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Abstract: Abyssomicins represent a new family of polycyclic macrolactones. The first described
compounds of the abyssomicin family were abyssomicin B, C, atrop-C, and D, produced by the marine
actinomycete strain Verrucosispora maris AB-18-032, which was isolated from a sediment collected in
the Sea of Japan. Among the described abyssomicins, only abyssomicin C and atrop-abyssomicin
C show a high antibiotic activity against Gram-positive bacteria, including multi-resistant and
vancomycin-resistant strains. The inhibitory activity is caused by a selective inhibition of the enzyme
4-amino-4-deoxychorismate synthase, which catalyzes the transformation of chorismate to para-
aminobenzoic acid, an intermediate in the folic acid pathway.

Keywords: abyssomicins; chorismate pathway; 4-amino-4-deoxychorismate synthase inhibitor

1. Introduction

An efficient search for new bioactive compounds, such as antibiotics, demands spe-
cific requirements:

First, there is a need for a massive set of taxonomically characterized and dereplicated
microorganisms isolated from terrestrial and/or marine habitats, with a high potency of
producing unique secondary metabolites. A representative example of such a source are
members of the order Actinomycetales, which are known as potent producers of unique
secondary metabolites. Second, there needs to be a specific target that is essential for
a pathogenic organism but is not present in humans in order to provide selectivity in
toxic effects. Third, highly efficient analytic equipment and techniques are required to
identify novel secondary metabolites in the culture broth or extracts from mycelium and
culture filtrate, such as the combination of HPLC with diode array detection and/or mass
spectrometry and characterization employing a home-made or commercial database. One
of our screening programs was focused on the inhibition of the chorismate pathway, taking
over an idea of Emeritus Professor Hans Zähner, one of the pioneers in antibiotic research
and chair of the Institute of Microbiology for over 30 years at the University of Tübingen,
who retired in 1994. The chorismate pathway leads to the biosynthesis of the aromatic
amino acids, and to the biosynthesis of para-aminobenzoic acid (pAba), an intermediate
in the biosynthesis of folic acid. This pathway is present in plants, fungi, prokaryotes,
and some parasites, such as Plasmodium and Toxoplasma, but it is not present in humans
(Figure 1). The biosynthesis of pAba is catalyzed by two enzymes, 4-amino-4-deoxychorismic
acid (ADC) synthase and ADC lyase, which were the target of our screening concept.

As promising candidates for the production of new secondary metabolites, we selected
201 characterized strains from our own collection and strains from my collaborators Alan
T. Bull (University of Kent) and Michael Goodfellow (Newcastle University) belonging
to the families Streptomycetaceae and Micromonosporaceae, and rare actinomycete genera,
isolated both from terrestrial and marine habitats. Extracts were subjected to the screening
assay based on a simple but highly selective agar plate diffusion assay. Only one extract
obtained from strain AB-18-032, a marine isolate from a sediment collected from the Sea of
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Japan belonging to the family Micromonosporaceae, inhibited pAba biosynthesis selectively.
The secondary metabolite pattern of the active extract was analyzed by HPLC-diode
array, whereby three metabolites were characterized by our HPLC-UV-Vis Database as
presumably new compounds, which we named abyssomicins.
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The first announcement of abyssomicins was done two years later in 2003 in a patent
application [1] because of their pharmacologically relevant properties which favored their
application as promising therapeutics against infection diseases, especially of pathogenic
multi-resistant Gram-positive bacteria, including vancomycin-resistant Staphylococcus au-
reus. Subsequently, we published the screening method, fermentation, isolation, and
biological activities of abyssomicins and the taxonomy of the producing strain [2]. Struc-
ture elucidation of abyssomicins and their mode of action was done by the group of
Roderich Süssmuth (Technical University Berlin) [3–5]. The complete characterization
of strain AB-18-032 applying polyphasic taxonomy was done by the group of Michael
Goodfellow (Newcastle University). Strain AB-18-032 was classified in the genus Verruco-
sispora as a new species and was named Verrucosispora maris sp. nov. as a type strain [6].
Investigations in the genetic analysis and description of the whole genome sequence of
Verrucosispora maris AB-18-023 were done by the groups of Roderich Süssmuth and James
E.M Stach (Newcastle University) [7,8]. The structures of the main compounds produced
by Verrucosispora maris AB-18-023, abyssomicin C and atrop-abyssomicin C, are shown in
Figure 2.

During the last years, numerous members of the abyssomicin family were isolated
from actinomycetes from marine and terrestrial habitats, which was summarized in two
excellent review articles [9,10]. Compared with all other described members of the
abyssomicin family, only abyssomicin C and atrop-abyssomicin C, the main products
of Verrucosispora maris AB18-032, showed potent inhibitory activity against Gram-positive
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bacteria, caused by the specific inhibition of the p-aminobenzoic acid/tetrahydrofolate
biosynthetic pathway.
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2. The Screening Concept

As described above, we have been choosing the chorismate pathway and its link to
the pAba biosynthesis as the target for our search of new inhibitors, because at this time,
no specific natural inhibitor of pAba biosynthesis was known that results in an inhibition
of the folic acid biosynthesis, which is essential for microorganisms but not for humans [2].

In a pre-screen, we tested extracts of actinomycetes in a filter disk agar plate diffusion
assay with Bacillus subtilis as the test organism. The only extracts of interest were those
showing an inhibition zone grown on a chemically defined medium, and no inhibition
zone grown on a complex medium. That indicates an antagonistic effect caused by a
constituent of the complex medium. These extracts were selected for an antagonism assay
that enabled us to distinguish between an inhibition of the aromatic amino acids pathway
Tyr/Phe/Trp and the pathway of pAba, and simultaneously the inhibition of the pathway
prior to chorismate. Four agar plates were prepared seeded with B. subtilis in a chemically
defined medium. A filter paper strip was soaked with an extract and placed on the agar
plate. Across the antibiotic containing strip, a second strip was placed that was soaked with
a solution of (a) Tyr+Trp+Phe+pAba, (b) Tyr+Phe, (c) Trp, or (d) pAba. When the growth
inhibition is competitively reversed exclusively by (a), an inhibitor of an enzyme in front of
chorismate can be assumed. An inhibitor of the biosynthetic pathway from chorismate to
pAba can be expected when the growth inhibition caused by an extract is competitively
reversed by (d). The observance of inhibition zones for (b) and (c) indicates the detection
of inhibitors of the aromatic amino acid pathways, Tyr/Phe and Trp, respectively.

This screening program included 201 actinomycetes strains from our own strain
collection and strains that we obtained from our collaborators Alan Bull (University of
Kent) and Michael Goodfellow (Newcastle University). These were in detail 104 terrestrial
members of the family Streptomycetaceae, 33 members of the family Micromonosporaceae
(8 terrestrial, 25 marine), and 64 members of rare actinomycete taxa (55 terrestrial, 9 marine).
The actinomycetes strains were cultivated in various media, and extracts of their culture
filtrates and mycelia were prepared, resulting in 930 extracts that were applied to the assay.

Among all extracts, only one extract from marine strain AB-18-032 inhibited selectively
the pathway from chorismate to pAba, indicating an inhibitor of the pAba biosynthesis.
The secondary metabolite profile of the active extract determined by HPLC-diode array
analysis showed three peaks that could not be assigned to any known antibiotic by means
of our HPLC-UV-Vis Database (Figure 3).
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96 h, monitored at 260 nm. Inserts: UV-visible spectra of abyssomicin B, co-eluted C and atrop-C, and
D. Reused with permission from [2], copyright owned by Japan Antibiotics Research Association.

3. Fermentation and Isolation

Batch fermentations of strain AB-18-032 were carried out in the 10-litre scale in a
complex medium and yielded 60 mg/L of abyssomicin C and atrop-C after a fermentation
time of 96 h. The fermentation broth was separated by multiple sheet filtration into culture
filtrate and mycelium. Abyssomicins were isolated from the culture filtrate by Amberlite
XAD-16 chromatography, desorbed with a step gradient H2O-MeOH, and extracted after
concentration with ethyl acetate at pH 5. Abyssomicins were purified by subsequent
column chromatography on Sephadex LH-20 using MeOH as eluent, and on silica-diol
with CH2Cl2-MeOH gradient elution [2]. Pure abyssomicin C and atrop-C, respectively,
were obtained by preparative reversed-phase HPLC on Nucleosil-C18 and H2O-MeOH
gradient elution, and lyophilization of the separated eluates.

4. Structure Elucidation and Synthesis Strategies

From abyssomicin B, C, and D, single crystals were obtained, and their relative
configuration was determined by X-ray structure. NMR analyses confirmed the X-ray
data [3]. The absolute stereochemistry was determined by both the Mosher method [11]
and the Helmchen method [12].

A detailed analysis of the culture filtrate from fermentations of strain AB-18-032
revealed two additional signals in the chromatogram of HPLC-DAD-ESI-MS runs that were
related to abyssomicins according to their UV-visible properties, and besides abyssomicin
C, the presence of atrop-abyssomicin C as the main product of strain AB-18-032 could be
confirmed [4]. The compounds, abyssomicin G and H, were isolated from the culture filtrate
of the fermentation of strain AB-18-032 in analogy to abyssomicins B–D, and the purified
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compounds were analyzed by mass spectrometry and 1D and 2D NMR spectroscopy. The
structures of all abyssomicins isolated from strain AB-18-032 are shown in Figure 4.
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Abyssomicin C was the topic of several total synthetic strategies, based on its unique
and complex spirotetronate structure, and on the need for structure optimization with
regard to clinical applications. The group of Erik J. Sorensen published a Diels–Alder
macrocyclization that enabled an efficient asymmetric synthesis of abyssomicin C [13].
The group of Martin E. Maier prepared the synthesis of the core structure of abyssomicin
C containing an oxybicyclooctane ring and a tetronate by a Diels–Alder strategy [14]. A
further strategy for the synthesis of abyssomicins C and D was reported by the group of
Barry B. Snider [15]. While working on another route for the total synthesis of abyssomicin
C, the group of Kyriacos C. Nicolaou discovered atrop-abyssomicin C, a novel isomer of
abyssomicin C [16]. Atrop-abyssomicin C was found simultaneously as a natural product
of Verrucosispora maris AB-18-032 [4]. The importance of spirotetronate antibiotics and
their improved synthetic routes are highlighted in two review articles by the group of E.A.
Theodorakis [17,18].

Continuous interest in abyssomicins has been shown by Vidali et al., applying
biomimetic approaches toward the synthesis of abyssomicin C and atrop-abyssomicin
C based on an intramolecular Diels–Alder reaction of a butenolide derivative attached to a
keto-triene side chain [19].

5. Biological Activity and Mode of Action

Among all abyssomicins, only abyssomicin C and atrop-abyssomicin C showed a
strong antimicrobial activity, which is restricted to Gram-positive bacteria. The MIC value
of atrop-abyssomicin C against multi-resistant Staphylococcus aureus N313 was 3.5 µg/mL.
MIC values in the range of 13–16 µg/mL were determined against vancomycin-resistant
S. aureus Mu50, Enterococcus faecalis VanA, VanB, and E. faecium VanA, and against multi-
resistant S. epidermidis CNS 184. Abyssomicin C showed 1.5-fold lowered MIC values
compared to atrop-abyssomicin C. Gram-negative bacteria, filamentous fungi, and yeasts
were not sensitive against abyssomicin C and atrop-abyssomicin C [2,4].
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The antitumor activity of atrop-abyssomicin C was tested against various human tu-
mor cell lines, such as HM02 (gastric adenocarcinoma), Hep G2 (hepatocellular carcinoma),
and MCF7 (breast carcinoma), exhibiting a moderate inhibition with GI50 values of 7.9,
1.5, and 6.1 µg/mL, respectively. Atrop-abyssomicin C showed a slight activity against
Trypanosoma brucei rhodesiense, with an IC50 value of 0.68 µg/mL.

Abyssomicin C and atrop-abyssomicin C were the first known natural inhibitors of
pAba biosynthesis. Two enzymes catalyze pAba biosynthesis from chorismate, 4-amino-4-
deoxychorismate (ADC) synthase, which converts chorismate and glutamine into ADC
and glutamate, and ADC lyase, which catalyzes an elimination reaction of ADC to produce
pAba. ADC synthase is a heterodimer composed of two nonidentical subunits, PabA
and PabB. PabA functions as a glutamine amidotransferase, while PabB catalyzes the
substitution of the chorismate 4-hydroxy group by an amino group while retaining the
original configuration. The Süssmuth group has shown that the PabB subunit of ADC
synthase is the molecular target of abyssomicin C and atrop-abyssomicin C. The antibiotics
act as covalent binders in a Michael addition to the side chain of Cys 263, located in
the proximity of the active site of PabB, and inhibit pAba formation and, consequently,
folate biosynthesis [5]. The increased antimicrobial activity of atrop-abyssomicin C can be
explained by its more powerful Michael acceptor properties [16].

The oxabicyclooctane ring system of abyssomicin C, and atrop-abyssomicin B shows a
striking similarity to one solution conformation of chorismate, which suggests that both
antibiotics act as substrate mimetics (Figure 5).
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6. Taxonomy of the Producing Strain

Strain AB-18-032 was isolated from a sediment collected from the Sea of Japan at a
depth of 289 meters in August 1991 as an outcome of the collaboration of Alan T. Bull
(University of Kent) and Koki Horikoshi (JAMSTEC Tokyo). The strain was assigned to the
family Micromonosporaceae based on its morphological and chemotaxonomic properties [2].
A scanning electron micrograph is shown in Figure 6.

The comparison of the nearly complete 16S rDNA gene sequence of strain AB-18-
032, with corresponding sequences of representatives of the suborder Micromonosporineae
showed that strain AB-18-032 is closely related to Verrucosispora gifhornensis, the sole
representative of the genus Verrucosispora at this time (Figure 7).

The complete characterization of Verrucosispora sp. AB-18-032 was done by polyphasic
taxonomy by the group of Michael Goodfellow (Newcastle University) [6]. Apparent from the
combined phenotypic and genotypic data, the strain was classified in the genus Verrucosispora as
a new species and described as Verrucosispora maris sp. nov. (=DSM 45365T = NRRLB-24793T).
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7. Increased Abyssomicin Spectrum

Several new members of the abyssomicin family were published during the last years.
Abyssomicin E was isolated 2007 from terrestric Streptomyces sp. HKI0381. Abyssomicin
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E is similar in structure to abyssomicin D, and showed no biological activity [20]. In
2010, the structure of abyssomicin I produced by soil-derived Streptomyces sp. CHI39
was published. The compound exhibited inhibitory effects on tumor cell invasion [21].
One year later, the structures of ent-homoabyssomicins A and B were published, isolated
from forest soil Streptomyces sp. Ank 210 [22]. Abyssomicins J, K, and L were isolated in
2013 from the South China Sea deep-sea sediment Verrucosispora sp. MS100128, showing
anti-tuberculosis effects [23]. Abyssomicins 2–5 were produced by the marine-derived
Streptomyces sp. RLUS1487 and were published in 2015. Abyssomicin 2 was identified as a
selective reactivator of latent HIV virus [24]. In 2017, neoabyssomicins A–C were published,
isolated from the deep-sea-derived Streptomyces koyangensis SCSIO. Neoabyssomicin A was
found to augment HIV-1 virus replication in a human lymphocyte model [25]. In the same
year, abyssomicins M–X were isolated from the coalmine fire strain Streptomyces sp. LC-6-2.
The compounds were inactive in standard antimicrobial and cancer cell line cytotoxicity
assays [26]. Abyssomicin Y was published in 2020 and is, to the best of my knowledge,
the newest member of the abyssomicin family; it is produced by the marine-derived strain
Verrucosispora sp. MS100137. The compound exhibited anti-influenza A virus activity [27].

The structures of the new members of the abyssomicin family are summarized in a
review article by Sadaka et al. [9].
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