rabbit anti-glucagon (RAG-06P, 1:2000, Linco
Research, St. Charles, MO, USA), guinea pig anti-glucagon (M182, 1:4000, Takara, Kyoto,
Japan), rabbit anti-aristaless-related homeobox (gift from Drs. Kitamura and Morohashi; 1:
250) [28], rabbit anti-Ki67 (NCL-Ki67p, 1:500, Novocastra, Newcastle, UK) and rabbit anti-
PHH3 (ab5176, 1:500, Abcam). The antigens were visualized using the appropriate secondary
antibodies conjugated with Alexa Fluor 350, 488, or 594 (1:1000, Life Technologies, Gaithers-
burg, MD, USA). All sections were examined using a fluorescence microscope (BZ-9000, Key-
ence, Tokyo, Japan). For cell counting experiments, serial sections spanning the entire
pancreas were collected at a 100-μm intervals and immunostained. A total number of 25 sec-
tions were used per pancreas. The total numbers of immunoreactive cells were quantified using
ImageJ 1.48 software (NIH, Bethesda, Maryland, USA).

Measurement of total insulin contents
The whole pancreas was collected from embryos at both E15.5 and E18.5. The total insulin
content was determined after extraction with acid-ethanol. Insulin levels were detected using a
mouse insulin ELISA kit (Morinaga, Yokohama, Japan).

Luciferase assay
TheMafk-expression plasmid and RIPII-251 reporter plasmid have been previously described
[24, 29]. TheMafb cDNA was subcloned into the pcDNA3.1-FLAG expression vector, and
these plasmids were transfected into NIH3T3 cells using FuGENE 6 transfection reagent
(Roche, Indianapolis, IN, USA). The total amount of DNA was adjusted by cotransfection of
pcDNA3.1-FLAG plasmid withMafk-expression plasmids. Luciferase activities were deter-
mined by the Dual Luciferase Reporter Assay System (Promega) 48 hours after transfection.
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Chromatin Immunoprecipitation (ChIP) assay
NMuMG cells expressing FLAG-MAFK were prepared as previously described [30]. In short,
the NMuMG cells were transfected with pCAGIP-FLAG-MAFK or mock plasmids. The cells
were cross-linked with 1% formaldehyde at 37°C for 15 minutes, suspended in 500 μl of nuclear
lysis buffer (1% SDS, 50 mM Tris-HCl, pH 8.1, 10 mM EDTA, 20,000 KIU/ml aprotinin, 1 μg/
ml leupeptin), and sonicated. Soluble chromatin was diluted with 9 volumes of dilution buffer
for immunoprecipitation (16.7 mM Tris-HCl, pH 8.1, 1.2 mM EDTA, 167 mMNaCl, 0.01%
SDS, 1.1% Triton X-100, 20,000 KIU/ml aprotinin, 1 μg/ml leupeptin) and incubated with
anti-FLAG antibody (M2, Sigma, St Louis, MO, USA) with end-over-end rotation at 4°C over-
night followed by incubation with 25 μl of Dynabeads Protein A (Life Technologies) at 4°C for
1 hour. DNA was extracted from the Dynabeads by means of phenol-chloroform extraction.
The PCR primers are described in Table 1.

Quantitative RT-PCR
The whole pancreas of E15.5 embryos were homogenized and total RNA isolated using the
NucleoSpin RNA kit (Macherey-Nagel, Düeren, Germany). The cDNA was synthesized using
a QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany). Quantitative PCR reac-
tions were carried out using a Thermal Cycler Dice Real Time System (Takara) with a SYBR
Green PCRMaster Mix (Takara). Expression of Hprt was utilized to analyze the relative gene
expression of other genes. All primer sequences are listed in Table 1.

Lineage tracing experiments
To test the possibility that β-cell specificMafk overexpression induced β-cell transdifferentia-
tion into α-cells during early stages of development, we crossedMafk-Tg females with Ins1-
Cre;R26GRR males, which express GFP ubiquitously before and tdsRed after Cre excision; thus
we could label around 90% of the β-cell lineage [26]. The pancreata ofMafk-Tg;Ins1-Cre;
R26GRR and control WT;Ins1-Cre;R26GRR mice were collected at both P0 and 4 weeks of age,
fixed overnight in 4% PFA, dehydrated in sucrose and embedded in OCT compound (Sakura,
Tokyo, Japan). Frozen sections were stained using anti-glucagon antibody in order to deter-
mine the cell fraction coexpressing both tdsRed and glucagon.

Microarray experiment
Total RNA was isolated from 3 pairs of WT andMafk-Tg pancreata at E15.5 using the
NucleoSpin RNA kit (Macherey-Nagel). The total RNA was used to synthesize cRNA using the
Ambion WT Expression Kit (Life Technologies). Fragmentation and labeling of cDNA were
performed using the GeneChip WT Terminal Labeling and Control Kit (Affymetrix, Santa
Clara, CA, USA). The hybridization cocktail containing fragmented and biotin-labeled cDNAs
was transferred into GeneChip MoGene-1_0-st-v1 cassettes (Affymetrix), which were incu-
bated at 45°C inside a hybridization oven by rotating them at 60 rpm for 17 hours. The Gene-
Chip arrays were then washed and developed using the Hybridization Wash and Stain Kit
(Affymetrix) in a Fluidics Station 450 (Affymetrix). The GeneChip arrays were read using the
GeneChip Scanner 3000 (Affymetrix) and the image files were generated using the GeneChip
Command Console (Affymetrix). Normalization and probe set summarization were performed
using the Affymetrix Expression Console software. CEL files and normalized data were depos-
ited into the NCBI GEO repository under the accession number GSE62834.
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Statistical analysis
Data were expressed as the means ± standard errors of the means and compared using an
unpaired t test. Probability values of less than 0.05 were considered significant.

Results

β-cell-specificMafk overexpression resulted in impaired endocrine cell
development and an abnormal islet structure
In order to study the impact of β-cell-specificMafk overexpression on endocrine development,
especially during the primary and secondary transitions, we performed immunohistochemical

Table 1. The primers used in this study.

Gene Name Foreward (5`- 3`) Reverse (5`- 3`)

Arx TCCGGATACCCCACTTAGCTT GACGCCCCTTTCCTTTAAGTG

Chgb CCCTCAGCTCGACTTGAAAC GCCGTCAGAACTCTCTGGTC

Cryba2 ACCAGCAAAGATGTGGGTTC GGACTCTTCGAATGGACTGC

Fam132a GCCAGATGATGGGTCCTCTA TCGAAGTTCTGTGGCCTCTT

Foxa2 GAGCACCATTACGCCTTCAAC AGGCCTTGAGGTCCATTTTGT

G6pc2 TGCGTCTGGTATGTCATGGT TTCAAAGGCCTCGGCTACTA

Gcg AGGGACCTTTACCAGTGATGT AATGGCGACTTCTTCTGGGAA

Gck TGGATGACAGAGCCAGGATGG ACTTCTGAGCCTTCTGGGGTG

Glut2 AAGGATCTGCTCACATAGTCACT TTGCAGCCAACATTGCTTTGA

Hnf1a TATCATGGCCTCGCTACCTG ACTCCCCATGCTGTTGATGA

Hprt TTGTTGTTGGATATGCCCTTGACTA AGGCAGATGGCCACAGGACTA

Ins1 GCCCTCTGGGAGCCCAAA AGAGAGCCTCTACCAGG

Ins2 GCTTCTTCTACACACCCATGTC AGCACTGATCTACAATGCCAC

Ins promoter TGAAACAGTCCAAGG ACTTTGCTGTTTG

Kir6.2 GTAGGGGACCTCCGAAAGAG TGGAGTCGATGACGTGGTAG

Mafa CACTGGCCATCGAGTACGTCA CTTCACCTCGAACTTCATCAGGTC

Mafb TGAATTTGCTGGCACTGCTG AAGCACCATGCGGTTCATACA

Mafk GAGAAGCTGGCTCGAGAGAA CGGCTGAGAAGGGTACAGAG

Neurod1 ACAGACGCTCTGCAAAGGTTT GGACTGGTAGGAGTAGGGATG

Ngn3 TCTCAAGCATCTCGCCTCTTC ACAGCAAGGGTACCGATGAGA

Nkx2.2 CCGGGCGGAGAAAGGTATG CTGTAGGCGGAAAAGGGGA

Nkx6.1 CAGACCCACGTTCTCTGGAC TGACCTGACTCTCCGTCATCC

Pax4 TGGCTACACAGACAGCATTTAC GCGCTTGTTATTCGCTGGTC

Pax6 AACAACCTGCCTATGCAACC ACTTGGACGGGAACTGACAC

PC1/3 ATGGGCGGCGGAGATC CCAATCTGACCCAAAAGGTCATAC

PC2 AATGACCCCTACCCATACCC GAGGAGGCTTCGATGATGTC

Pcbd1 AGGCCGAGATGCTATCTTCA ATATCCCGTTCCGAAAGACC

Pdx1 TTCCCGAATGGAACCGAGC GTAGGCAGTACGGGTCCTCT

Pou3f4 CTCGCCGCACACTAACCAT GCTCCAGCATACCGCTCAC

Rbp4 TTCTGTGGACGAGAAGGGTC GTGCCATCCAGATTCTGCAG

Rfx6 TGTGAAGAACGAAAGCCACG TGGAGAAATCGGTGGTGTCA

Slc30a8 ACTGATGCGGCTCATCTCTT GATGCAAAGGACAGACAGCA

Sur1 CTGGTCCTCAGCAGCACAT GGAACTCTTGGGACGAGACA

Sytl4 AGTCTGTGGTGATGAGGGTG CCAGGTGGTCAATGTCCTCT

Tmem27 GAGCAATGGTGGCATTCTCC ACTTCAGCTGCAGGAAGAGT

doi:10.1371/journal.pone.0150010.t001
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staining of pancreas sections fromWT,Mafa−/−,Mafk-Tg, andMafa−/−;Mafk-Tg embryos
(Fig 1A). At E12.5, the point at which the primary cells emerge (the first wave of hormone-
expressing cells), all groups of mice showed comparable manifestations. They contained a few
insulin positive cells and a few insulin/glucagon double positive cells (which are considered
progenitor cells), while the majority of cells were glucagon-positive [31, 32]. At E15.5 and
E18.5, the islets of WT andMafa−/− embryos displayed normal and comparable phenotypes,
whereasMafk-Tg andMafa−/−;Mafk-Tg embryos exhibited similar structural patterns with
reversed number of insulin+ and glucagon+ cells. These results indicate thatMafa is not
involved in β-cell development either in theMafk-Tg background or in the WT background.
We also stained pancreatic sections at postnatal day (P) 4, P21, and 5 weeks of age (5W). The
islets fromWTmice at all periods appeared with a clear central core of insulin+ cells sur-
rounded by a peripheral layer of glucagon+ cells, whereasMafa−/−mice developed an abnor-
mal structure with many glucagon+ cells in the center of the islets in the early neonatal period
[16]. The islets ofMafk-Tg mice were still displaying changes similar to their embryonic abnor-
mal phenotype at P4 and P21, however at 5W the islet structure was apparently reverted to
normal. As shown previously, in the islet ofMafa−/−;Mafk-Tg mice, the destructive changes
were more severe compared toMafa−/−mice [25]. These results suggest that the expression of
Mafa during the neonatal period compensates for the effect ofMafk overexpression in
embryos, which is consistent with a previous report showing the functional significances of
Mafa after birth [33]. Hereafter, our experiment was focused on the comparison ofMafk-Tg
and control WT mice in each experiment.

To clarify the extent of these changes, we quantified the changes in insulin+ and glucagon
+ cell populations based on their numbers. The total numbers of insulin+ and glucagon+ cells
were counted in representative sections throughout the whole pancreas of embryos at E18.5. In
Mafk-Tg embryos, the total count of insulin+ cells was decreased (3.1 ± 0.19 × 10^3 vs.
6.21 ± 0.72 × 10^3 in WT, P = 0.002) (Fig 1B). Conversely, we found the number glucagon
+ cells to be significantly increased (3.4 ± 0.14 × 10^3 vs. 2.4 ± 0.20 × 10^3 in WT, P = 0.008)
(Fig 1C). The total insulin contents were also decreased inMafk-Tg embryos both at E15.5 and
at E18.5, consistent with the immunohistochemistry results (Fig 2). The reduction in the total
insulin contents was more dramatic at E15.5 (1.1 ± 0.1 ng in Tg vs. 5.6 ± 0.6 ng in WT,
P< 0.001) compared to E18.5 (10.0 ± 0.39 ng in Tg vs. 13.4 ± 0.33 ng in WT, P< 0.001).

β-cell-specificMafk overexpression altered the gene expression of both
β- and α-cell-related factors
Quantitative RT-PCR was performed using total RNAs from pancreata of WT andMafk-Tg
embryos (n = 6 each) at E15.5. The analysis revealed that the mRNA expression of Ins1
(0.47 ± 0.07 fold, P = 0.03), Ins2 (0.52 ± 0.07 fold, P = 0.04), Slc30a8 (0.25 ± 0.02 fold, P = 0.02),
G6pc2 (0.37 ± 0.08 fold, P = 0.03), and Sytl4 (0.50 ± 0.05 fold, P = 0.001) were decreased in
Mafk-Tg mice (Fig 3A). As we expected, the expression of these downregulated genes is known
to be controlled by large Maf genes [14, 17]. The expression of other β-cell-related genes were
either unchanged (Glut2 (1.1 ± 0.1 fold, P = 0.08) and PC1/3 (1.4 ± 0.2 fold, P = 0.20)) or
increased (PC2 (1.8 ± 0.2 fold, P = 0.02), Gck (2.2 ± 0.5 fold, P = 0.005), Sur1 (2.9 ± 0.4 fold,
P = 0.003), and Kir6.2 (3.1 ± 0.4 fold, P = 0.004)) (Fig 3A). We also examined the key transcrip-
tion factors related to the endocrine development inMafk-Tg embryos. Unexpectedly, many β-
cell-related transcription factors as well as α-cell-related factors were found to be significantly
increased inMafk-Tg mice, suggesting that the compensatory mechanisms to maintain normal
β-cell numbers have been activated (Fig 3B). These factors includedMafb (1.7 ± 0.1 fold,
P = 0.01), Pax4 (1.7 ± 0.1 fold, P = 0.03), Pax6 (2.4 ± 0.4 fold, P = 0.02), Rfx6 (2.2 ± 0.1 fold,
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Fig 1. TransgenicMafk overexpression altered the normal islet structure. (A) Immunohistochemical analysis of insulin and glucagon in wild-type (WT),
Mafa knockout (Mafa−/−),Mafk transgenic (Mafk-Tg) andMafa−/−;Mafk-Tg pancreata at embryonic day (E) 12.5, E15.5, E18.5, postnatal day (P)4, P21 and 5
weeks of age (5W). Scale bar = 40 μm. (B) The total β-cell count of WT (n = 3) andMafk-Tg (n = 5) embryos at E18.5. (C) The α-cell count of WT (n = 3) and
Mafk-Tg (n = 5) embryos at E18.5. The error bars represent the standard errors of the means.

doi:10.1371/journal.pone.0150010.g001
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P = 0.01), Pdx1 (1.7 ± 0.2 fold, P = 0.03), Foxa2 (1.6 ± 0.1 fold, P = 0.03), Ngn3 (1.7 ± 0.1 fold,
P = 0.03), Neurod1 (1.6 ± 0.1 fold, P = 0.05), Nkx2.2 (2.1 ± 0.2 fold, P = 0.01), Nkx6.1 (3.3 ± 0.6
fold, P = 0.09), Arx (2.1 ± 0.2 fold, P = 0.001), and Pou3f4 (2.4 ± 0.2 fold, P = 0.005). Further-
more, immunohistochemistry showed that ARX expression, a master regulator of α-cell devel-
opment, was increased mainly in the noninsulin-positive cells ofMafk-Tg mice (Fig 3C). The
latter finding was confirmed by quantitative assessment of the number of ARX+ cells per pan-
creatic section in both WT (40 ± 1.2) andMafk-Tg mice (78 ± 6.6, P = 0.005) (Fig 3D).

MAFK inhibited the activation of insulin promoter
The ability of MAFK to suppress the activation of the insulin promoter was examined using
luciferase assay. A reporter plasmid containing the luciferase gene under the control of the rat
insulin 2 promoter (pGL2/RIPII-251) was used, as previously described [24](Fig 4A). NIH3T3
cells were transfected with MAFK and MAFB expression plasmids with a reporter plasmid,
and the luciferase activity was monitored 48 hours after transfection (Fig 4B). MAFB activated
the insulin promoter more than 100-fold. In the presence of increased amounts of MAFK, the
enhanced activity of insulin promoter by MAFB showed a dose-dependent reduction. These
findings indicate that MAFK inhibited MAFB binding to the C-box of the insulin promoter.
Chromatin immunoprecipitation (ChIP) using FLAG antibody against NMuMG cells treated
with either pCAGIP-FLAG-MAFK or mock plasmids further confirmed these observations

Fig 2. The changes in total pancreatic insulin content. The total insulin content of whole pancreata collected from embryos at E15.5 (A) (n: WT = 6;Mafk-
Tg = 7) and E18.5 (B) (n: WT = 4;Mafk-Tg = 7). The error bars represent the standard errors of the means.

doi:10.1371/journal.pone.0150010.g002
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Fig 3. Gene expression inMafk-Tg pancreases. (A, B) The mRNA expression of the indicated genes in the pancreas ofMafk-Tg relative to WT at E15.5
(n = 6 per each) *P < 0.05, **P < 0.01. The error bars represent the standard errors of the means. (A) Genes involved in hormone processing and secretion.
(B) Transcription factors related to the endocrine development. (C) Immunohistochemical staining of Insulin and ARX of WT andMafk-Tg mice at E15.5.
Scale bars = 40 μm. (D) The average number of cells that appeared positive for ARX immunostaining per pancreatic section at E15.5 (n: WT = 3,Mafk-
Tg = 3).

doi:10.1371/journal.pone.0150010.g003
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Fig 4. MAFK inhibited the activation of insulin promoter. (A) Schema of the rat insulin promoter II reporter plasmid (pGL2/RIPII-251). (B)Mafb andMafk
expression plasmids and the pGL2/RIPII-251 plasmid were transfected into NIH3T3 cells. The amount ofMafk-expression plasmid were serially increased
from 0 to 100 ng. Three independent experiments were conducted and the error bars represent the standard errors of the means. (C) Chromatin
immunoprecipitation (ChIP) using anti-FLAG antibody detected binding of MAFK to the Insulin promoter region including C-box in NMuMG cells transfected
with pCAGIP-FLAG-MAFK. A representative figure of two independent experiments is shown.

doi:10.1371/journal.pone.0150010.g004
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(Fig 4C). The binding of MAFK directly to the insulin promoter was evident upon analysis of
the immunoprecipitated protein-DNA complex with specific PCR primers.

No evidence of α-cell transdifferentiation inMafk-Tg β-cells
The first observation of the reversion of the absolute number of insulin+ and glucagon+ cells
inMafk-Tg mice raised the possibility that β-cell-specificMafk overexpression could induce
their transdifferentiation to α-cells during endocrine development. To answer this question, we
labeled the β-cell lineage using Ins1-Cre;R26GRR mice, which express GFP ubiquitously before
and tdsRed exclusively in β cells after Cre recombination (Fig 5A). We collected 8 sections at
100-μm intervals apart fromMafk-Tg;Ins1-Cre;R26GRR and control WT;Ins1-Cre25;R26GRR
(n = 3 per mouse) at P0 and 4 weeks of age and stained them with glucagon antibody in order
to examine the adult α-cells that might be derived from the β-cell lineage. Although higher
numbers of glucagon+ cells were detected inMafk-Tg mice at 4 weeks of age, glucagon
+ tdsRed+ cells were observed in 0.52% of the total glucagon+ cells inMafk-Tg mice (n = 763)
and these cells were 0.66% of the total glucagon+ cells in the controls (n = 752) (Fig 5B). These
observations suggest that the increased number of α-cells inMafk-Tg mice might be due to
other causes rather than β-cell transdifferentiation.

Mafk overexpression suppressed β-cell proliferation
To examine the reason for reduction in β-cell numbers during the prenatal and early postnatal
periods, we performed immunohistochemical analysis using the cell cycle marker Ki-67 (Fig
6A). Six different sections fromWT andMafk-Tg embryos (n = 3 per embryo) were collected
at 100-μm intervals and stained using Ki-67 and insulin antibodies. The number of double pos-
itive cells was counted and divided by the total number of insulin+ cells to estimate the per-
centage of proliferating β-cells. The result showed that the percentage of proliferating β-cells
was lower inMafk-Tg mice (3.9 ± 0.31%) than in WT mice (10.3 ± 0.91%, P = 0.001) at E18.5
(Fig 6B). This finding was further examined using another cell cycle marker, pHH3 (Fig 6C).
Quantitative comparison of the percentage of the cells that appeared as double positive for
both pHH3 and insulin (2.2 ± 0.4% in Tg vs. 7.2 ± 0.6% in WT, P = 0.001) was in line with that
obtained from Ki-67 staining, suggesting that β-cell proliferation is reduced or delayed in
Mafk-Tg mice (Fig 6D). Impaired proliferation of blood cells induced byMafk overexpression
is also reported in vivo, suggesting that excess amounts of MAFK has an antiproliferative effect
regardless of cell type [23, 34].

We also examined the changes in α-cell proliferation using Ki-67 staining and found higher
percentage of cells with double immunoreactivity for both glucagon and Ki-67 at E18.5 in
Mafk-Tg (10.5 ± 0.9%) compared to WT embryos (6.7 ± 0.7%, P = 0.025)(n = 3 per embryo)
(Fig 6E and 6F). This observation indicated that the increase in the α-cell numbers was mainly
due to their proliferation rather than β-cell dedifferentiation.

Microarray analysis of pancreas fromMafk-Tg embryos revealed
differential expression of islet-related genes
To identify genes potentially involved in endocrine development and function, we conducted
unsupervised microarray analysis using total RNA from pancreata of WT andMafk-Tg
embryos collected at E15.5. qRT-PCR analyses, as shown in Fig 3, indicated that novel genes
involved in β-cell functions are expected to show differential expression between genotypes.
After data normalization and probe summarization, a list of 554 upregulated and 548 downre-
gulated probe sets was generated (S1 Table). Due to the limited sample size (n = 3 per geno-
type) and the fact that there is a low abundance of endocrine cells within the pancreas during
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Fig 5. Lineage tracing analysis of β-cell fate inMafk-Tgmice. (A) Strategy of the mice crossing. For β-cell labeling, Ins1-Cre;R26GRRmale mice were
mated withMafk-Tg females. The ability of the reporter mice to express tdsRED exclusively in pancreatic islets was confirmed by microscopic examination of
unstained pancreas sections at 4 weeks of age. Scale bar = 100 μm. (B) Higher number of glucagon+ cells was detected inMafk-Tg, however no cells
coexpressing tdsRED and glucagon were observed at neither P0 nor 4W (n = 3 per each genotype). Scale bars = 40 μm.

doi:10.1371/journal.pone.0150010.g005
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Fig 6. Cell proliferation assay inMafk-Tg mice. (A) Immunohistochemical analysis of pancreata fromWT andMafk-Tg mice using Ki-67 and Insulin
antibodies at E18.5. Scale bars = 40 μm. (B) The percentage of cells that appeared double positive for both Ki-67 and insulin (n: WT = 4 (463/4135),Mafk-
Tg = 5 (112/2893)). (C) Immunohistochemical analysis of pancreata fromWT andMafk-Tg mice using pHH3 and Insulin antibodies at E18.5. Scale
bars = 40 μm. (D) The percentage of the cells that appeared as double positive for both pHH3 and Insulin (n: WT = 4 (158/2291),Mafk-Tg = 4 (21/957)). (E)
Immunohistochemical analysis of pancreata fromWT andMafk-Tg mice using Ki-67 and glucagon antibodies at E18.5. Scale bars = 40 μm. (F) The
percentage of proliferating α-cell that appeared as double positive for both Ki-67 and Glucagon (n: WT = 3 (31/429),Mafk-Tg = 4 (76/746)). The error bars
represent the standard errors of the means.

doi:10.1371/journal.pone.0150010.g006
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this stage of development, the cutoff was set at 1.2-fold change [35, 36]. Sixteen genes (namely
Ins1, Ins2, Slc30a8, G6pc2, Sytl4, Gcg,Mafb, Pax4, Pax6, Rfx6, Pdx1, Foxa2, Ngn3, Neurod1,
Nkx2.2 and Pou3f4) from a total of 22 genes (72.7%) that show significant difference (Fig 3)
were found to be included in the up- and down-regulated gene list, suggesting that microarray
can be used for further analysis. In order to identify any uncharacterized genes that might be
involved in endocrine development and function, we chose several candidate genes for
qRT-PCR analyses. For that experiment we used individual biological samples (n = 4–8 per
experiment) to confirm the changes observed with the technical replicates that were used for
microarray analysis. For qRT-PCR, we chose several transcripts that we thought to be potential
factors involved in endocrine development and function, some of which had not been fully
characterized (Fig 7). In addition to Ins1, we identified 3 novel candidate genes that showed a
significant reduction of gene expression inMafk-Tg, namely Npy, Cryba2, and Fam132a (Fig
7A). Additionally, from the upregulated gene group, the expression of Tmem27, Chgb, Rbp4,
Hnf1a and Pcbd1 was confirmed (Fig 7B). These results suggest that the gene expression profile
ofMafk-Tg pancreata can provide a unique set of novel genes that possibly play various roles
in endocrine development and function.

Discussion
In this study, we were able to detect insulin/glucagon double positive cells, which are consid-
ered to be endocrine progenitors, inMafa−/−,Mafk-Tg, andMafa−/−;Mafk-Tg embryos as well
as WT embryos at E12.5. Our findings indicate that neitherMafa deficiency nor β-cell-specific
Mafk overexpression have any deleterious effect on the development of the early pancreatic
progenitors. The islets of theMafa−/− mice also showed no marked structural changes when
compared to WT mice during the whole prenatal life, consistent with a previous study using
MafaΔpanc mice [17]. In contrast, as observed inMafk-Tg andMafa−/−;Mafk-Tg mice, overex-
pression ofMafk impaired the islet morphogenesis at the late gestational stage, with up to 50%
reduction in the number of β-cells and total insulin content. This finding corresponds with
that of systemicMafb-deficient embryos in regard to β-cell development [15]. The phenotype
observed inMafk-Tg mice probably represents a part of conditional deletion ofMafb in β-cells.
On this point, we could not rule out the direct role of overexpressed MAFK on other differenti-
ation factors in a large MAF independent manner. However, the increasing expression ofMafa
in neonatal β-cells probably restored the islet structure inMafk-Tg mice by 5 weeks of age, sug-
gesting thatMafk overexpression primarily blocked the large MAF function in embryos [37].
This idea is also supported by a recent report showing the opposing effect of MAFA and small
MAFs on the insulin promoter [38].

Mafk-deficient mice do not exhibited any abnormalities [19]. β-cell specific transgenic mice,
which express a dominant negative form of MAFK (DN-MAFK), show normal glucose toler-
ance under normal chow diet [38]. In contrast, under high fat diet conditions, DN-MAFK
overexpression improves insulin secretion and glucose metabolism. Together with the observa-
tion that high fat diet feeding increases small MAF expression in β-cells, MAFK probably
downregulates the expression of genes regulated by MAFA under stressed conditions partly
due to the blocking of MAFA binding to MARE on the target [38].

Several lines of evidence suggest the capacity of terminally differentiated cells in the endo-
crine pancreas to lose their integrity and thereby adopt another cell identity [39]. Forced
expression of Arx in mature β-cells can induce their conversion into a glucagon-positive α-cell
phenotype [40]. Moreover β-cells convert into α-cells following deletion of Dnmt1 or FoxO1
[41] [42]. Based on these observations, we hypothesized thatMafk overexpression might trig-
ger β-cell transdifferentiation/conversation into α-cells. However, as shown in Fig 5, we were
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Fig 7. Validation of microarray data by qRT-PCR inWT andMafk-Tg pancreata at E15.5. The expression levels of microarray and qRT-PCR are shown
in black and gray columns, respectively. TheMafk-Tg expression (n = 8) of indicated genes was shown as relative to their expression in WT (n = 4).
*P < 0.05, **P < 0.01. The error bars represent the standard errors of the means. (A) Downregulated genes. (B) Upregulated genes.

doi:10.1371/journal.pone.0150010.g007

Endocrine Development in β-Cell-SpecificMafk Transgenic Mouse

PLOS ONE | DOI:10.1371/journal.pone.0150010 February 22, 2016 15 / 20



not able to find any cells coexpressing tdsRED and glucagon using β-cell lineage tracing, indi-
cating that the increase in α-cells ofMafk-Tg mice is likely not to be due to β- to α-cell transdif-
ferentiation, but rather due to the increased proliferation of α-cells. Recently, it is proposed
that derepression ofMafb in β-cells activates β- to α-cell reprogramming in the absence of
Pdx1 orMafa [43] [44]. Because overexpressed MAFK blocks MAFB function and probably
does not initiate the reprogramming cascade inMafk-Tg β-cells, the increase in α-cell numbers
as well as α-cell transcription factors might be due to a loss of insulin action [45]. Alternatively,
disruption of key β-cell transcription factors (Mafs or Pdx1) during the early postnatal period
does not cause β- to α- transdifferentiation (this manuscript and [46]), which occurs after 4
weeks of age [43] [44].

Finally, our analyses of microarray and subsequent qRT-PCR revealed that the downregu-
lated gene group included a set of important transcripts for β-cell function. Npy, Fam132a, and
Cryba2, as well as Ins1 were encountered as potential β-cell-related genes. NPY (Neuropeptide
Y) has pleiotropic functions in various tissues including hypothalamus, autonomic nervous
system, and adipose tissue. In pancreas, its expression is observed in β-cells during the second-
ary transition to neonatal period [47, 48]. A previous report showing that NPY treatment of
mouse islets significantly enhanced β-cell replication supports our finding of a reduction of β-
cell proliferation inMafk-Tg mice [49]. Fam132a (also called Adipolin) is a novel adipokine
associated with roles in glycemic control and insulin sensitization [50]. In addition to adipose
tissue, Fam132a is thought to be secreted from mouse islets, according to the T1D base
(https://www.t1dbase.org/page/Welcome/display). Notably, Cryba2 is identified as an enriched
gene in developing and adult pancreas and its expression is affected by Ngn3-deficiency during
development, although no clear phenotype in pancreas of ENU-induced Cryba2mutants has
been reported [51–53].

From the upregulated gene group, TMEM27 plays a role in controlling insulin exocytosis by
regulating the soluble N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complex assembly [54, 55]. Retinol binding protein 4 (RBP4), which is a principle
carrier of blood retinol, contributes insulin resistance in mice and humans [56]. Interestingly,
both Tmem27 and Rbp4 is upregulated in pancreas fromMafb-/- during late embryonic period,
implying thatMafk-Tg mice andMafb-/- mice share common gene expression patterns as well
as phenotypic similarities [17]. Chromogranin-B (CHGB) is a secretory glycoprotein co-stored
with insulin and is found to control the rapid initial phase of insulin secretion [57]. Hepatocyte
nuclear factor 1 alpha (HNF1A) controls many genes related to β-cell differentiation, and gene
mutations are the most common cause of maturity-onset diabetes of the young [58]. Pterin-
4-alpha-carbinolamine dehydratase (PCBD1) is a novel protein that acts as a cofactor for HNF1A-
dependent transcription protein, and it is reported that PCBD1mutations cause early-onset
nonautoimmune diabetes with features similar to dominantly inherited HNF1A-diabetes [59].

In conclusion, β-cell-specificMafk overexpression resulted in impairment in endocrine
development through alteration of the expression of many important genes for endocrine devel-
opment and function. SinceMafk overexpression can mimic the targeted disruption of many
genes containing MARE sites in their regulatory regions to which MAFK homodimers can bind,
our microarray analysis ofMafk-Tg embryos provides a unique data set for investigating novel
factors that might have possible roles in β-cell development, function, and survival.

Supporting Information
S1 Table. List of the up- and down-regulated genes in the pancreas ofMafk-Tg embryos at
E15.5.
(XLSX)
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