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The twin crises of climate change and biodiversity loss define a strong need for functional
diversity monitoring. While the availability of high-quality ecological monitoring data
is increasing, the quantification of functional diversity so far requires the identification
of species traits, for which data are harder to obtain. However, the traits that are relevant
for the ecological function of a species also shape its performance in the environment
and hence, should be reflected indirectly in its spatiotemporal distribution. Thus, it
may be possible to reconstruct these traits from a sufficiently extensive monitoring
dataset. Here, we use diffusion maps, a deterministic and de facto parameter-free
analysis method, to reconstruct a proxy representation of the species’ traits directly
from monitoring data and use it to estimate functional diversity. We demonstrate this
approach with both simulated data and real-world phytoplankton monitoring data from
the Baltic Sea. We anticipate that wider application of this approach to existing data
could greatly advance the analysis of changes in functional biodiversity.
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Recent assessments have documented the ongoing precipitous loss of global biodiversity
(1–4). More complex responses are observed on the regional scale, where stressors can
lead to a transient increase in diversity (5, 6). Meanwhile, our understanding of the
complex dynamical interplay of dispersal, extinctions, and speciation that has created
Earth’s biological diversity and drives current dynamics is still woefully incomplete (7).
Hence, the scale of the unfolding crisis and the intricacy of the dynamics involved but also,
the gaps in our understanding highlight the need for large-scale biodiversity monitoring.

Even quantifying biodiversity loss still poses challenges. It has been argued that, for
simplicity, global policy goals should be phrased in terms of the number of extinctions (8).
Similarly to climate goals quantified by temperature increase, the number of extinctions
has the benefit of being easily communicable. However, unlike climate change, where
many detrimental effects are directly triggered by rising temperatures, extinction numbers
are a poor indicator of biodiversity loss, where a major concern is the loss of biological
functions (9).

On a fundamental level, biodiversity can be conceptualized as the genetic variation
of forms, but due to the complexity of biological life, the genetic makeup is only a weak
indicator of function (10, 11). Hence, for the assessment of ecosystem functioning, service
provision, sustainability, and quantification of responses to stressors, robust measures of
functional diversity are needed.

The need to understand functional diversity has been frequently highlighted
(9, 12–15). Common measures, such as the Rao index (16, 17), compute functional
diversity from pairwise functional distances between species. To compute such distances,
researchers identify traits of the species under consideration and then, compute functional
diversity from distances in trait space (e.g., refs. 17–21). As there is no universal definition
of what constitutes a trait, it is useful to distinguish between physiological characteristics
directly identified from observation (here, o-traits) and inferred traits that are inferred
from data to approximate the fundamental niche axis in the system (i-traits).

Trait-based approaches provide good estimates of functional diversity but require the
researcher to quantify the trait space of all organisms considered. The decision of which
o-traits are relevant functional characteristics is made based on the researcher’s experience
and is dependent on the group of species and functions under consideration. Some
traits may be difficult to measure, and their values may be dependent on environmental
conditions (22) and hence, are context dependent. In practice, these constraints mean
that trait-based quantification of diversity is presently constrained to comparatively small
groups of similar well-studied organisms and suffers from limited data availability.

In comparison with the manual determination of trait values, it is generally easier
to quantify properties, such as species identity, biomass, and/or abundance. Long-term
ecological research programs have accumulated a treasure trove of monitoring data,
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recording this information, with individual datasets spanning
multiple decades and capturing dozens or hundreds of species. It
is, therefore, attractive to infer trait values from such datasets. For
example, ref. 23 used Bayesian model fitting to infer four values
of o-traits from long-term time series. A natural next step is to
use data analysis approaches to not only infer trait values but also,
construct the i-trait axes directly from data.

Here, we propose an approach for the analysis of monitoring
datasets that record the abundance or biomass of species observed
in a set of samples. We use diffusion maps (24–26), a manifold
learning method, to construct an i-trait space directly from these
datasets. In contrast to previous work (23), this approach does
not require a model or a list of known o-traits and is not limited
to time series data. Instead, the diffusion map identifies both
the i-trait axes and trait values solely from species biomass in
samples. The functional diversity can then be computed from the
pairwise distances in the i-trait space. We test this approach with
a simulated dataset from a mathematical model before applying it
to quantify functional diversity of phytoplankton communities in
a monitoring dataset from the Baltic Sea (27). Our results show
that the proposed method can reveal biologically meaningful trait
information and allows for the robust and unambiguous quantifi-
cation of functional diversity from monitoring data. In the dataset
analyzed here, it reveals an increase in functional diversity with
time that is significantly more pronounced at the coastal stations.

It is interesting to note that the data-driven i-trait approach
used here is diametrically opposite to traditional ecological
thinking. Many classic works observed morphological features of
species, conjectured their functional relevance, and then, used this
insight to predict spatial distribution. In the present paper, we go
the opposite way, using spatial co-occurrence to infer functional
niches and then conjecture their potential physiological basis.

Trait Space Inference from Monitoring Data

Quantifying differences between dissimilar objects poses a funda-
mental challenge. Whereas we may be able to compare two songs
or two paintings, it is much harder to quantify how dissimilar
a certain painting is from a certain song. The same challenge
is encountered in assessments of functional diversity, where it
is essential to quantify how dissimilar pairs of (potentially very
different) species are. To circumvent this problem, the diffusion
map (24–26) builds on the idea that the dissimilarity between
pairs of objects can be robustly quantified if they are sufficiently
similar. By finding all such short-distance comparisons that can
be made in the dataset, we obtain a set of “trusted” links between
objects.

To apply this approach to functional diversity estimation, we
quantify the similarities between species based solely on their
abundance in monitoring samples. Our primarily notion of sim-
ilarity is the Spearman correlation (28) between pairs of species
across samples in the dataset, which provides an indicator of co-
occurrence of species.

We follow ref. 26 and consider a comparison between two
species as a trusted link if it ranks in the top 10 most similar
comparisons for at least one of the two species. The trusted
similarities are stored in a similarity matrix S, while all others are
set to zero. The result is a network of trusted links that spans the
entire set of species while containing only relatively short-ranged
and hence, relatively accurate comparisons.

Once trusted links have been identified, we quantify the dissim-
ilarity between species by their distance in the network of trusted
links. Specifically, diffusion maps use the notion of diffusion
distance (24), which takes all possible paths between network

nodes into account. We use a variant of diffusion distance dij ,
which can be computed efficiently from the set of eigenvectors
and eigenvalues of a Laplacian matrix describing the network
(SI Appendix has details). The result is a computationally efficient
method (Fig. 1) that produces deterministic results, where our
choice of trusting 10 neighbors is the only tunable parameter.

The Laplacian eigenvectors that are identified in the process
are also of interest for a different reason. The nth eigenvector vn

contains one element corresponding to each of the species, which
is related to the nth i-trait for that species. The corresponding
eigenvalue λn is inversely proportional to the relative importance
of this nth trait axis (SI Appendix). Hence, the rescaled vector
vn/λn specifies the properly scaled value of the nth i-trait of all
species in an effective i-trait space (Fig. 1C ). We show below that
these i-traits align well with ecological intuition.

Once the i-trait space has been constructed, we consider indi-
vidual samples from the monitoring dataset (Fig. 1D). Building on
the interspecies diffusion distances in the i-trait space, we quantify
the functional diversity in the sample using Rao’s quadratic en-
tropy (16). The method can thus quantify functional biodiversity
and to some extent, place the species into a biologically meaning-
ful trait space.

Validation with Model Data

To test the proposed method, we generate synthetic data by
simulating a metacommunity model in silico. We consider a
community of 200 primary producer species limited by three es-
sential resources. Each species is characterized by a set of minimal
resource requirements (R∗ values) reflecting the species ability
to sequester the corresponding resource. We can thus envision
the species as points in a three-dimensional trait space (Fig. 2A),
where the R∗ values correspond to the traits. Specifically, we
randomly draw the R∗ values such that they fill a triangular
surface, modeling the existence trade-offs such that a greater
ability in sequestering one resource is compensated for by a lesser
ability in sequestering others.

We adapt a model from ref. 29 to simulate the population
dynamics of species in 800 metacommunities, each of which
consists of a square lattice of 120 discrete patches arranged in a
10× 12 grid. The individual patches are characterized by random
values describing the supply of three resources, mimicking real-
world spatial heterogeneity, and facilitating the coexistence of
model species. The biomass density of each species in each patch
changes dynamically according to an equation capturing local
growth and mortality as well as dispersal to and from neighboring
patches (SI Appendix). The result is a spatial metacommunity, in
which all species persisted over the duration of simulation runs.

As a first test, we consider the distribution of species in the space
spanned by the two most important i-traits found by diffusion
mapping the simulated biomass samples. While the i-trait space is
slightly deformed in comparison with the ground truth, it retains
key characteristics (compare to Fig. 2 A and B). In the i-trait space,
the species still form a triangular shape on a two-dimensional
surface. This result gives us confidence that the diffusion map
should also be capable of inferring meaningful trait spaces from
large real-world datasets.

The main purpose of the proposed method is the estimations
of functional diversity. To test whether a trait space that has been
inferred from one dataset can also be used to estimate the diversity
in new samples, we ran 100 additional simulations and estimated
the functional diversities both for the ground truth, given by the
known R∗ values, and for the i-traits using the existing map. This
was done both for the entire metacommunity (mimicking regional
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Fig. 1. Functional diversity estimation from a monitoring dataset. (A) We use data on the biomass of 516 phytoplankton species in 730 samples collected
from 1993 until 2015 from 10 stations in the Baltic Sea (27) (2 species are shown for illustration). (B) We then compute the pairwise similarity between species
from the correlation between species abundances over the set of samples. (C) From the similarities, the i-trait space of the species (dots) is constructed using
diffusion maps. In this space, the pairwise functional dissimilarity is quantified by the diffusion distance dij. (D) Once the distances between species have been
determined, the diversity in a specific sample can be quantified by applying the Rao’s index to the species present (highlighted dots). In the sample shown, most
of the biomass is concentrated in a small area of trait space, leading to a comparatively low Rao index.

diversity) and within each patch (local diversity). A comparison
of the resulting Rao indices (Fig. 2C ) shows a strong correlation
(R2 = 0.92) between the ground truth and the reconstructed
values of regional diversity.

We also explored how limited data availability and different dis-
tance metrics impact the accuracy of reconstruction (SI Appendix).
The power of the diffusion map hinges on our ability to construct a
spanning network of trusted comparisons between the samples. If
the underlying trait space is large or the number of species is small,

then we are forced to trust comparisons between comparatively
dissimilar species, and the quality of the reconstruction degrades.
By contrast, a larger number of observations reduces the noise in
individual comparisons and improves the quality reconstruction
(SI Appendix, Figs. S3 and S5).

In summary, results from the numerical experiments show that
given a sufficient volume of data, the diffusion map can infer the
trait space from a monitoring dataset. Moreover, independently
of the interpretation of the trait space, it can be used to robustly

A B C

Fig. 2. Numerical validation of the proposed method. (A) We numerically generate randomly distributed traits of 200 species (colored dots) that fill a triangle
in a trait space spanned by three resource requirement (R∗) parameters. Color indicates the resource ratio preferred by a species. (B) The inferred i-trait space
generated by diffusion mapping simulated biomass data. The reconstruction identifies traits that span a space that is qualitatively similar to the ground-truth
traits. Colors are the same as in A, illustrating that neighborhood relationships are mostly reconstructed correctly. (C) Rao’s functional diversity calculated from
diffusion distances in the reconstructed trait space correlates strongly with the numerical ground truth (based on R∗ values). Indicated are local diversity (blue
dots) in individual patches and regional diversity in the metacommunity (yellow dots). The R2 value for regional diversity is 0.92, relative to a cubic regression
(green line). These results show that the proposed method can be used to identify traits and robustly estimate functional diversity based on monitoring data.
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Fig. 3. Inferred traits from the monitoring dataset. Shown are species (dots) projected onto the space spanned by the most important i-traits. Color coded are
environmental conditions under which the species were observed with high relative abundance (see text). (A) The first i-trait aligns well with NO−

3 concentration
separating species by their nitrogen requirements. The water temperature (B) and the day of the year (C) align with the second trait, separating the early from
the late species. The PO−

4 concentration is closely aligned with the third reconstructed trait (D).

quantify the dissimilarity between species, which allows us to infer
functional diversity from monitoring data.

Analysis of Baltic Sea Phytoplankton Species

We now turn back to the phytoplankton monitoring dataset
(Fig. 1). The data were collected in the Lithuanian coastal area
of the Baltic Sea and span a period from May to November
for 23 y (1993 to 2015). In total, it contains 730 samples of
the biomasses of 516 species measured at different times and
stations (Fig. 1A shows examples). We analyze the Baltic data using
the same procedure that we applied to the simulation results. A
projection of the trait space using the most important i-traits is
shown in Fig. 1C.

Diffusion mapping does not provide a biological interpretation
of the inferred traits. However, we can uncover such an interpre-
tation for at least some of the traits by analyzing additional data.
Here, we discuss in particular four environmental variables that
were recorded during sampling (day of year, water temperature,
NO−

3 concentration, and PO−
4 ). For each of the species, we

calculate the mean environmental conditions at which it was
observed. This is done by computing a weighted average of each
environmental parameter, where the biomass of the species under
consideration is used as the statistical weight of the sample.
Color coding the species in the reconstructed trait space (Fig. 3)
shows that the first i-trait aligns well with NO−

3 concentrations
(Spearman correlation, rS = 0.55). We conclude that this trait
represents adaptation to different levels of nutrient availability.

We note that the alignment of the i-trait with NO−
3 is a

purely statistical finding, which does not necessarily imply any
causal link. The interpretation as adaptation to different levels
of nutrient availability must, therefore, be treated as a working
hypothesis (compare to SI Appendix, Fig. S12). Similarly, i-trait

2 closely aligns with the temperature (rS = 0.50) and the day
of the year (rS = 0.43), suggesting that this trait represents the
growth strategy, separating early from late species. The third i-trait
correlates with the PO−

4 concentrations (rS = 0.45).
The number of i-trait axes equals the dimensionality of the

input data (i.e., the number of species). Although each i-trait
contains less information than the previous one, projections of
the trait space on different trait axes give additional insights into
the distribution of species ecotypes (SI Appendix).

Diversity Gains on the Lithuanian Coast

Once the i-trait space has been constructed, it can be used to
quantify the functional diversity. We first use the i-traits from the
analysis of the whole dataset to compute the diffusion distances
between all pairs of species. For each sample, we then use the
distances between the species in the i-trait space to compute the
Rao index.

The estimated day-to-day functional diversities are relatively
noisy, likely due to intrinsic fluctuations in the system. However,
when considered over the whole period, there is a significant bio-
diversity gain at all stations (Fig. 4). This gain is most pronounced
at the coastal stations, where the functional diversity is also the
highest in the later years.

The local increase in functional diversity is consistent with
previous findings and predictions. For example, refs. 5, 15, and
30 observe comparable increases in species richness. A key mech-
anism in this context is that species extinction events triggered by
environmental change take longer to manifest than corresponding
invasions (15). Hence, environmental disturbances are likely to
trigger transient increases in biodiversity on a trajectory that
eventually leads to diversity loss when either longer times or larger
geographical scales are considered.
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Fig. 4. Phytoplankton diversity on the Lithuanian coast. We observe an
increase in functional diversity over the measurement period at all of the 10
stations included in the dataset (circles). The station located at the exit of the
Curonian Lagoon is marked with a black circle. The fastest increase (warmer
colors) is found at some of the coastal stations. The coastal stations are also
the most diverse in average (larger diameter).

In the present case, the difference between coastal and offshore
stations provides strong evidence supporting the hypothesis of
an invasion-triggered transient increase. The coastal stations are
close to the freshwater communities of the Curonian Lagoon.
An increased influence of the freshwater species due to chang-
ing environmental conditions could easily explain the observed
diversity trends. We note that the only coastal station that did
not experience a strong increase of functional diversity is located
directly at the exit of the Curonian Lagoon (the black circle in
Fig. 4) and hence, has always been strongly influenced by the
freshwater communities (SI Appendix).

The estimated diversity is consistent with expectations based
on species composition. The low functional diversity in the spring
samples of early 1993 and 2000 (SI Appendix, Figs. S14 and S15)
coincides with the dominance of dinoflagellates, mainly Peri-
diniella catenata, whose numbers were over 50% of the total
phytoplankton abundance, of up to 96% by biomass. During the
period of increased functional diversity in spring samples from
1994 to 1999, P. catenata was found in small numbers, and the
community was dominated by three to five species constituting
together of more than 50% of the total abundance. During this
time, the number of nondominant species with relative abundance
less than 10% also increased.

Conclusions

In this paper, we proposed a method by which functional trait axes
and values can be inferred from monitoring data. This enables a

robust estimation of functional diversity within the system based
solely on species abundances or biomasses.

We demonstrated the method using simulated data and a phy-
toplankton monitoring dataset from the Baltic Sea. The analysis
of the real-world data identified adaptation for early/late growth,
high/low nitrogen levels, and high/low phosphorus levels as the
most important functional trait axes. It also showed a local increase
in functional diversity that is comparable with previous obser-
vations in other systems (5, 15, 30). In the present analysis, the
increase is most pronounced at coastal stations and can be linked
to increasing influence from a nearby freshwater community.
Hence, our results provide additional evidence for the hypothesis
that changing environmental parameters may lead to a transient
increase in local diversity that might ultimately lead to biodiversity
loss on longer and larger scales (5, 6).

We note particularly that the proposed method does not require
manual identification of relevant traits. It thus provides an objec-
tive and procedurally-grounded definition of functional diversity
that is transferable between different systems and sets of species.
We expect that this will also be useful in the analysis of other
datasets, particularly those that contain a large number of species.

In principle, the proposed method could also be applied to
study bacterial diversity. However, in bacteria, the relevant traits
are thought to be more closely related to their genetic makeup
than in eukaryotes (11). Hence, it is sensible to take the available
genomic information into account when constructing diffusion
maps of bacteria.

One of the main motivations for the present work was our
desire to eventually gain a deeper understanding of the dynamics
of complex metacommunities. The trait axes that the proposed
method infers can be interpreted as dynamical variables at the
community level. Given sufficient data, we may eventually be able
to also infer the equations that capture the dynamics directly at
this level.

The accuracy of the results should increase with the number of
observations, which makes it attractive to combine multiple, and
perhaps even all available, datasets for a given group of species.
Different monitoring datasets should be relatively easy to fuse at
this level because only comparisons within samples from the same
dataset need to be made. In the future, a diffusion map based
on a large-scale aggregation of many different monitoring datasets
could effectively provide a functional diversity standard that can
be used to quickly map the functional diversity of samples on a
fixed scale.

Data, Materials, and Software Availability. Previously published data from
ref. 31 were used for this work.
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