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Abstract: Metabolic syndrome (MetSyn) has a rapidly growing worldwide prevalence, affecting
over 1 billion people. MetSyn is clustering many pathological conditions, which, untreated, could
increase the risk and often lead to more severe metabolic defects such as type 2 diabetes and non-
alcoholic fatty liver disease. Many data demonstrate the complex role of gut microbiota in the host
metabolism, and hence, deciphering the microbiome patterns linked to MetSyn could enable us for
novel diagnosis and monitoring markers and for better disease management. Moreover, interventions
designed to alter patient microbiome composition may help prevent or decrease morbidity linked
with MetSyn. However, the microbiome composition is largely different across geographically distinct
populations. Our study investigated the microbiota and mycobiome patterns in Romanian metabolic
syndrome patients. We also correlated the identified microbiome–mycobiome patterns with levels of
metabolites important for host health such as short chain fatty acids, organic acids, and taurine. We
found that MetSyn patients are harboring a microbiome enriched in Enterobacteriaceae, Turicibacter
sp., Clostridium coccoides, and Clostridium leptum, while beneficial taxa such as Butyricicoccus sp.,
Akkermansia muciniphila, and Faecalibacterium prausnitzii were decreased. These microbiome changes
were correlated with lower butyrate levels and increased succinate. In terms of mycobiome signatures,
MetSyn was associated with a high abundance of Saccharomyces and Aspergillus species. Our data
are the first reported on a Romanian population and confirming that the pathogenesis of MetSyn is
closely related to gut microbiome and homeostasis.

Keywords: metabolic syndrome; microbiome; microbiota; mycobiome; metabolome

1. Introduction

Metabolic syndrome (MetSyn) is a combination of interconnected biochemical, physio-
logical, clinical, and metabolic factors characterized by high blood pressure, raised fasting
glucose, dyslipidemia, and central obesity [1]. While specific diagnostic criteria may dif-
fer, in all cases MetSyn is undoubtedly associated with increased risk of mortality and
comorbidities (i.e., cardiovascular disease and type 2 diabetes). MetSyn prevalence is
rapidly growing worldwide, with some estimates suggesting that over 1 billion people are
affected by this syndrome [1] and with children and adolescents being increasingly affected
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nowadays [2]. According to the PREDATORR study, in a cohort of 2681 Romanian subjects
aged 20–79 years the prevalence of MetSyn was 38.50% [3].

These rising rates of MetSyn are to a great extent attributed to high-calorie diets and
sedentary lifestyles. Nevertheless, the precise physiological mechanisms driving MetSyn
development are largely unknown. As revealed by both animal and human studies, a
pathogenic trigger affecting host metabolic balance is represented by the gut microbiota.
The microbiota orchestrates several aspects crucial for host metabolic functions, including
modulation of nutrition and energy harvest, gut motility, glucose and lipid metabolism,
appetite, energy absorption, and hepatic fatty storage [4,5].

Disturbances in the host–microbiome communication trigger the intestinal transloca-
tion of microbial fragments and the development of “metabolic endotoxemia”, culminating
in systemic inflammation and insulin resistance [6]. Moreover, diets rich in in processed
foods were shown to alter microbiome composition in ways that promote insulin resistance
and higher fat mass, probably due to enhanced energy production yield after digestion [7].
Microbiome diversity is decreased as a result of a sedentary lifestyle, a fact which triggers
elevated inflammation and metabolic disease risk [8].

In this context, interventions designed to alter patient microbiome composition (probi-
otics, prebiotics, postbiotics, symbiotics, faecal microbiota transplantation, exercise, etc.)
may help prevent or decrease morbidity linked with MetSyn [7,9–11]. However, many
studies have shown that the composition of the human gut microbiome is largely different
across geographically distinct populations, probably related to many factors, such as diet,
lifestyle, socio-economic status, etc. These differences could also be translated into differ-
ences in susceptibility to different diseases, including MetSyn [12]. Thus, deciphering the
microbiome patterns linked to MetSyn in different populations could enable us for more
targeted gut microbiota-targeted interventions, contributing to a better management of
MetSyn patients in different countries.

The gut mycobiome is made up from the fungi residing in the intestinal tract, and
it accounts for ~0.1% of the gut microbiota [13]. Typically, the human gut mycobiome
is dominated by Saccharomyces, Malassezia, and Candida. Studies in mice with dextran
sodium sulphate (DSS)-induced colitis suggest a role for Candida albicans or Saccharomyces
cerevisiae in maintaining gut homeostasis [14]. A comprehensive characterization of the gut
commensal mycobiome is lacking in people with various ailments.

Our pilot study investigated for the first time the microbiota and mycobiome patterns
in Romanian patients with MetSyn. Fecal samples were collected from MetSyn patients
(n = 30) and healthy controls (n = 30) and further used for bacterial DNA isolation. Using
16 rDNA qRT-PCR, we analyzed phyla abundance as well as the relative abundance of
specific bacterial (Lactobacillus sp., Enterobacteriaceae, Ruminococus sp., Faecalibacterium sp.,
Clostridium coccoides, and Clostridium leptum) and fungal groups (Candida sp., Aspergillus sp.,
and Saccharomyces sp.). We also correlated the identified microbiome-mycobiome patterns
with the levels of metabolites important for host health such as short chain fatty acids
(SCFAs), organic acids (lactate), and taurine.

2. Results

Our study aimed to investigate the microbiota and mycobiome patterns in Roma-
nian MetSyn patients and to correlate the identified microbial signatures with levels of
metabolites (short chain fatty acids, organic acids, and taurine) known to be dependent
on gut microbiota eubiosis and important for maintaining human host homeostasis and
health condition. Our pilot study enrolled 30 MetSyn patients and 30 healthy controls.
Among the 30 MetSyn patients investigated, 28 had impaired glucose tolerance, out of
which 22 had type 2 diabetes. The patients characteristics including age, BMI, lipid profiles,
as well as treatment regimens are all listed in Table 1. There were no statistically significant
differences in the gender composition of the two groups. The parameters BMI, HbAc, TG,
HDL, and LDL were significantly (p < 0.05) higher in the MetS group compared with the
control group.
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Table 1. Patients’ characteristics; BMI—body mass index, HbAc—Glycated hemoglobin, TG—
Triglycerides, HDL—high-density lipoprotein, LDL—low-density lipoprotein. %—percentage of
patients under treatment.

Healthy (n = 30) MetSyn (n = 30) p Value

Sex 22 females, 8 males 25 females, 5 males -

Age 56 ± 11.25 62 ± 11.39 0.0446

BMI 25.3 ± 1.255 32 ± 5.39 p < 0.0001

HbAc 5.4 ± 0.385 6.6 ± 1.472 p < 0.0001

TG 88 ± 20.15 124 ± 54.5 0.0012

HDL 66 ±5.75 49 ± 8.43 p < 0.0001

LDL 99 ±19.95 115 ± 35.64 0.0361

Total cholesterol 178 ± 29.56 199 ± 49.92 0.0522

Type 2 diabetes - 22/30 (73.33%) -

Hypertension (%) 3/30 (10%) 25/30 (83.33%) -

Insulin (%) - 17/30 (56.66%) -

Metformin (%) - 13/30 (43.33%) -

Statins (%) 0 23/30 (76.66%) -

We compared the fecal microbiota of MetSyn patients with that of healthy volunteers
using qPCR of the 16S rRNA gene. The qPCR analysis was done using SYBR Green primers
recognizing different phyla but also bacterial families. Primers for the Universal Eubacteria
16S were used for normalization. We also investigated the metabolome patterns as well as
the abundance of different fungi (the mycobiome) in the stool samples.

The total amount of bacteria in stool samples are represented as Real Time PCR
threshold cycle values (Ct) in Figure 1A. Both healthy controls and MetSyn patients had
similar levels of Eubacteria (Figure 1A). The gut microbiome is dominated by members
of the Gram-positive Firmicutes and the Gram-negative Bacteroidetes phyla, followed by
several others phyla, including Proteobacteria, Actinobacteria, and Verrucomicrobia [15].
Although many data from animal models and human studies reported differences in the
two dominant bacterial phyla with a significant increase in the Firmicutes and decrease in
the Bacteroidetes levels in obesity [16], we did not observe significant differences between
the two phyla (Figure 1B,C), even though MetSyn patients exhibited a tendency to harbor
less Bacteroidetes and more Firmicutes. In our study, no significant differences were recorded
in the case of the Firmicutes-to-Bacteroidetes ratio (Supplementary Figure S1).

Notably, stool samples collected from MetSyn patients were enriched in Proteobacteria
families, particularly in Gamma Proteobacteria (Figure 1D) and Beta Proteobacteria (Figure 1E).
Actinobacteria are one the four major phyla of the intestinal microbiota, and despite the
fact they represent only a small percentage, they play a pivotal role in maintaining gut
homeostasis [17]. The MetSyn patients enrolled in our study were significantly depleted in
Actinobacteria (Figure 1F), suggesting the loss of beneficial taxa (e.g., bifidobacteria).

Investigation of other microbiota phyla such as Tenericutes and Verrucomicrobia showed
no statistical significance between the two groups (Figure 1G,H). Next, we analyzed the
abundance of different bacterial populations of the gut microbiome.

The levels of Clostridium leptum and Clostridium coccoides group were significantly
higher in MetSyn patients (Figure 2A,B), whereas no differences were observed in case of
Bacteroides species abundance (Figure 2C). The strictly anaerobic Clostridium coccoides group
represents 25% to 60% of the total microbiota. This group is comprised of genera such as
Clostridium, Blautia, Roseburia, Anaerostipes, Ruminococcus, Dorea, and Eubacterium [18].



Metabolites 2022, 12, 218 4 of 14Metabolites 2022, 12, 218 4 of 14 
 

 

 
Figure 1. Microbial phyla analysis in MetSyn patients (n = 30) versus healthy controls (n = 30). (A) 
Total bacteria represented as Ct values obtained from qRT-PCR targeting the 16S rDNA of all Eu-
bacteria. The abundance of the Bacteroidetes (B), Firmicutes (C), Gamma Proteobacteria (D), Beta 
Proteobacteria (E), Actinobacteria (F), Tenericutes (G), and Verrucomicrobia (H) phyla in fecal sam-
ples harvested from healthy individuals and MetSyn patients; *** p < 0.0001, Mann–Whitney test. 
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MetSyn patients showed higher abundance of Ruminococcus sp., but this difference 
was not statistically significant between the two study groups (Figure 1E). Moreover, the 
gut microbiome of MetSyn subjects was significantly enriched in Turicibacter sp. (Figure 
1F), a member of the microbiota associated with the inflammatory status [20–22] that 
could act as an opportunistic pathogen [23]. 

The three predominant Bacteroidetes genera of the human gastrointestinal tract are 
represented by Bacteroides, Prevotella, and Porphyromonas (BPP). In our analysis, no signif-
icant differences were observed in faecal BPP levels between MetSyn patients and healthy 
controls (Figure 2G). 

Considering the well-known benefits of lactobacilli for host health [24,25] we also 
investigated whether MetSyn patients were depleted from his beneficial taxa. Indeed, 
MetSyn patients harbored less lactobacilli, but this difference was not statistically signifi-
cant (Figure 2H). 

Figure 1. Microbial phyla analysis in MetSyn patients (n = 30) versus healthy controls (n = 30).
(A) Total bacteria represented as Ct values obtained from qRT-PCR targeting the 16S rDNA of all
Eubacteria. The abundance of the Bacteroidetes (B), Firmicutes (C), Gamma Proteobacteria (D),
Beta Proteobacteria (E), Actinobacteria (F), Tenericutes (G), and Verrucomicrobia (H) phyla in fecal
samples harvested from healthy individuals and MetSyn patients; *** p < 0.0001, Mann–Whitney test.
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Figure 2. Bacterial population analysis in MetSyn patients (n = 30) versus healthy controls (n = 30).
The relative abundance of Clostridium leptum (A), Clostridium coccoides (B), Bacteroides sp. (C), En-
terobacteriaceae (D), Ruminococcus (E), Turicibacter (F), Bacteroides-Porphyromonas-Prevotella (G), and
Lactobacillus sp. (H) in fecal samples harvested from healthy individuals and MetSyn patients;
* p < 0.05, ** p < 0.005, *** p < 0.0001, Mann–Whitney test.
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Specific taxonomic shifts have been linked to intestinal inflammation, including a
relative increase in the abundance of Enterobacteriaceae [19]. Importantly, the microbiota of
Romanian patients with MetSyn was significantly enriched in Enterobacteriaceae (Figure 2D)
in accordance with the increased abundance of Gamma Proteobacteria (Figure 1D).

MetSyn patients showed higher abundance of Ruminococcus sp., but this difference
was not statistically significant between the two study groups (Figure 1E). Moreover, the
gut microbiome of MetSyn subjects was significantly enriched in Turicibacter sp. (Figure 1F),
a member of the microbiota associated with the inflammatory status [20–22] that could act
as an opportunistic pathogen [23].

The three predominant Bacteroidetes genera of the human gastrointestinal tract are
represented by Bacteroides, Prevotella, and Porphyromonas (BPP). In our analysis, no signifi-
cant differences were observed in faecal BPP levels between MetSyn patients and healthy
controls (Figure 2G).

Considering the well-known benefits of lactobacilli for host health [24,25] we also
investigated whether MetSyn patients were depleted from his beneficial taxa. Indeed,
MetSyn patients harbored less lactobacilli, but this difference was not statistically significant
(Figure 2H).

In our study the microbiome of MetSyn patients was also characterized by significantly
lower levels of Butyricicoccus sp., a bacterial population known to be an important producer
of butyrate, a SCFA involved in host intestinal homeostasis (Figure 3A). Moreover, MetSyn
patients were low in Faecalibacterium prausnitzii (Figure 3B), another microbe that produces
butyrate and that is known for its association with gut health [26]. These results were
correlated with those obtained for the metabolite levels in the stool samples collected from
Metsyn patients and healthy controls (Figure 3D). MetSyn patients harbored significantly
lower levels of butyrate when compared to the healthy controls (Figure 3D) (p value 0.0018,
Mann–Whitney test).
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(Figure 3D). Akkermansia muciniphila is a mucin-degrading bacterium colonizing the hu-
man gut. A. muciniphila is a potential probiotic that has been shown to exhibit protective
effects against metabolic disorder, obesity, diabetes, and inflammation [27]. A. muciniphila
abundance was consistently lower in all analyzed MetSyn subjects (Figure 3C).

For the first time, this study also investigated the differences in the fungal microbiome
of MetSyn patients. The total amount of fungal DNA was quantified in the fecal samples
using universal primers for fungal 18S rDNA and the relative abundance of fungal pop-
ulations such as Candida sp. and Saccharomyces sp. using specific primers (Figure 4A–D).
Although we did not observe any statistically significant differences regarding the total
amount of fungal DNA sequences or Candida sp. levels (Figure 4A,B), significantly higher
levels of Saccharomyces sp. (Figure 4C) and Aspergillus sp. (Figure 4D) were found in
MetSyn patients.
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Figure 4. Fungal microbiome in MetSyn: total abundance of fungal 18SrDNA (expressed as Ct
values) (A). Candida sp. (B), Saccharomyces sp. (C), Aspergillus sp. (D) abundance in fecal samples
harvested from healthy individuals and MetSyn patients; Saccharomyces sp.; ** p < 0.01 *** p < 0.0001,
Mann–Whitney test.

3. Discussion

Understanding the characteristics of the “healthy microbiome” is a major challenge
in microbiota research. We are in a continuous process of understanding how the micro-
biome varies among apparently healthy people, how it is impacted by age, sex, ethnicity,
geography, lifestyle, diet, and medication. Adding a new level of complexity, many mi-
croorganisms, including phages, viruses, fungi, and archaea, exist in the gut, but their toll to
health and disease is largely unknown. Thus, defining the healthy microbiome is a dynamic
and complex task. This investigation follows the line of many studies reported in the
literature, trying to compare microbiome patterns between apparently healthy individuals
to that of individuals with clearly documented ailments. Our pilot study performed on
30 individuals with MetSyn and 30 healthy controls highlights some distinct features in the
gut microbiome related with this emerging pathology.

Large metagenome-wide studies have described microbiota imbalance (dysbiosis) in
patients with obesity and type 2 diabetes. Even though microbiota composition changes
identified in various studies and geographically distinct populations were different, some
common findings were an increase in opportunistic pathogens and a reduction in butyrate-
producing bacteria [28,29]. We show that the Romanian MetSyn patients harbor increased
Enterobacteriaceae in their gut microbiome, similar to gut chronic inflammatory conditions,
such as IBD [19]. Additionally, we previously reported that type 2 diabetes patients have a
microbiome enriched in Enterobacteriaceae [20]. These facultative aerobic microorganisms
are considered a marker of dysbiosis and gut inflammation [19]. Intestinal inflammation is
characterized by increased blood flow and vascular permeability, which altogether lead
to increased translocation of gut microbes, but also of other molecules, such as microbial
lipopolysaccharides, trimethylamine, and other metabolites in the internal environment,
contributing to the chronic inflammation associated with different conditions seen in
patients with MetSyn, such as fat liver, macrophage infiltration in adipose tissue, car-
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diovascular disease development, insulin resistance, etc. The inflammatory response is
more probably occurring in case of a Gram-negative enriched intestinal microbiota. The
enrichment in Enterobacteriaceae leads to increased oxygen levels in the intestinal lumen as
well [30]. This shift in oxygen levels subsequently halts the growth of obligate anaerobes
(i.e., Clostridium groups IV or XIVa) and favors expansion of oxygen-tolerant species includ-
ing aerobes and facultative anaerobes (Enterobacteriaceae), which maintain this vicious cycle
of chronic inflammation and subsequent metabolic changes [31,32].

Short chain fatty acids (SCFAs) such as butyrate, propionate, and acetate produced
primarily from the microbial fermentation of dietary fiber are thought to be key mediators
of the beneficial effects of the gut microbiome [33,34]. SCFA directly modulate host health
through tissue-specific mechanisms related to glucose homeostasis, gut barrier function,
immunomodulation, and appetite regulation [35]. A detailed understanding of SCFA
metabolism by the gut microbiome is pivotal to implement effective therapeutic strategies
for microbiota modulation in diseased individuals.

Among SCFAs produced by the gut microbiota, it has been postulated that butyrate
and propionate may improve glycaemia [36]. Butyrate and propionate elevate intestinal
gluconeogenesis. Mouse studies show that increased intestinal gluconeogenesis promotes
a reduction in hepatic gluconeogenesis, appetite, and weight, culminating in improved
glucose homeostasis [37,38]. Similar to previous studies [28,36,39], we show that MetSyn
patients are characterized by a microbiota low in butyrate producers.

Although propionate is less frequently studied compared to other microbial metabo-
lites (i.e., butyrate), it harbors some distinct health-promoting properties including chole
sterol-lowering, antiproliferative, and antilipogenic effects [40,41]. We observed no statis-
tically significant difference regarding the abundance of propionate producing microbes
such as Prevotella and Bacteroides [42]. For our subsequent studies, we aim to analyze
propionate levels using nuclear magnetic resonance (NMR) or gas chromatography. Lactic
acid is an organic compound produced mainly by lactobacilli [43]. Quantification of this
organic acid (lactate) by spectrophotometric analysis revealed no significant difference
between the two analyzed study cohorts. This is in accordance with the fact that both
groups were similar in terms of lactobacilli abundance in the gut microbiota.

Succinate is a metabolite produced by both the host and the microbiota that can initiate
important protective mechanisms in response to metabolic stress or tissue damage. Para-
doxically, succinate can also accumulate under conditions of inflammation and microbiota
disruption in the intestine, potentially promoting the expansion of potentially pathogenic
microbes that exploit this metabolite as a nutrient source [44]. In our study, we found
that MetSyn patients had higher levels of succinate, which may indicate a possible link
with dysbiosis.

Our study identified a high abundance of clostridia (C. leptum and C. coccoides group)
in the gut of MetSyn patients, a taxonomical trait that was associated with an excess of
faecal bile acids [45]. In accordance, we found that the same patients had increased taurine
levels, an aminoacid paramount for conjugation of bile acids. Interestingly, taurine was
reported to play a very important role in energy metabolism and possibly a role in metabolic
syndrome [46]. Nevertheless, we quantified fecal and not serum taurine. High levels of
taurine were reported to be protective against coronary heart disease among individuals
with high serum cholesterol levels [47]. It would definitely be interesting to quantify this
metabolite also in the serum in a subsequent study with a larger patient cohort.

The gut mycobiome represents only a small fraction of the host microbiome, but it
may exert an important impact on host health. Even though fungi make up a very small
portion of the microbiota, they harbor decisive roles in gut homeostasis and the mucosal
immune responses. Moreover, an interkingdom communication between bacteria and
fungi has been suggested [48]. For instance, the presence of Salmonella enterica serovar
Typhimurium has been shown to reduce the viability of and colonization with Candida
albicans. In inflammatory bowel disease (IBD) patients, an interaction between gut bacteria
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and fungi has been hypothesized [49]. The mycobiome may trigger mucosal inflammation,
providing a niche for overgrowth of pathobionts in IBD patients [48,50].

We found that MetSyn is linked with a high abundance of the commensal fungal taxa
Saccharomyces and Aspergillus. Aspergillus is a genus consisting of several mold species and is
a member of respiratory and gut mycobiome. Aspergillus species produce aflatoxins and may
trigger opportunistic infections in humans. In the gut, high abundance of Aspergillus was
correlated with an accentuated inflammatory response and increased colitis severity [51].

The low abundance of A. muciniphilia in all the analyzed MetSyn subjects suggests a
common pathway of possible intervention in reducing body weight and insulin resistance
through colonization with Akkermansia spp., as numerous studies in the recent years
observed benefits of A. muciniphilia supplementation strategies [52]. Other approachs such
as AI-prediction of gut microbiome response to dietary composition has shown promising
results in segregating favorable taxa for cardiometabolic health [53].

The main limitation of this study is the low number of the analyzed patients, which
have started to be enrolled just before the onset of COVID-19 pandemic. As we know from
the literature as well as from our own ongoing research, COVID-19 triggers some important
changes in the microbiome; therefore, we chose to discontinue the recruitment. Moreover,
we used stringent exclusion criteria for patients selection. Despite this limitation, the
obtained results were statistically significant and demonstrate that MetSyn patients harbor
gut microbiome alterations correlated with changes in the profile of related metabolites.

In this pilot study, we analyzed certain subsets of microorganisms and some of the
metabolites they produce. Nevertheless, we employed the use of targeted identification
of certain bacterial and fungal taxa instead of 16S/18S rRNA sequencing, so there is the
possibility of other differences that may exist between the microbes correlated with MetSyn.
Our study is the first one showing mycobiome alterations in MetSyn patients. Since the
host–fungi–bacteria interplay is largely unknown, investigation of the fungal signatures
in various ailments may provide valuable insights into the role of the mycobiome in the
pathophysiology of these diseases, potentially enabling improved treatment strategies.

4. Materials and Methods
4.1. Study Group

The study population (n = 60) was represented by 30 patients diagnosed with Met-
Syn from the National Institute of Endocrinology “C. I. Parhon” (16 patients) and “N.C.
Paulescu” National Institute of Diabetes, Nutrition, and Metabolic Diseases (14 patients),
Bucharest, Romania and 30 healthy volunteers. The two hospitals involved in the study
are reference centers for treatment of patients with MetSyn and diabetes in Romania, the
patients admitted coming from various parts of the country. All participants received and
signed an informed consent, and the Ethical Committee approved the study (CEC reg. NO.
235/9.10.2019).

Inclusion criteria for participating in the study were: (1) diagnosis of MetSyn using
the International Federation Of Diabetes criteria, 2006 [54]; waist > 94 cm (men) or >80 cm
(women) along with the presence of two or more of the following; blood glucose levels
higher than 100 mg/dL or diagnosed diabetes; HDL cholesterol < 40 mg/dL in men,
<50 mg/dL in women or drug treatment for low HDL-C; blood triglycerides > 150 mg/dL
or drug treatment for elevated triglycerides; blood pressure > 130/85 mmHg or drug
treatment for hypertension; (2) ages 25 to 70 years

Exclusion criteria were: (1) antibiotic and probiotic treatment in the past month; (2) co-
existence of other chronic inflammatory (i.e., chronic hepatitis, asthma, celiac disease, and
inflammatory bowel disease) and systemic autoimmune (i.e., systemic lupus erythematosus
and rheumatoid arthritis) diseases; (3) steroid therapy in the past 3 months; (4) history of
chronic infectious disease (i.e., tuberculosis, human immunodeficiency virus- HIV, hepatitis
B virus, and hepatitis C virus); (5) history of COVID-19; (6) pregnancy; and (7) neoplastic
disease not in complete remission. Age, sex, and ethnicity matched healthy controls were
enrolled based on the same exclusion criteria.
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4.2. Microbiota and Mycobiota Analysis

Fecal samples were collected while admitted in the hospital or at home following a
standardized procedure including antiseptic handling, collection in sterile tubes (without
culture media), and immediate freezing at −20 ◦C. Fecal DNA was extracted using the
PureLink Microbiome Purification Kit (Invitrogen, Waltham, MA, USA) according to the
manufacturer’s instructions. DNA concentration was determined using a Qubit 4 fluo-
rometer (Thermo Scientific, Waltham, MA, USA). For qPCR analysis, DNA samples were
diluted in DNAse free water to a concentration of 3 ng/µL. qRT-PCR measured the relative
abundance of intestinal microorganisms in stool DNA isolated from MetSyn patients and
healthy controls on a ViiA7© Fast Real-Time instrument (Applied Biosystems, Waltham,
MA, USA). The samples were amplified using the bacterial or fungal group-specific primers
(16S rDNA and 18S rDNA, respectively) at their specific annealing temperatures. The
primers used were selected from the literature [55–57], and their sequences are listed in
Table 2. Each PCR reaction included 2.5 nM of forward and reversed primer, 9 ng of DNA,
and 2x SYBR Green Master Mix (Applied Biosystems). Samples without a DNA template
served as negative controls. Samples were incubated at 95 ◦C for 5 min and then amplified
through 40 cycles of 95 ◦C for 10 s, 60 ◦C for 30 s, and 72 ◦C for 1 s.

Table 2. Primers used within this study.

Taxonomic Target Sequence

Actinobacteria
TGTAGCGGTGGAATGCGC

AATTAAGCCACATGCTCCGCT

Tenericutes
ATGTGTAGCGGTAAAATGCGTAA

CATACTTGCGTACGTACTACT

Verrucomicrobia
TCAGGTCAGTATGGCCCTTAT

CAGTTTTCAGGATTTCCTCCGCC

Bacteroides
CCTACGATGGATAGGGGTT

CACGCTACTTGGCTGGTTCAG

Betaproteobacteria
AACGCGAAAAACCTTACCTACC

TGCCCTTTCGTAGCAACTAGTG

Butyricicoccus sp.
ACCTGAAGAATAAGCTCC

GATAACGCTTGCTCCCTACGT

Gamma proteobacteria
GCTAACGCATTAAGTACCCCG

GCCATGCAGCACCTGTCT

Akkermansia muciniphila
GCGTAGGCTGTTTCGTAAGTCGTGTGTGAAAG

GAGTGTTCCCGATATCTACGCATTTCA

Eubacteria
ACTCCTACGGGAGGCAGCAGT

ATTACCGCGGCTGCTGGC

Lactobacillus
ACGAGTAGGGAAATCTTCCA

CACCGCTACACATGGAG

BPP
GGTGTCGGCTTAAGTGCCAT

CGGACGTAAGGGCCGTGC
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Table 2. Cont.

Taxonomic Target Sequence

Clostridium leptum
GCACAAGCAGTGGAGT

CTTCCTCCGTTTTGTCAA

Clostridium cocoides
GACGCCGCGTGAAGGA

AGCCCCAGCCTTTCACATC

Ruminococcus sp.
ACTGAGAGGTTGAACGGCCA

CCTTTACACCCAGTAATTCCGGA

Turicibacter sp.
CAGACGGGGACAACGATTGGA

TACGCATCGTCGCCTTGGGTA

Firmicutes
GGAGCATGTGGTTTAATTCGAAGCA

AGCTGACGACAACCATGCAC

Bacteroidetes
GGAACATGTGGTTTAATTCGATGAT

AGCTGACGACAACCATGCAG

F. prausnitzii
CCCTTCAGTGCCGCAGT

GTCGCAGGATGTCAAGAC

ARNr 18S
ATTGGAGGGCAAGTCTGGTG

CCGATCCCTAGTCGGCATAG

Saccharomyces sp.
AGGAGTGCGGTTCTTTG

TACTTACCGAGGCAAGCTACA

Candida sp.
TTTATCAACTTGTCACACCAGA

ATCCCGCCTTACCACTACCG

Aspergillus sp.
GTGGAGTGATTTGTCTGCTTAATTG

TCTAAGGGCATCACAGACCTGTT

4.3. Metabolite Analysis

Sample preparation for metabolome analysis was prepared as previously described [24].
The weight of the fecal content pellet was adjusted to 0.2 g, and it was resuspended in
1 mL of sterile saline solution and incubated for 2 min at room temperature. Next, the
sample was manually homogenized by vigorous shaking (for 4 min) in order to produce
a slurry. Samples were centrifuged at 4000 rpm for 1 h at 4 ◦C, and the supernatant was
collected and again centrifuged at 16,000 rpm for 30 min at 4 ◦C. The supernatant was
transferred to a new tube and filtered using a minisart-GF filter membrane (Sartorius,
Gottingen, Germany) with a 1 mL sterile plastic syringe. The final step consisted of another
filtration using a Whatman-25 mmGD/X0 filter (Merk Millipore, Burlington, MA, USA)
and a 1 mL sterile plastic syringe. Metabolite levels (butyrate, acetate, propionate, taurine,
succinate, and lactate) were quantified using commercial kits following the manufacturer
instructions (Abbexa kit—abx258338 for butyrate quantification and Sigma Aldrich kits for
the other metabolites—MAK355, MAK184, MAK065, and MAK086). Optical densities were
measured on a spectrophotmoter (Flex3 Station, Molecular Devices, San Jose, CA, USA)
and converted to µg/g faeces using the equations provided in the metabolite kits.

4.4. Statistical Analysis

Our study data are presented as mean ± SEM and were graphed using the GraphPad
Prism 9.0 software. Power analysis was initially performed with a set power (1−β) of
0.90 and α of 0.05 for two groups (Control, MetSyn) tested using difference in means and
standard deviation as parameters. To increase the power of the study to 0.95 (α −0.05,
β 0.05), additional subjects were included from a second hospital. Differences in micro-
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bial relative abundance were assessed using a non-parametric Mann–Whitney test. The
* p < 0.05 was considered as statistically significant. Statistical significance levels were
* p < 0.05; ** p < 0.01; *** p < 0.001. Standardized statistical test methods were used to
analyze the results of demography and laboratory tests (biochemistry tests and metabolite
levels). Continuous variables were expressed as means ± SD. The analysis of differences
between groups was performed by a normality test; a p-value ≥ 0.05 was considered to
be normal and homogeneous, followed by parametric testing (t-test); a p-value < 0.05 was
considered to be statistically significant.

5. Conclusions

This pilot study of Romanian patients with MetSyn revealed that gut microbiome
alterations were correlated with changes in the profile of related metabolites. MetSyn
patients were characterized by a microbiome enriched in Enterobacteriaceae, Turicibacter sp.,
Clostridium coccoides, Clostridium leptum, Saccharomyces sp., and Aspergillus sp. and low in
beneficial taxa such as butyrate-producing bacteria (Butyricicoccus sp. and Faecalibacterium
prausnitizii) and the probiotic species Akkermansia muciniphila. These microbiome changes
were correlated with lower butyrate levels and increased succinate and taurine. In addi-
tion, we report changes in the mycobiome associated with MetSyn characterized by an
enrichment of Aspergillus and Saccharomyces species. Our data are the first reported on
a Romanian population and are confirming the utility of microbiota derived biomarkers
in monitoring the occurrence of underlying pathological conditions in MetSyn patients.
Further intervention studies aiming to remodeling the gut microbiome through diet or
other medical interventions could identify new personalized strategies in the treatment
of MetSyn.
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