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Background: DNA methylation played essential roles in regulating gene expression. The
impact of DNAmethylation status on the occurrence and development of cancers has beenwell
demonstrated. However, little is known about its prognostic role in breast cancer (BC).

Materials: The Illumina Human Methylation450 array (450k array) data of BC was
downloaded from the UCSC xena database. Transcriptomic data of BC was downloaded
from the Cancer Genome Atlas (TCGA) database. Firstly, we used univariate and multivariate
Cox regression analysis to screen out independent prognostic CpGs, and then we identified
methylation-associated prognosis subgroups by consensus clustering. Next, a methylation
prognostic model was developed using multivariate Cox analysis and was validated with the
Illumina Human Methylation27 array (27k array) dataset of BC. We then screened out
differentially expressed genes (DEGs) between methylation high-risk and low-risk groups and
constructed a methylation-based gene prognostic signature. Further, we validated the gene
signature with three subgroups of the TCGA-BRCA dataset and an external dataset
GSE146558 from the Gene Expression Omnibus (GEO) database.

Results: We established a methylation prognostic signature and a methylation-based
gene prognostic signature, and there was a close positive correlation between them. The
gene prognostic signature involved six genes: IRF2, KCNJ11, ZDHHC9, LRP11, PCMT1,
and TMEM70. We verified their expression in mRNA and protein levels in BC. Both
methylation and methylation-based gene prognostic signatures showed good prognostic
stratification ability. The AUC values of 3-years, 5-years overall survival (OS) were 0.737,
0.744 in the methylation signature and 0.725, 0.715 in the gene signature, respectively. In
the validation groups, high-risk patients were confirmed to have poorer OS. The AUC
values of 3 years were 0.757, 0.735, 0.733 in the three subgroups of TCGA dataset and
0.635 in GSE146558 dataset.

Conclusion: This study revealed the DNA methylation landscape and established
promising methylation and methylation-based gene prognostic signatures that could
serve as potential prognostic biomarkers and therapeutic targets.
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INTRODUCTION

Breast cancer (BC) is the most prevalent cancer and the
leading cause of cancer mortality in women worldwide
(Freddie et al., 2020). In the United States, it is estimated
that around 13% of women will suffer from BC in their
lifetime (DeSantis et al., 2019). In recent years, the
mortality of BC has gradually declined and the 5-years OS
rate has reaches 90% attributed to early detection and
improved treatment (Allemani et al., 2018).

Breast cancers are categorized into ER+, ER+/HER2-, HER2+
and Triple-negative subtypes based on the expression of estrogen
receptor (ER), progesterone receptor (PR) and human
epidermal growth factor receptor 2 (HER2). Similarly,
gene expression analysis of these receptors further
recognizes four subsets of BC: luminal A, luminal B,
HER2-enriched (HER2-E) and Basal-like (Parker et al.,
2009). These classification systems not only help predict
the prognosis of BC patients, but also guide treatment
choices. Conventional therapies such as surgery,
radiotherapy, and chemotherapy form the basis of BC
treatment. In addition, endocrine therapy for hormone
receptor-positive BC and anti-HER2 treatment for HER2
expressing BC have greatly improved the prognosis of
patients. Unfortunately, triple negative breast cancer
(TNBC) still lacks effective therapeutic targets. Recent
studies demonstrated that poly ADP-ribose polymerase 1
(PARP1) inhibitors and immune checkpoint inhibitors
(ICIs) showed potential effect in TNBC (Mittendorf et al.,
2020), (Schmid et al., 2020). Despite the great achievements
in treatment, about 25–40% of BC patients will develop
metastases (Siegel et al., 20172017). Among them, bone
metastases are the most common, and approximately 75%
of late-stage BC patients are diagnosed with bone metastases
(Tulotta and Ottewell, 2018). Moreover, 5–20% of BC
patients would have brain metastases (Achrol et al., 2019).
Once the patient develops metastasis, the prognosis is poor,
with the median OS of only 1–2 years (Redig and McAllister,
2013), (Martin et al., 2017). Therefore, it is urgent to find
potential prognosis-related biomarkers to accurately predict
the prognosis of BC patients.

Epigenetics events such as DNA methylation, histone
modifications, chromatin remodeling, and non-coding RNAs
play essential roles in the regulation of gene expression and
actively participate in the development and progression of
cancers. DNA methylation, which affects gene expression
without changing the DNA sequence, is the most common
epigenetic modification (Nakao, 2001), (Strahl and Allis,
2000). Stefansson et al. demonstrated that abnormal
methylation of CpG islands in the promoter regions might
activate proto-oncogenes or silence tumor suppressor genes,
thereby contributing to the occurrence and development of
tumors (Stefansson and Esteller, 2013). Accumulating
evidences showed that decreased levels of genome-wide
methylation were a critical sign of early cancers and were
related to cancer grade and metastasis (Yang and Schwartz,
2011), (Ding et al., 2019). Indeed, DNA methylation was

associated with most malignancies including bladder
cancer (Chen et al., 2020a), lung cancer (Liang et al.,
2019), and gastrointestinal tumors (Woo et al., 2018),
(Huang et al., 2018).

Emerging studies have revealed the important roles of
DNA methylation in BC (Pasculli et al., 2018; Kresovich
et al., 2019; Xu et al., 2020). For instance, distinct DNA
methylation patterns and associated gene expression profiles
were found in different molecular subtypes of BC. SFRP1, a
tumor suppressor gene, was down-regulated by
hypermethylation in ER + breast cancer, leading poor
prognosis (Stefansson et al., 2015), (Park et al., 2012).
Other genes such as BRCA1, CDH1, and PTEN, were also
abnormally methylated in BC. These events could serve as
potential therapeutic and prognostic biomarkers (FitzGerald
et al., 1998; Pharoah et al., 2001; King et al., 2003; Walsh et al.,
2006; Suijkerbuijk et al., 2008; Luo et al., 2016). However, the
prognostic role of DNA methylation in BC remains
incompletely demonstrated.

In this study, we used bioinformatics methods to
determine the prognostic role of DNA methylation and
constructed methylation-associated prognostic signatures
for BC. This study will help unveil the significance of
DNA methylation in BC and might help discover novel
prognostic biomarkers.

MATERIALS AND METHODS

Data Acquisition and Processing
RNA-seq data in fragments per kilobase of transcript per million
mapped reads (FPKM) form and clinical information of BC were
downloaded from the Cancer Genome Atlas (TCGA: https://
portal.gdc.cancer.gov/) database. Illumina Human
Methylation450 BeadChip array (450k array) and Illumina
Human Methylation27 BeadChip array (27k array) data of
TCGA database were downloaded from UCSC xena (https://
xenabrowser.net/) (Goldman et al., 2020). DNA Methylation
levels were evaluated by the β value, which ranged from 0 to 1
(0 means unmethylated and 1 means fully methylated). Probes
with over 70% of missing values and probes located at
chromosomes X and Y were removed. The missing values of
the remaining probes were imputed using the k-nearest
neighbours (knn) imputation algorithm of the impute R
package. Since DNA methylation in promoter regions would
strongly influence gene expression, we focused on the
methylation probes in promoter regions defined as 2.0 kb
upstream to 0.5 kb downstream from transcription start sites
(TSS). Batch effects were removed by the ComBat algorithm of
the sva R package (Leek et al., 2012). Ultimately, 560 patients
including methylation data (from 450k array) and corresponding
clinical data, 986 patients (from TCGA database) containing both
gene expression data and corresponding clinical data were used
for mainly analysis. And we obtained 557 overlapping patients
(from the above two datasets) with complete gene expression
data, methylation data and clinical data. Moreover, RNA-seq data
and clinical information of 106 samples from GSE146558 were
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downloaded from NCBI (GEO: https://www.ncbi.nlm.nih.gov/)
as external validation dataset. The mRNA expression profile from
GEO dataset was normalized by the Robust Multichip Average
(RMA) algorithm with background adjustment, quantile
normalization, and final summarization. The workflow of our
study was illustrated in Figure 1.

Independent Prognostic CpG Loci
Screening
Univariate Cox regression analysis was performed to screen
out the prognosis-related CpGs of the 560 BC patients. In
our study, we used the OS as clinical parameter of prognosis.
Next, all these CpGs were subjected to multivariate
Cox regression analysis, with age, pathological stage, and
TNM stage as covariates to identify independent
prognostic CpGs.

GO and KEGG Analysis
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/) (Kanehisa
et al., 2017) analysis were performed using the R
ClusterProfiler package (Yu et al., 2012). A p value < 0.05
was set as the cut-off value for both GO and KEGG analyses
in our study.

Consensus Clustering and Evaluation of
CpG-Related Subtypes
Consensus clustering (Wilkerson and Hayes, 2010) was
performed to determine subgroups of different methylation
characteristics of the 560 BC patients based on the
independent prognostic CpG loci using the
ConsensusClusterPlus package of R. The criteria to determine
the number of clusters were: (Freddie et al., 2020) The consistency
within the cluster was relatively high; (DeSantis et al., 2019) There
was no significant increase in the area under the CDF curve;
(Allemani et al., 2018) The relative change in area under CDF
curve tended to be stable. We then generated a consensus matrix
to better visualize and help determine the number of clusters.

Construction and Validation of the
Methylation Prognostic Model
Differentially methylated independent prognostic CpG loci
between the different prognosis clusters were screened out
using Wilcoxon test. The filtering conditions were false
discovery rate (FDR) < 0.05 and | log2 (fold change) | >0.585.
On the basis of these differentially methylated CpG loci, a
methylation prognostic model of 560 BC patients was
constructed using multivariate Cox analysis. The formula of
the risk score was as follows:

FIGURE 1 | The workflow for this study. DEGs, differentially expressed genes.
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Risk score � ∑ coef iβi

where coefi was the multivariate Cox regression coefficient, and βi
was the corresponding methylation β value. According to the
median risk score (Chen et al., 2020b), (Shen et al., 2019), patients
were divided into methylation low-risk (n � 280) and high-risk
(n � 280) groups. Survival curves were employed to compare the
OS of the two groups. Risk curve was plotted to visualize the
relationship of the risk score, survival status and the methylated
levels of the six signature CpG loci. Univariate and multivariate
Cox regression analysis were performed to explore whether the
risk score could be an independent predictor of OS. The
sensitivity and specificity of the methylation prognostic model
were evaluated by calculating the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve.

Construction and Evaluation of Gene
Prognostic Model
Differentially expressed genes (DEGs) were identified from
methylation high-risk and low-risk groups (of 557 BC patients’
dataset) with the filter conditions of adjusted p < 0.05 and | log2
(fold change) | >1. And then we further extracted the above-
mentioned DEGs from the transcriptomic profiles of 986 BC
patients’ dataset for subsequent analysis. Kaplan-Meier analysis
and univariate Cox regression analysis were employed to
investigate prognosis-related DEGs of the 986 samples.
Similarly, a gene prognostic signature was constructed by
multivariate Cox regression analysis. And the risk formula was:

Risk score � ∑
n

i�1
(expressioni p coefi)

Patients were also categorized into low-risk (n � 493) and
high-risk (n � 493) groups based on the median risk score.
Kaplan-Meier survival curve, risk curve, ROC curve, univariate
and multivariate Cox regression analysis were also used for
evaluating and validating the prognostic signature. Besides,
two subgroups from 986 BC patients, the 557 patients’ dataset
and GSE146558 dataset were used to validate the prognostic value
of the gene signature.

Antitumor Drug Sensitivity Analysis
CellMiner (https://discover.nci.nih.gov/cellminer/home.do) is a
robust, user-friendly online database that integrates drug
sensitivity and genomic data (Reinhold et al., 2017), (Wang
et al., 2016). Anti-tumor activity data obtained from NCI-60
tumor cell line panel of the developmental therapeutics program
(DTP) and RNA-seq data for the 60 cell lines of the NCI DTP
drug screen were downloaded from this website. Subsequently,
correlation between the sensitivity of anti-tumor drugs and the
signature genes was analyzed.

Statistical Analysis
R 3.6.3 (version 3.6.3, https://pan.baidu.com/s/
1sufVf2lmoj9GYG_j5_fJKQ) was used for statistical analysis
and plotting. Consensus clustering was performed using the
ConsensusClusterPlus package of R; COX regression analysis

was performed with the coxph function in survival package of
R (Zhang, 2016); Kaplan-Meier curve was plotted using the
survival and survminer packages of R; Pheatmap was plotted
using the pheatmap package of R; The forest plots were plotted by
the forestplot package of R; ROC curve was plotted by the survival
ROC package of R. GO and KEGG analyses were performed using
the ClusterProfiler package of R.

Mann-Whitney test was used to estimate the statistical
significance of two groups of skewed distributed continuous
variables, and Kruskal-Wallis test was used to evaluate the
statistical significance of multiple groups of skewed distributed
continuous variables (with Bonferroni correction for pairwise
comparisons among multiple groups). All tests were two-sided
and for all statistical tests, p < 0.05 was considered to be
statistically significant unless otherwise specified.

RESULTS

Screening of Prognosis-RelatedCpGLoci in
Breast Cancer
In our study, 450k array dataset was defined as train group and
27k array dataset was defined as test group (Table 1). Firstly, 144
CpG loci with p < 0.001 by univariate Cox analysis were screened
out and identified as prognosis-related CpG loci. Using age,
pathological staging and TNM staging as covariates, 66 CpG
loci (49 CpG loci associated with favorable prognosis, 17 CpG loci
associated with poor prognosis) with p < 0.001 by multivariate
Cox analysis were further selected and used as the methylation
classification features (Figure 2).

Identification of DNA Methylation-Based
Prognosis Subgroups
Then, the 560 patients were categorized into clusters of different
methylation characteristics with consensus clustering based on

TABLE 1 | General clinical characteristics of 560 BC patients.

Parameters Methylation train group Methylation test group

(n = 560) (n = 278)

Age — —

≤65 years 438 (78.3) 191 (68.7)
>65 years 122 (21.7) 87 (31.3)

Pathologic stagea — —

I/II 418 (74.6) 215 (77.3)
III/IV 142 (25.4) 57 (20.5)
unknow 0 6 (2.2)

T stagea — —

T1/2 479 (85.5) 238 (85.6)
T3/4 81 (14.5) 40 (14.4)

N stagea — —

N0 254 (45.4) 143 (51.4)
N1/3 306 (54.6) 128 (46.1)
unknow 0 7 (2.5)

aStaging according to Seventh Edition AJCC, Guidelines (Edge SB, Byrd DR, Compton
CC, Fritz AG, Greene FL, Trotti A, eds. AJCC, Cancer Staging Manual. Seventh ed New
York, NY: springer; 2010).
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the methylation of the 66 independent prognostic CpG loci.
When the patients were assigned to 5 categories, the
consistency within the clusters was high, the area under the
cumulative distribution function (CDF) curve began to
stabilize, and the relative change in area under CDF curve
tended to be stable (Figures 3A,B). A consensus matrix
representing the consensus for k � 5 also displayed a well-
defined 5-block structure (Figure 3C). Accordingly, the
optimal number of clusters was determined to be 5.

Subsequently, we conducted a subgroup analysis for the 5
clusters. Firstly, we compared the methylation levels of these 66
independent prognostic methylation loci among the five clusters.
As illustrated in Figures 3D,E, Cluster 5 had the lowest
methylation levels, followed by Clusters 2 and 4, Clusters 1
and 3. And the methylated difference between Cluster 5 and
each of the remaining clusters was statistically significant. To
explore the prognostic significance of the five clusters, Kaplan-
Meier survival analysis was performed. We found that the
prognosis was statistically significantly different among the 5
clusters, where Cluster 1 and Cluster 3 had the best OS, while
Cluster 5 had the worst (Figure 3F).

Construction and Evaluation of Methylation
Prognosis Model
The five clusters were significantly prognosis-associated, and
therefore were used to identify potential prognostic biomarkers.
Given that Cluster 5 had the lowest methylation level and the worst
OS, it was reasonable to be selected as the reference cluster. Next, 20
differentially methylated independent prognostic CpG loci were
identified fromCluster 5 and the rest clusters (Table 2). Ultimately,
a methylation prognostic model was constructed which included

six CpG loci (cg00945507, cg05406101, cg10092957, cg13060154,
cg14992108, cg18678121) determined bymultivariate Cox analysis
(Table 3). Kaplan-Meier analysis showed that cg00945507,
cg05406101, cg10092957, cg14992108, cg18678121 were
associated with improved survival, and cg13060154 was
associated with poor survival (Figure 4).

Then we explored the mechanisms by which these signature
CpG loci might act on BC. The six CpG loci, cg00945507,
cg05406101, cg10092957, cg14992108, cg18678121, and
cg13060154, were located at gene promoter regions of SEC61G,
RWDD2B, NCCRP1, SNTB1, SEC61A2, DAB2IP, respectively. We
firstly analyzed the correlation of these CpG loci and their
corresponding target genes. The methylation of cg10092957,
cg05406101, cg18678121, cg00945507 were moderately
negatively correlated with the expression of their target genes.
Whereas cg13060154 was weakly positively correlated with its
corresponding gene (Supplementary Figures S1A–F).
Consistent with the above results, the increased expression of
NCCRP1, RWDD2B, SEC61A2, and SEC61G was associated
with the decreased β values of cg10092957, cg05406101,
cg18678121, and cg00945507, respectively. To the opposite of
them, DAB2IP had higher expression in the presence of
hypermethylated cg13060154 (Supplementary Figures S1G–L).
However, there was no relationship between the cg14992108 and
its target gene SNTB1. In addition, we took advantage of TCGA
Wanderer, an interactive viewer exploring DNA methylation and
gene expression data in human cancer (http://maplab.imppc.org/
wanderer/) (Díez-Villanueva et al., 2015), to explore the
methylated difference of the six CpG loci between breast cancer
and normal tissues. We found that the methylation levels of
cg05406101, cg18678121, cg14992108 were higher in normal
tissues. However, the methylation levels of cg13060154 and

FIGURE 2 | Significance and hazard ratio values of 66 independent prognosis-related CpG loci obtained from multivariate Cox regression analysis.
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cg10092957 were higher in breast cancer (Supplementary Figures
S1M–R). We also explored the prognostic roles of the six CpG loci
in breast cancer through the public databaseMethSurv (Modhukur
et al., 2018) (https://biit.cs.ut.ee/methsurv/). High methylation
levels of cg00945507, cg05406101, cg10092957, cg14992108,
cg18678121 were associated with favorable prognosis. On the
contrary, high methylation level of cg13060154 was associated
with poor survival (Supplementary Figures S1S–X).

On the basis of multivariate Cox regression, we developed the
following risk model:

Risk score � −4.016 × cg00945507 + 1.117 × cg05406101−1.78
× cg10092957 + 1.655 × cg13060154−1.283 × cg14992108−1.136
× cg18678121 (Table 3).

According to the formula, we computed the risk score of each
BC patient in the train group (n � 560) and assigned them into
high-risk (n � 280) and low-risk groups (n � 280) with reference to
the median risk score. The methylation levels of the six CpG loci
between the high-risk group and low-risk group were showed in
Supplementary Figures S2A. Kaplan-Meier curve indicated that
the high-risk group had significantly poorer OS than the low-risk
group (Figure 5A). To confirm the methylation risk score could
effectively predict the BC patients’ prognosis, we plotted the ROC
curve. Notably, we observed that the risk score had the highest
prediction performance of prognosis compared with the
conventional clinical features, with the 3-years and 5-years AUC

values being 0.739 and 0.744 (Figures 5B,C). The relationship of
methylation risk score, survival status and methylation levels of the
six signature CpG loci was shown in Figures 5D–F. Univariate Cox
analysis indicated that age, stage, T stage, N stage and risk score
were significantly associated with OS. However, when they were
introduced into multivariate Cox analysis, only age [hazard ratio,
1.026 (95% CI, 1.008–1.045), p � 0.005], and risk score [hazard
ratio, 2.823 (95% CI, 2.131–3.741), p < 0.001] remained as
independent prognostic predictors (Figures 5G,H). Similar
prognostic significance was observed in the validation cohort
(27k array dataset), with AUC values of 0.603 and 0.657 for 3
and 5 years, respectively (Supplementary Figures S2B–D).

Identification of Differentially Expressed
Genes From the Methylation High-Risk and
Low-Risk Groups
Using the thresholds of adjusted p < 0.05 and | log2 (fold
change) | >1, a total of 413 differentially expressed genes
(DEGs) between methylation high-risk and low-risk groups
were obtained. The volcano and heatmap visually displayed
the DEGs (Figures 6A,B). To further investigate the biological
characteristics of the DEGs, function and pathway annotations
were performed. GO analysis indicated that these genes were
involved in the regulation of cell cycle processes and mitotic cell

FIGURE 3 | The methylated levels and prognosis of consensus clustering subgroups of breast cancer. (A,B) Consensus clustering cumulative distribution function
for k � 2–9. (C)Consensus clusteringmatrix for k � 5. (D)Heatmap of the differentially methylated levels of the five subgroups. (E)Methylated levels of the 66 independent
prognosis-related CpG loci among the five clusters. (F) Survival analysis of the five subgroups.
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cycle phase transition. KEGG analysis showed that these DEGs
were mainly enriched in p53 and TGF-β signaling pathways
(Figures 6C–F).

Construction and Evaluation of Gene
Prognostic Signature
To explore the prognostic values of the identified 413 DEGs, we
extracted the expression of these DEGs from the transcriptomic
profiles of 986 BC patients in the TCGA-BRCA database for
subsequent analysis. Firstly, 50 DEGs significantly related with
OS were selected by Kaplan-Meier analysis (p < 0.05). All of these
prognostic genes were subjected to univariate Cox regression
analysis and 13 of them with p < 0.05 were further identified as
prognosis-associated genes (Supplementary Table S1). Ultimately,
six prognosis-associated genes, namely IRF2, KCNJ11, ZDHHC9,
LRP11, PCMT1, and TMEM70, were included in developing a gene
prognostic signature by multivariate Cox regression analysis.
Among them, four genes (ZDHHC9, LRP11, PCMT1,
TMEM70) were related with poor survival and two genes (IRF2,
KCNJ11) were associated with good survival (Supplementary
Figures S3). The risk formula was as follows:

Risk score � −(0.06128 × IRF2) − (0.0342 × KCNJ11) + (0.0228
× ZDHHC9) + (0.01257 × LRP11) + (0.01082 × PCMT1) +
(0.02917 × TMEM70).

Gene expression analysis of the six signature genes in the
Oncomine database (https://www.oncomine.org) revealed that
ZDHHC9, LRP11, PCMT1, TMEM70 were highly expressed in
breast cancer, and IRF2, KCNJ11 were highly expressed in normal
tissues (Figure 7A). Thenwe explored the protein levels of these six
genes between breast cancer and normal tissues in the Human
Protein Atlas database (Uhlen et al., 2010) (HPA: https://www.
proteinatlas.org/humanproteome/pathology). In accordance
with the gene expression levels, the protein levels of
ZDHHC9, PCMT1, TMEM70 were significantly higher in
breast cancer, and the protein levels of IRF2, KCNJ11 were
higher in normal tissues (Figure 7B). Moreover, we further
checked the prognostic values of our six genes in the public
database TCGA portal (version 1.0) (http://tcgaportal.org/
TCGA/Breast_TCGA_BRCA/process.php), and we found

TABLE 2 | Characteristics of the differential prognosis-related CpGs by wilcoxon
rank-sum test (cluster 5 vs. the rest clusters).

CpGs Log2 FC p value FDR

cg00945507 −1.078388031 6.76E-07 1.35E-06
cg02022375 −1.043706338 1.58E-12 1.30E-11
cg02630888 −0.851143204 1.04E-12 1.15E-11
cg05406101 −1.143837139 1.23E-15 8.12E-14
cg06646021 −0.804998375 5.45E-10 1.89E-09
cg10092957 −1.057286596 1.11E-07 2.44E-07
cg11072113 −0.594310951 1.86E-11 1.02E-10
cg13060154 0.6679634 0.030369072 0.04090528
cg14992108 −0.673767411 2.43E-10 1.07E-09
cg15798153 −0.959416408 2.90E-14 9.57E-13
cg16466334 −0.985246418 4.22E-12 3.09E-11
cg16522484 −0.696605561 9.22E-14 2.03E-12
cg18678121 −0.729884099 1.14E-07 2.44E-07
cg19094438 −1.478722276 5.50E-12 3.63E-11
cg21032583 −1.145936985 2.48E-13 3.28E-12
cg22197830 −1.050980669 1.22E-12 1.15E-11
cg24194539 1.144078012 0.010277521 0.014432263
cg26065841 −0.62551186 2.25E-13 3.28E-12
cg26147480 −0.695572224 1.37E-10 6.47E-10
cg27653134 −0.904508613 3.80E-11 1.93E-10

TABLE 3 | Formula of Methylation prognostic model.

CpG loci Coef HR

cg00945507 −4.01607 0.018024
cg05406101 1.117929 3.058513
cg10092957 −1.78259 0.168202
cg13060154 1.655685 5.236664
cg14992108 −1.28305 0.27719
cg18678121 −1.1362 0.321038

FIGURE 4 | The survival difference of hypermethylation and hypomethylation of the six signature CpG loci.
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that ZDHHC9, LRP11, PCMT1, TMEM70 were associated
with poor prognosis, while IRF2 and KCNJ11 were related
with good prognosis of BC patients (Figure 7C).

Association of Methylation Prognostic
Model and Methylation-Based Gene
Prognostic Model
Perhaps not surprisingly, a positive and significant correlation
was observed between the two prognostic signatures, which was
mainly reflected at the following aspects: firstly, a moderate

correlation was found between the six signature CpG loci and
six signature genes. Specifically, the expression of IFR2 was
positively related with the methylation of cg00945507,
cg05406101, cg14992108, and cg18678121, above of which
were all good prognostic factors, while IFR2 expression was
negatively related with the methylation of poor prognostic
CpG locus: cg13060154; And KCNJ11 expression was
positively correlated with the methylation of favorable
prognostic CpG loci: cg05406101 and cg10092957, and
negatively related with the methylation of cg13060154; To the
opposite of these two genes, ZDHHC9 and TMEM70 expression

FIGURE 5 | Methylation prognostic model assessment in 560 breast cancer samples. (A) Survival analysis between the high-risk and low-risk groups. (B,C) The
time-dependent receiver operating characteristic (ROC) curves at 3 and 5 years. (D) The risk score distribution. (E) Survival status scatter plots. (F) Heatmap of the six
signature CpG loci. (G) Univariate Cox regression analysis. (H) Multivariate Cox regression analysis.
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were negatively related with the methylation of cg05406101 and
cg18678121, and positively associated with the methylation of
cg13060154; Similarly, the expression of PCMT1 was negatively
correlated with the methylation of cg05406101, cg14992108,
cg18678121; And LRP11 expression was negatively related
with the methylation of cg00945507, cg05406101, cg18678121
(Supplementary Figures S4A, Supplementary Figures S4I).

Subsequently, we examined the correlation between the six
CpG loci and the gene risk score, and we observed that except
for cg13060154 having the trend being positively correlated
with the risk score, cg05406101 (R2 � −0.34, p < 0.001),
cg18678121 (R2 � −0.28, p < 0.001), cg14992108 (R2 �
−0.26, p < 0.001), cg00945507 (R2 � −0.26, p < 0.001), and
cg10092957 (R2 � −0.11, p < 0.01) were all negatively correlated
with the risk score (Supplementary Figures S4B–G,
Supplementary Figures S4I). Besides, we also explored the
relationship between methylation risk score and gene risk
score. Interestingly, we found that these two established risk
scores were positively correlated with each other (R2 � 0.34, p <
0.001) (Supplementary Figures S4H,I).

Evaluation and Validation of the Gene
Prognostic Signature
The expression of the six signature genes between the gene high-risk
and low-risk groups was shown in Supplementary Figures S5A.
Kaplan-Meier analysis showed that survival probability in the low-
risk group was higher (Figure 8A). The AUC values of 3-years and
5-years OS were 0.725 and 0.715 (Figures 8B,C). The risk score
distribution, the survival status, and the expression of the six genes of

986 BC patients were visualized in Figures 8D–F. Univariate and
multivariate Cox regression analyses indicated that the risk score was
associated with OS and could be an independent prognostic
predictor, with univariate hazard ratio, 1.187 (95% CI,
1.082–1.302, p < 0.001), multivariate hazard ratio, 1.199 (95% CI,
1.094–1.314), p < 0.001, respectively (Figures 8G,H).

To confirm the prognostic value of the six-gene signature, we
tested it with the validation subgroup comprising of 557 BC
patients. The results were consistent with our previous findings.
Specifically, the OS in the high-risk group was poorer
(Supplementary Figures S5B), and the AUC values of 3 and
5 years were 0.735 and 0.696 (Supplementary Figures S5C).
Univariate and multivariate COX regression analysis also
showed that the risk score was an independent prognostic
predictor of BC (Supplementary Figures S5D,E). Subsequently,
the 986 BC patients’ dataset was randomly assigned into two test
subgroups [test group one (n � 494) and test group two (n � 492)]
which were with balanced baseline characteristics (Table 4), and
both of them were used for validating the gene signature. The two
subgroups could also distinguish the favorable OS patients from
the poor OS patients (Supplementary Figures S5F,G). AUC values
of 1 year, 3 years, 5 years were 0.711, 0.757, 0.721 in test group one,
and 0.864, 0.733, 0.702 in test group two, respectively
(Supplementary Figures S5I,J). Moreover, the external dataset
GSE146558 further confirmed our gene prognostic signature. In
high-risk group of GSE146558 dataset, patients were with poorer
OS (Supplementary Figures S5H). And AUC value of 3 years was
0.634 (Supplementary Figures S5K).

In addition, we confirmed the prognostic value of the six-gene
prognostic signature in the subgroups of BC patients presented

FIGURE 6 | (A) Volcano plot of differentially expressed genes (DEGs); (B) Heatmap of the DEGs; (C–F) GO and KEGG enrichment analysis for DEGs. KEGG
pathway (C), BP (D), CC (E), and MF (F).
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with different clinical features (age (<65 and≥65), T staging (T1-2
and T3-4), N staging [N0 and N1-3) and stage (stage I-II and
stage III-IV)] (Supplementary Figure S6).

Considering the important roles of BRCA1, BRCA2, CDH1,
PTEN, TP53, PIK3CA in BC, we also evaluated these gene
expression between gene high-risk and low-risk groups, and
observed that the expression of oncogenes such as BRCA1,
BRCA2 and CDH1 were significantly higher in high-risk
group. On the other hand, the expression of the tumor
suppressor gene PTEN was significantly higher in low-risk
group (Figure 9).

Gene Set Enrichment Analysis
To investigate potential functions and signaling pathways related
to the six-prognosis signature, we performed Gene Set
Enrichment Analysis (GSEA: http://www.gsea-msigdb.org/gsea/
index.jsp). Notably, we found that more tumor-related GO terms
and KEGG pathways were associated with low-risk group
(Figure 10A). In detail, low-risk group was mainly associated
with the function of regulating epithelial and endothelial cell
migration, and high-risk group was related with nuclear
chromosome condensing, protein folding. Pathway enrichment
analysis indicated that JAK/STAT signaling pathway, cell
adhesion molecule signaling pathway, VEGF signaling

pathway, and MAPK signaling pathway were active in the
low-risk group. On the other hand, P53 signaling pathway was
active in the high-risk group (Figure 10B).

Correlation Analysis of the Six Signature
Genes and the Sensitivity of Anti-Tumor
Drugs
Correlation analysis between the expression of the six prognosis
genes and the sensitivity of anti-tumor drugs was performed
based on the CellMiner database (https://discover.nci.nih.gov/
cellminer/), and the results indicated that our signature genes
were moderately correlated with the response of some common
anti-tumor drugs such as PARP inhibitor (Olaparlib),
chemotherapy drugs (Fluorouracil, Decitabine, Oxaliplatin),
which might imply potential value in anti-tumor therapy
(Figure 11).

DISCUSSION

With the advent of next-generation sequencing, genome-wide
DNA methylation profile analysis has become possible. Multiple
studies have suggested that DNAmethylation plays an important

FIGURE 7 | Validation of the six signature genes. (A) The expression of the six signature genes in breast cancer and normal tissue in Oncomine database. (B) The
protein expression levels of the six prognostic genes in Human Protein Atlas database. (C) Survival analysis of the six prognostic genes based on TCGA portal.
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role in early detection, improved molecular classification,
prognosis prediction of BC. Moreover, numerous studies have
demonstrated that DNA methylation could regulate immune-
related gene expression, thereby affecting the response of anti-
tumor immunotherapy and BC patients’ prognosis. For examples,
increasing researches have reported that the expression of
immune genes such as CD3D, CD6, and HLA-A was found to

be negatively correlated with DNA methylation, and was related
with a better prognosis in BC (Győrffy et al., 2016). Potential
targets for immunotherapy are still being explored. Recent studies
have shown that immune cell infiltration might be a biomarker
for immunotherapy. Importantly, the methylation of immune
genes could also highly sensitively reflect the presence of tumor
infiltrating lymphocytes. Thus, DNA methylation profiles could

FIGURE 8 |Gene prognostic signature assessment of 986 breast cancer samples. (A) Survival analysis between the high-risk and low-risk groups. (B,C) The time-
dependent receiver operating characteristic (ROC) curves at 3 and 5 years. (D) The risk score distribution. (E) Survival status scatter plot. (F) Heatmap of the six
prognostic genes. (G) Univariate Cox regression analysis. (H) Multivariate Cox regression analysis.

TABLE 4 | Clinical characteristics of the two validation subgroups from the dataset of 986 samples.

Covariates Type Total Test group
one

Test group
two

p Value

Gender Female 986 (100%) 492 (100%) 494 (100%) 0.9492
Age ≤65 716 (72.62%) 358 (72.76%) 358 (72.47%) 0.9742
— >65 270 (27.38%) 134 (27.24%) 136 (27.53%) —

Pathologic stagea Stage I-II 727 (73.73%) 355 (72.15%) 372 (75.3%) 0.1261
— Stage III-IV 239 (24.24%) 131 (26.63%) 108 (21.86%) —

— Unknow 20 (2.03%) 6 (1.22%) 14 (2.83%) —

T stagea T1-2 829 (84.08%) 404 (82.11%) 425 (86.03%) 0.1253
— T3-4 154 (15.62%) 86 (17.48%) 68 (13.77%) —

— unknow 3 (0.3%) 2 (0.41%) 1 (0.2%) —

M stagea M0 811 (82.25%) 406 (82.52%) 405 (81.98%) 0.2694
— M1 20 (2.03%) 7 (1.42%) 13 (2.63%) —

— Unknow 155 (15.72%) 79 (16.06%) 76 (15.38%) —

N stagea N0 451 (45.74%) 215 (43.7%) 236 (47.77%) 0.1875
— N1-3 518 (52.54%) 270 (54.88%) 248 (50.2%) —

— Unknow 17 (1.72%) 7 (1.42%) 10 (2.02%) —

aStaging according to Seventh Edition AJCC, Guidelines (Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, eds. AJCC, Cancer Staging Manual. Seventh ed New York, NY:
springer; 2010).
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be used to predict the proportion of all kinds of immune cells in
the tumor microenvironment (Győrffy et al., 2016), (Jeschke
et al., 2015). Given the important role of DNA methylation, it
is not surprising that a better understanding of the DNA
methylation and the exploration of the interaction mechanism
between genes and methylation are crucial for BC patients.

DNAmethylation has a substantial impact on gene expression,
and affects the prognosis of different subtypes of BC patients (44).
In this study, we obtained six prognosis-related CpG loci,
cg00945507, cg05406101, cg10092957, cg14992108,
cg18678121, cg13060154, respectively targeting SEC61G,
RWDD2B, NCCRP1, SNTB1, SEC61A2, DAB2IP genes.
SEC61G was found to be overexpressed in BC and might co-
amplify with epidermal growth factor receptor (EGFR) (Reis-
Filho et al., 2006). Lu et al. reported that the expression of SEC61G
in BC was negatively correlated with its promoter methylation
(Lu et al., 2021). In our research, similar trend could be found that
the expression of SEC61G was negatively related with the
methylation of cg00945507. Moreover, the methylation level of
SEC61G was positively correlated with the prognosis of patients
with glioma (Liu et al., 2019a). Miwa et al. proved that NCCRP1
transcription was inhibited by promoter hypermethylation in
esophageal squamous cell carcinoma (Miwa et al., 2017). And
high expression of NCCRP1 in patients with pancreatic cancer
was associated with a poor prognosis (Zuo et al., 2020). In our
study, we observed that the expression of NCCRP1 was negatively
correlated with the methylation of cg10092957. DAB2IP was a
candidate tumor suppressor gene and its expression down-

regulation mechanism was mainly through the promoter
hypermethylation (Qiu et al., 2007). Demethylation of DAB2IP
gene weakened the EMT process and suppressed hepatocellular
carcinoma growth (Liu et al., 2019b). However, we observed a
weak positive correlation between DAB2IP expression and
cg13060154 methylation in our study. Regrettably, studies on
the correlation between the expression of SEC61A2, RWDD2B,
SNTB1 and DNA methylation in tumors were insufficient.

On the bias of the six prognostic CpG loci, we developed a
methylation risk model that could accurately classify BC patients
with different death risk. Subsequently, we identified 413 DEGs
from the methylation high-risk and low-risk groups. Function
enrichment analysis indicated that these DEGs were related with
cell cycle checkpoint, ubiquitin-like protein ligase binding. KEGG
pathway analysis showed these genes weremainly enriched in p53
signaling pathway, and TGF-β signaling pathway. The above
functions and pathways were common and critical in tumor
proliferation, invasion, and metastasis. And then, we further
extracted the expression of the 413 DEGs from the
transcriptomic profiles of 986 BC patients to evaluate the
prognostic roles of these DEGs in TCGA-BRCA dataset. The
prognostic value of individual genes or gene signatures has been
extensively studied in cancers (Parker et al., 2009). Herein, we got
a methylation-based gene prognostic signature using multivariate
Cox analysis.

The six signature genes were composed of IRF2, ZDHHC9,
KCNJ11, LRP11, PCMT1, and TMEM70. IRF2, a transcription
factor in the interferon gamma signal transduction pathway, was

FIGURE 9 | The differential expression of breast cancer-associated genes in gene high-risk and low-risk groups.
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different expression in breast cancer and normal tissues.
Kriegsman et al. found that IRF2, which positively regulated
the MHC class I pathway and negatively regulated PD-L1
expression, had good implications for immunotherapy and
prognosis of BC (Kriegsman et al., 2019). ZDHHC9, one of
risk genes of BC, was found to participate in palmitoylating
PD-L1 to keep its protein stability, leading to immune escape.
Inhibiting the ZDHHC9 expression made breast cancer cells
susceptible to T cell killing and inhibited tumor growth. Thus,
ZDHHC9 could be a biomarker of immunotherapy response
(Yang et al., 2019). KCNJ11 played a key role in glucose-
stimulated insulin secretion (Cook and Hales, 1984). It is well
established that diabetes is closely related to a variety of tumors

(Giovannucci et al., 2010), and the mortality is higher among
women with longer diabetes duration in BC (Lega et al., 2018).
Therefore, diabetes-related genes KCNJ11may also be a potential
prognostic biomarker of BC. Yet, the relationship between
KCNJ11 and breast cancer has not been systematically
reported. PCMT1 has gradually been considered as a risk gene
in tumors. Study demonstrated that BC patients with higher
PCMT1 expression had a poorer prognosis (Dong et al., 2021).
Furthermore, the different expression of the six signature genes in
mRNA and protein levels was validated in public databases.

The methylation-based gene signature could also distinguish
BC patients with a significantly increased risk from those with a
decreased risk. Moreover, correlation analysis showed that the

FIGURE 10 |GSEA for the gene prognostic signature. (A) The significant enrichment of the top 5 tumor-related GO terms in high-risk group and low-risk group. (B)
The significant enrichment of the top 5 tumor-related pathways in high-risk group and low-risk group.
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methylation of the six signature CpGs were closely correlated
with the expression of the six signature genes, and the established
gene risk score was significantly positively correlated with the
methylation risk score.

Multigene analysis has been popularized to predict the
response of anti-tumor therapy and prognosis in BC. For

instance, the EndoPredict score (12-gene molecular
signature) has been used to predict the survival without
distant recurrence up to 15 years after diagnosis. Recently,
the 12-gene MS has also been proven to predict the response to
neoadjuvant chemotherapy (NaCT) and neoendocrine therapy
(NET) in HR+, her2- BC patients, with AUC values being

FIGURE 11 | Correlation of the expression of the six prognostic genes and the sensitivity of anti-tumor drugs.
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0.736 for NaCT, 0.726 for NET (Dubsky et al., 2020). Other
widely used multigene assays involve Oncotype Dx,
MammaPrint, and PAM50 which have been validated to
predict the treatment response, recurrence, prognosis in BC
patients. Among these multi-gene tests, MammaPrint has the
best predictive performance (AUC � 0.88), following by
Oncotype Dx (AUC � 0.76), PAM50 risk of relapse based
on subtype (ROR-S) (AUC � 0.68) and the PAM50 risk of
relapse based on subtype and proliferation (ROR-P) (AUC �
0.55) (Grimm and Mazurowski, 2020). Our study developed
methylation and methylation-based prognostic signatures,
both of which had excellent performance in predicting the
prognosis of BC patients with 3-years, 5-years AUC values
being 0.739, 0.744 for methylation signature, and 0.725, 0.715
for methylation-based gene signature. Three TCGA-BRCA
subgroups were used to validate the gene prognostic
signature and all of them showed powerful prediction
effects with 3-years AUC values of 0.757, 0.735, 0.733,
respectively. Moreover, the external dataset GSE146558 was
also used to validate our gene prognostic signature. Due to
small sample size (n � 106) and inter-dataset heterogeneity, we
could not obtain a higher AUC value in the validation set,
although the 3-years AUC value being 0.634 was still
statistically significant.

Increasing researches reported that CDH1, BRCA2, and
BRCA1 were susceptibility genes for BC (Petridis et al., 2019)
and around 60–70% of women with BRCA1 or BRCA2 gene
mutations would be suffered with BC in her lifetime (Antoniou
et al., 2003). Besides, BRCA2mutation carriers were more likely
to develop brain metastases than non-carriers (Song et al.,
2020). PTEN is a tumor suppressor gene in BC, and
researches proved that lack or decrease of PTEN expression
might be associated with poor prognosis in BC (Luen et al.,
2018). Then we examined the expression alteration of these
genes in gene high-risk and low-risk groups to understand the
contribution of the gene signature to the carcinogenesis of BC.
As expected, the expression of proto-oncogenes BRCA1,
BRCA2, and CDH1 was significantly higher in high-risk
group. Conversely, expression of tumor suppressor gene
PTEN was significantly higher in low-risk group.

There were some advantages of our study. First of all, we were
the first one to discuss the prognostic roles of CpG loci in breast
cancer, and constructed methylation-associated signatures.
Secondly, these two prognostic signatures were positively
correlated with each other and both of them could accurately
discriminate breast cancer patients with different death risk.
Besides, three subgroups of TCGA dataset and an external
dataset GSE146558 were verified the prognostic value of our
gene signature. Finally, the above results, together with risk gene
expression verification, GSEA, drug sensitivity analysis, might
provide novel treatment and prognosis biomarkers for breast
cancer patients. We believe with the advent of the era of precision
medicine, clinical trials could be designed using gene signature-
based risk scores to select the patients most likely to develop poor
prognosis in which to develop novel or more intensive
postoperative therapies in future.

One major limitation for our study was that data in our study
was downloaded from the public databases, the mechanism of the
six signature genes and six signature CpGs affecting the
occurrence and development of breast cancer still needs to be
further verified by vivo and vitro experiments. Even, prospective
clinical trials are needed to check the prognostic values of these
two signatures.

CONCLUSION

Taken together, we proposed two methylation-related prognostic
signatures. These two signatures were significantly positively
correlated with each other and both of them could predict the
prognosis of BC patients more accurately than traditional clinical
predictors. Importantly, the six key genes (IRF2, ZDHHC9,
KCNJ11, LRP11, PCMT1, TMEM70) of gene prognostic
signature may act as potential prognostic biomarkers and
therapeutic targets.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

Conceptualization, CZ, QW, and YZ; methodology, CZ, QW, and
YZ; Software, CZ and QW; Validation, CZ, ZZ, SZ, and DL;
formal analysis, CZ, and QW; investigation, CZ, QW, and SZ;
resources, CZ, QW, and DL; data curation, CZ and QW.;
Visualization, CZ, QW, and NY.; Writing—Original Draft
Preparation, CZ, QW, and YZ; Writing—Review and Editing,
CZ, QW, and YZ; Supervision, CZ, QW, and YZ; Project
Administration, CZ, QW and YZ; All authors have read and
agreed to the published version of the manuscript.

FUNDING

This study was supported by a grant from the Leading Discipline
Construction Project of Oncology of Zhongnan Hospital of
Wuhan University, a grant from the Science, Technology and
Innovation Seed Fund of Zhongnan Hospital of Wuhan

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 74257815

Zhu et al. Methylation-Based Breast Cancer Prongnostic Signatures

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


University (Grant No. znpy2018123), and a grant from the
National Natural Science Foundation of China (81472799).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.742578/
full#supplementary-material

Supplementary Figure S1 | (A–F) The correlation between the six signature
CpGs and their target genes. (A) DAB2IP, (B) NCCRP1, (C) RWDD2B, (D)
SEC61A2, (E) SEC61G, (F) SNTB1; (G–L) Differential expression of target genes
in the hypermethylation and hypomethylation of the six signature CpGs. (G)
DAB2IP, (H) NCCRP1, (I) RWDD2B, (J) SEC61A2, (K) SEC61G, (L) SNTB1;
(M–R) The methylated levels of the CpGs of the target genes in breast cancer
and normal tissue in MethSurv. (M) cg13060154, (N) cg14992108, (O)
cg18678121, (P) cg10092957, (Q) cg05406101, (R) cg00945507; (S–X) The
survival analysis of the high- and low-methylation levels of the CpGs of target
genes in MethSurv. (S) SEC61A2, (T) RWDD2B, (U) DAB2IP, (V) SEC61G, (W)
NCCRP1, (X) SNTB1.

Supplementary Figure S2 | (A) The methylated levels of the six signature CpGs
between methylation high-risk and low-risk groups of 560 breast cancer samples.
(B–D)Methylation prognostic model assessment in the testing group of 278 breast

cancer samples. (B) Survival analysis between the high-risk and low-risk groups.
(C,D) The time-dependent receiver operating characteristic (ROC) curves at 3 and
5 years.

Supplementary Figure S3 | Survival analysis of the six signature genes.

Supplementary Figure S4 | (A–I) The association of the methylation prognostic
model and the gene prognostic signature. (A) The correlation of the six signature
genes and the six signature CpGs. (B–G) The correlation between the β value of the
six CpGs and the gene risk scores. (H) The correlation between methylation risk
scores and gene risk scores. (I) The correlation of the methylation prognostic model
and gene prognostic model.

Supplementary Figure S5 | (A–I) (A) The expression of the 6 signature genes
between gene high-risk and low-risk groups of 986 breast cancer samples; (B–E)
Validation of the gene prognostic signature in a BRCA-TCGA subgroups
composed of 557 samples, (B) Survival analysis, (C) ROC curve, (D) Univariate
Cox regression analysis, (e) Multivariate Cox regression analysis; (F–H) Survival
analysis in the other two BRCA-TCGA subgroups and the GSE146558 dataset,
(F) survival analysis in the subgroups composed of 494 samples, (G) Survival
analysis in the subgroups composed of 492 samples, (H) Survival analysis in the
GSE146558 dataset; (I–K) ROC curves in the other two BRCA-TCGA subgroups
and the GSE146558 dataset, (I) ROC curve in the subgroups composed of 494
samples, (J) ROC curve the subgroups composed of 492 samples, (K) ROC
curve in the GSE146558 dataset.

Supplementary Figure S6 | The overall survival analysis of breast cancer patients
with different clinical characteristics in gene high-risk and low-risk groups.
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