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Abstract: Soft rot is a commonly occurring potato tuber disease that each year causes 

substantial losses to the food industry. Here, we explore the possibility of early detection of 

the disease via gas/vapor analysis, in a laboratory environment, using a recent technology 

known as FAIMS (Field Asymmetric Ion Mobility Spectrometry). In this work, tubers 

were inoculated with a bacterium causing the infection, Pectobacterium carotovorum, and 

stored within set environmental conditions in order to manage disease progression. They 

were compared with controls stored in the same conditions. Three different inoculation 

time courses were employed in order to obtain diseased potatoes showing clear signs of 

advanced infection (for standard detection) and diseased potatoes with no apparent 

evidence of infection (for early detection). A total of 156 samples were processed by PCA 

(Principal Component Analysis) and k-means clustering. Results show a clear 

discrimination between controls and diseased potatoes for all experiments with no 

difference among observations from standard and early detection. Further analysis was 

carried out by means of a statistical model based on LDA (Linear Discriminant Analysis) 

that showed a high classification accuracy of 92.1% on the test set, obtained via a LOOCV 

(leave-one out cross-validation). 
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1. Introduction 

Crop wastage, through infection in vegetable stores, is a major issue and every year 5% of UK 

potato produce are disposed of because of storage bacterial infection [1]. One such infection is known 

as soft rot (bacterial soft rot is used for stored potatoes while blackleg for the growing crop). Bacterial 

soft rot can be caused by Pectobacterium atrosepticum, Dickeya spp. or P. carotovorum subsp. 

carotovorum [2–4], although recently it has been reported that P. carotovorum subsp. brasiliensis and 

P. wasabiae may also cause the disease in potatoes [5–7]. Monitoring the disease status of potatoes in 

stores is difficult, due to poor access. Current practice for detection of soft rot in store relies on visual 

inspection and smell. However, these stores are environmentally controlled, with air forced through the 

crop. Therefore, disease monitoring could potentially be achieved through the use of gas analysis with 

particular focus on volatile metabolites (also known as volatile organic compounds—VOCs). Previous 

work on early detection of potato storage diseases through gas analysis has been conducted over many 

years, dating back to the early work of Varns and Glynn in 1979 [8] followed by the study of Waterer 

and Pritchard from 1984 [9]. Most of this research has been based on GC (Gas Chromatograph) or 

GCMS (Gas Chromatograph Mass Spectrometer) in order to identify specific chemical compounds 

that might be characteristic markers of infected potato tubers [10–16]. However, a large number of 

different volatile biomarkers have been identified in many previous studies. These studies differ in 

hosts, pathogens, environmental factors, methodologies of experimentation, instruments limitations 

and usage, different analytical and data processing techniques, but above all, the relative time frames 

under consideration. In fact, according to Dixon et al. and Fiehn, plants produce about 200,000 volatile 

metabolites, both before and after harvest [17,18]. Wilson and Wisniewski claim that various 

environmental stresses can substantially increase the amount of volatiles that plants produce [19]. 

Moreover, GC and GCMS are expensive, require expert training, specialized carrier gases and 

therefore are unsuitable for continuous monitoring in real stores. We have tried to overcome the issues 

previously mentioned by employing a complementary approach, based on VOC fingerprinting rather 

than identification of individual VOCs. VOC fingerprinting in agriculture and forestry has been 

already investigated by means of electronic noses [20] and specific work was carried out in the past to 

study potato tuber infection with this approach [21].The work presented here reports the experimental 

results to assess the potential of FAIMS (Field Asymmetric Ion Mobility Spectrometry) technology for 

early detection of potato diseases in a laboratory setting. FAIMS and the electronic nose aim to 

identify patterns. FAIMS relies on a physical measurement of molecules (based on their mobilities in 

high electric fields), whilst the electronic nose uses a chemical interaction to produce response 

patterns. FAIMS technology is considered to be more sensitive, cost effective and also easier to use 

and deploy in a potato store compared with GCMS and traditional electronic nose. Most recently, in 

2013, FAIMS instrumentation has also been used to detect citrus greening disease [22]. This is the first 

time FAIMS technology has been used to detect soft rot. 

FAIMS Technology 

The purpose of an Ion Mobility Spectrometer is to separate complex chemical mixtures into 

individual or groups of chemicals based on their mobility in high electric fields. The basic working 



Sensors 2014, 14 15941 

 

structure of an Ion Mobility Spectrometer (IMS) consists of three core parts, namely an ionization and 

reaction region (or ionization and reaction chamber), a drift region (or separation chamber) and a 

detection sensor. Once the sample molecules to be analyzed (in gas form) are ionized, they are pushed 

through the separation chamber to reach the detector [23]. The specific feature of FAIMS (Field 

Asymmetric Ion Mobility Spectrometer) is that an asymmetric RF (radio frequency) field is applied 

between two electrode plates through which the ions migrate (the RF field is orthogonal to the motion 

of the ions) in a saw-like trajectory towards the detector plate. Ions with the incorrect mobility touch 

one of the plates and lose their charge, while those with the right mobility collide with the sensor plate 

(with a less pronounced saw-like path, depicted in blue in Figure 1), generating an electrical signal, 

known as ion current [24]. Thus, due to the different mobility characteristic of each ion type, only a 

very restricted set of ions are able to exit the electrodes and reach the sensing plate. The utility of the 

instrument comes into play when a direct current field, known as the compensation voltage (or CV), is 

added to modify the asymmetric RF waveform in such a way to select different ions with specific ion 

mobilities (depicted in red and blue in Figure 1). Hence, by sweeping the CV, a mobility spectrum  

(ion current for the ordinate and compensation voltage for the abscissa, as indicated in Figure 2c,d) is 

generated for the chemical compounds under analysis. As some ions mobility is not constant with the 

applied electric field, the magnitude of the applied RF field (termed dispersion field or DF), is also 

modulated, thus a three dimensional spectrum is generated, (both compensation voltage and dispersion 

field are swept). By changing the polarity of the DF, the spectrum for positive or negative ions can be 

generated [25,26]. 

Figure 1. Basic working principle of Field Asymmetric Ion Mobility Spectrometry 

(FAIMS) [26]. 

 

2. Materials and Methods 

Potato tubers (variety Maris Piper) were inoculated with Pectobacterium carotovorum, in order to 

cause the pathology known as soft rot. Potatoes were first soaked in water for one hour before use and 

dried with a paper towel. Each tuber was stabbed at the stolon end with a sterile 200 µL pipette tip. To 

a 48 h culture of P. carotovorum grown on nutrient agar at 25 °C, 2 mL of sterile water was added and 

the colonies gently scraped (using a sterile plastic loop) to create a bacterial suspension. 20 µL (high 
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inoculum) of this bacterial suspension was then pipetted into the stab wound in each tuber. A further 

set of tubers (controls) were stabbed at the stolon but not inoculated. After treatment the potato tubers 

were placed in sealed boxes at 25 ± 1 °C in an incubator (to allow rapid disease progression) and 

suspended on a mesh over water (400 mL), with the expected humidity to be above normal laboratory 

(neither absolute nor relative humidity levels were measured). No determination for latent 

Pectbacterium prior to infection was carried out, but controls were checked for infection throughout 

and at the end of the experimental procedure. The Pectobacterium carotovorum isolate used in this 

study was originally isolated by Dr. Glyn Harper (AHDB Potato Council, Sutton Bridge Crop Storage 

Research) and was isolated from an infected tuber, variety Marfona, and showing characteristic 

symptoms of bacterial soft rot. Isolated and in pure culture it caused pitting in CVP agar at 27 °C, was 

identified by PCR as P. carotovorum (Pectobacterium primer sets courtesy of Dr. J. Elphinstone, 

FERA, UK) and could infect potato tubers causing the original symptoms. No strain reference has been 

used to date for this isolate since it is the first time a paper has been published using it. The strain has 

been suggested by Dr Glyn Harper to be identified as SBEU_08. 

2.1. Experimental Protocol: Sampling 

For sampling, each tuber was placed into a PTFE (Polytetrafluoroethylene) container provided with 

a gas path inlet and outlet at either ends and sealed. Sampling was carried out for each individual tuber 

by allowing air to flow around it, with the mixture of air, gases and VOCs being fed for analysis to the 

FAIMS instrument (Lonestar, Owlstone Nanotech Ltd., Cambridge, UK) at a flow rate of 2 liters/min. 

Other FAIMS parameters included a dispersion field (DF) from 0 to 100% in 51 scanning steps and a 

compensation voltage (CV) from −6 to 6 V in 512 steps in order to build a 3D data matrix 

characteristic of the sample under analysis. Each potato tuber was scanned in such a manner twice. 

Prior to entering the sampling container the air was scrubbed clean and dried using moisture and 

hydrocarbon traps. PTFE containers were employed always separating usage for controls and infected 

tubers to avoid accidental cross contamination. The containers were also replaced, when appropriate, 

in order to eliminate potential byproduct of potato decomposition that might have affected results. 

After sampling each tuber was repositioned in the containing box in the incubator. Prior and after 

experimentation containers were thoroughly cleaned and sterilized. 

After Preliminary trials used to establish an optimized time course, 4 sets of experiments were 

performed where 3 to 4 tubers were inoculated at days 1, 2 and 5 before testing, (with corresponding 

controls). The sampling procedure was carried out twice (two consecutive days). For the first 

experiment, on day one of testing, 18 potatoes were analyzed and the procedure was repeated on the 

second day with the same tubers, for a total of 36 samples. This procedure was carried out for all other 

experiments with 36 samples for the first three experiments, while the number was increased in the 

fourth one to 48 (24 tubers analyzed in the first day and again in the following day for a repeat). The 

number of potato tubers tested was 78 for a total number of samples of 156 (due to the repeats). Details 

of the experiments are shown in Table 1. The first part of the protocol had the objective to verify the 

ability of the Lonestar FAIMS to discriminate between controls and soft rot infected tubers sampled 

after 5 days of storage in the incubator, when the symptoms of the disease could be identified by 

olfactive, tactile and visual inspection of the sample. The second part of the experimental procedure 
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had the aim to characterize early detection and consequently to probe the possibility of the instrument 

to detect the disease and discriminate between control and infection, when no visible, odor or tactile 

symptoms of the disease where present (one and two days post inoculation). Hence we used the terms 

―standard disease detection‖ (5 days post inoculation) and ―early disease detection‖ (1 and 2 days post 

inoculation) respectively. At the end of the sampling procedure all tubers have been cut in half and 

photographed to gather indication of the degree of infection. 

Table 1. Experiments carried out and number of samples. 

Experiment 

Number of Potato Tubers 

Tests 1 Day Post 

Inoculation 

2 Days Post 

Inoculation 

5 Days Post 

Inoculation 

Control Infected Control Infected Control Infected 1
st
 2

nd
 (repeat) 

No 1 3 3 3 3 3 3 18 18 

No 2 3 3 3 3 3 3 18 18 

No 3 3 3 3 3 3 3 18 18 

No 4 4 4 4 4 4 4 24 24 

Total 13 13 13 13 13 13 78 78 

2.2. Data Analysis 

With the parameters selected as indicated previously, for a single scan and for one type of ion 

matrix (either positive or negative) amounts to 51 × 512 data elements. For analysis, a single line of 

data points (one dimensional array) at 45% DF (dispersion field) was selected for each positive ions 

matrix thus yielding a number of variables of 512 for each sample. We have chosen the 45% DF since 

it accounts for most of the difference between controls and infected. Our decision to use a single line, 

instead of the whole data set, was because more lines, both for positive and negative ions, yielded no 

improved outcome when undertaking data analysis The second scan was used from each sample (two 

scans per sample were carried out), although the first scan could equally have been used. 

For the analysis, two unsupervised techniques have been employed: PCA for dimensionality 

reduction and feature extraction while k-means for clustering. PCA (Principal Component Analysis) is 

a multivariate statistics technique in which (linear) data dimensionality reduction is carried out for a set 

of observations. A set of indices (known as principal components) represents a different linear 

combination of all the original variables. Each of the variables contributes with a different weight  

(or loading) to a principal component. The linear creation of each index is such that variability in the 

data is unevenly distributed among all indices (first principal components cater for the most 

variability) in such a manner to allow for few new variables (principal components) to represent most 

of the variation occurring in the larger set of variables, where the amount of variability retained 

depends on the linear combinations of variables and the whole data set [27]. 

The purpose of the k-means is to partition a N-dimensional population into k-sets and has been 

chosen instead of agglomerative hierarchical clustering because of its computational efficiency. After 

selection of the number of k groups, k initial seeds are randomly generated. After the selection of the k 

seeds, all samples are assigned to each seed according to the minimum Euclidean distance between the 

seed and each object. The whole process is iteratively repeated until optimal convergence is achieved [28]. 
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In our case, we have used 2 initial (distinct) cluster centers for k. A 95% confidence interval was 

applied to the two centroids obtained with the k-means algorithm. 

LDA (linear discriminant analysis) is a supervised statistical technique used as a classification 

model. The method relies on the calculation of the discriminant function for each category (or group) 

that the response variable can have [29]. A sample will be considered as belonging to one of the 

previously selected groups according to its discriminant score.. The analysis was performed using the 

statistical environment R (version 3.0.1, R Foundation for Statistical Computing, Vienna, Austria). 

3. Results 

Figure 2 shows representative positive ion matrices (a, b), cross section for each ion matrix at 45% 

dispersion field (c, d) positive ion matrices (logarithmic base 10 for ion current axis) (e, f) and 

photographs (g, h), for a control tuber and an infected one as representative of two groups. Results for each 

of the four sets of experiments are shown in Figures 3–7 while for the whole data set in Figure 7. In all 

graphs PCA and k-means clustering have been used for data representation. PCA scree plots for all 

experiments showed that most of the variance was explained by the first two principal components. 

Variance explained in the first two principal components is 91.1% and 84.2% for the first two 

experiments, 85.14% for the third and 86.9% in the last one. Results are presented in only two 

categories, ―control‖ and ―infected‖, regardless of the time point when potato tubers were inoculated 

and sampled with the Lonestar. We have opted for this approach since no significant difference in 

instrument fingerprint could be identified for the different time points, thus showing the high level of 

detection capability of the Lonestar FAIMS for characteristic features of infection at 1 day post 

inoculation (sampling was carried out after 5, 2, and 1 days post inoculation) with our experimental 

conditions. Analysis of data was carried out by assuming no prior knowledge of the data. However, 

some controls showed clear signs of infection while a number of inoculated tubers manifested varying 

degrees of mild infection. Following a first analysis with PCA and k-means for the whole data set of the  

4 experiments (Figure 7), we have tried to interpret the principal components by employing the 

Lonestar DF matrices and photographic analysis of the internal part of samples cut in half after the 

sampling procedure. By looking at the data sets we have noticed that the height of the Ion Current 

increases without any major shape difference going along the ordinate (i.e., 2
nd

 principal component in 

Figure 7) while, instead of an intensity change, there a shape change was noticed along the abscissa. 

Hence, we believe that the first principal component appears to be correlated with a change in total 

volatile metabolites of the same type while the second principal component seems to be related to a 

change in the number of volatiles emitted. All samples outside the two confidences ellipses have 

shown intermediate characteristics between the two. Following this first analysis, we have proceeded 

to employ a classification model (based on LDA) that has been built considering three groups: 

controls, infected and mildly infected inoculated tubers (data points of infected controls have also been 

shown for clarity). The data have been split in half into training and testing sets (randomly chosen for 

each category) to build an LDA model. After training, the model has been evaluated with the test data and 

results are shown in Figure 8. Cross validation to estimate accuracy of the LDA has been carried out 

with a LOOCV (leave one out cross validation) repeated three times. Results have shown a 

classification accuracy of 90% for training and 92.1% for the testing set. LDA has been chosen over 
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other techniques for the accuracy obtained and for being the only approach that does not require any 

model parameter tuning and optimization. 

Figure 2. Control (a, c, e, and g) and tuber infected with soft rot (b, d, f, h). (a) and (b) are 

positive ion matrices while (c) and (d) show ion currents at 45% DF. (e) is the logarithmic 

representation on the ion current axis of (a), for control and (f) for the infected tuber in (b). 

Photographic analysis for control (g) and infected potato (h). 
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Figure 3. First set of experiments: Loading plots (a, b) for the two first principal 

components that account for most of the variance. (c) PCA and k-means clustering for two 

groups of potato tubers, with controls (cyan triangles) and infected (red circles) which  

have been grouped with 95% confidence ellipses around the centroid identified by the  

k-means algorithm. 

 

Figure 4. Second set of experiments: loading plots (a, b) for the two first principal 

components that account for most of the variance. (c) PCA and k-means clustering for two 

groups of potato tubers, with controls (cyan triangles) and infected (red circles) which  

have been grouped with 95% confidence ellipses around the centroid identified by the  

k-means algorithm. 
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Figure 5. Third set of experiments: Loading plots (a, b) for the two first principal 

components that account for most of the variance. (c) PCA and k-means clustering for two 

groups of potato tubers with controls (cyan triangles) and infected (red circles) that  

have been grouped with 95% confidence ellipses around the centroid identified by the  

k-means algorithm. 

 

Figure 6. Fourth set of experiments: Loading plots (a, b) for the two first principal 

components that account for most of the variance. (c) PCA and k-means clustering for two 

groups of potato tubers with controls (cyan triangles) and infected (red circles) which  

have been grouped with 95% confidence ellipses around the centroid identified by the  

k-means algorithm. 
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Figure 7. PCA and k-means clustering for the whole data set (two groups of potato tubers 

with controls (cyan triangles) and infected (red circles) that have been grouped with 95% 

confidence ellipses around the centroid identified by the k-means algorithm). 

 

Figure 8. Predictive model based on LDA with 50% data as a testing set (there are three 

groups marked with a 95% confidence ellipse: control, mild infection and infection). 
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4. Discussion 

Our results show that FAIMS technology is able to discriminate controls from tubers infected with 

Pectobacterium carotovorum, the most widespread pathogen affecting potatoes both in the field and in 

store. Identification of soft rot infection was achieved for samples 5 days post inoculation (―standard 

disease detection‖) and after allowing for rapid disease progression, by storing potato tubers at 25 °C 

in a humid environment. Discrimination between infected tubers and controls was achieved also for 

samples 48 and 24 h post inoculation (―early disease detection‖). The instrument yielded similar results 

in both cases, under the same experimental and data analysis conditions, thus indicating the potential 

of the technology not only for disease identification (at 5 days post inoculation) but also for early 

diagnostics (1 and 2 days post inoculation) for selected laboratory conditions. We wish to point out 

that our classification of results in two groups ―standard‖ and ―early‖ aimed to answer two core 

objectives of the work. The first one being if the technology could yield any result at all, and if so, how 

it could benchmarked with current practice of identification employed by farmers. The second aim was 

to identify how early this could happen when the other approach failed. We have found out that when 

no symptoms were identifiable by olfaction or visual inspection the instrument performed well and we 

opted for the definition of ―early detection‖ thus yielding a more engineering based approach to the 

work. This does not necessary equate with a scientific biological analysis for early detection of the 

sample (with techniques such as PCR) nor our aim was to do so. However, the results were obtained 

with a specific and widespread variety of potato tuber (Maris Piper) and we realize that there are 

numerous varieties of potatoes that suffer by varying degrees to this particular infection. Further work 

will shed light on the FAIMS fingerprint that we have associated with soft rot as being caused either 

by volatile metabolites of generic breakdown products from the rotting tissue of a potato tuber or 

rather by specific metabolic activity caused by bacterial colonies inducing soft rot symptoms. 

Furthermore, we are also investigating if these chemical signals are common to this specific disease or 

common to a wide-range of bacterial infections. The whole data set was separated in two groups using 

both PCA and k-means analysis with 15% of samples outside the two 95% confidence intervals. The 

presence of these outliers can be attributed to different causes: varying biological conditions affecting 

each potato tuber differently, data processing, environmental conditions influencing the ionization of 

samples or the characteristics of the sensing unit. With regard to biology, a number of controls 

appeared infected while previously inoculated samples appeared to show varying degrees of disease 

progression. In the first case this was not unexpected as potatoes frequently carry soft rotting bacterial 

pathogens, such as Pectobacterium, on their surface. When the potatoes are wounded (as was done in 

the control treatments) and when they are put in a warm, humid environment, both these factors can 

result in soft rots occurring. We have estimated that 4% of controls showed to be highly infected, 5% 

intermediate characteristics of infection while of 10% of infected tubers showed only mild signs of 

infection, probably due to low bacterial colony growth. These observations were made by visual 

analysis of the symptoms of the tubers cut in half, standard practice among experts in the field and by 

analysis of size and distribution of the DF matrix of positive ions. No preliminary analysis on latent 

populations of bacteria was carried out. With regard to data processing, k-means is a computationally 

efficient algorithm, if compared to agglomerative clustering, but it is known to be sensitive to noise 

and outliers in the data set. In the data processing we have identified some of the outliers caused by the 
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k-means algorithm. In addition, the PCA scree plots showed that most of the variance in the data set 

was accounted for in the first two principal components, thus indicating that the first two indices 

represent most of the variance for the whole data set. PCA loadings plots also indicated that most of 

the weight in the principal components can be attributed to a restricted number of variables estimated 

to be circa 30% (150 variables). However, further work needs to be carried out in order to assess the 

effect of environmental conditions on FAIMS instrument performance. 

5. Conclusions/Outlook 

Currently, there is no reliable non-destructive method for early identification of potato soft rot, either in 

store or in open field. Gas/VOC analysis may provide a possible solution. In this paper, we have reported 

for the first time the use of FAIMS gas analysis technology applied to this problem. FAIMS has the 

advantages of portability, high sensitivity and the ability to operate in harsher environmental conditions, 

such as those of commercial storage facilities. We have also explored successfully the combination of an 

unsupervised approach to mine patterns, interpretation of results and the development a robust but simple 

predictive statistical model with an accuracy of over 90%. Thus, FAIMS technology appears to hold 

promise for future use in early detection of potato storage diseases. 
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