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Abstract

Diet has been shown to influence epigenetic key players, such as DNA methylation, which

can regulate the gene expression potential in both parents and offspring. Diets enriched in

omega-6 and deficient in omega-3 PUFAs (low dietary omega-3/omega-6 PUFA ratio),

have been associated with the promotion of pathogenesis of diseases in humans and other

mammals. In this study, we investigated the impact of increased dietary intake of arachi-

donic acid (ARA), a physiologically important omega-6 PUFA, on 2 generations of zebrafish.

Parental fish were fed either a low or a high ARA diet, while the progeny of both groups

were fed the low ARA diet. We screened for DNA methylation on single base-pair resolution

using reduced representation bisulfite sequencing (RRBS). The DNA methylation profiling

revealed significant differences between the dietary groups in both parents and offspring.

The majority of differentially methylated loci associated with high dietary ARA were found in

introns and intergenic regions for both generations. Common loci between the identified dif-

ferentially methylated loci in F0 and F1 livers were reported. We described overlapping gene

annotations of identified methylation changes with differential expression, but based on a

small number of overlaps. The present study describes the diet-associated methylation pro-

files across genomic regions, and it demonstrates that parental high dietary ARA modulates

DNA methylation patterns in zebrafish liver.

Introduction

Methylation of the cytosine nucleotide, generally referred to as DNA methylation, is the

most widely studied epigenetic mechanism. DNA methylation is crucial for regulating cell

differentiation and development [1–3], and can be affected in response to environmental sti-

muli, such as nutrition [4–7]. Cytosine methylation plays a key role in transcriptional regula-

tion, and can thereby influence physiological processes [8, 9]. Methylation primarily occurs

in CpG sites where a cytosine is followed by a guanine. CpG islands are genomic regions

highly enriched in CpG sequences, and often associated with promoter regions of a gene
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[10]. CpG methylation located in promoters [11, 12], first exons [13], gene bodies [14–16],

or enhancer elements [17] of the genome can influence the transcriptional activity of neigh-

bouring genes, though the mechanisms by which methylation affects transcription in other

genomic regions is still largely unknown. Additionally, epigenetic patterns can be transmit-

ted to the next generation through the germline or the developing embryonic environment

[18], but to what degree nutrients in the parental diet influence gene regulation in the next

generation is not fully understood.

Nutrition during early life stages can have an impact on health and disease disposition later

in life [19–22]. Both maternal and paternal diets have been shown to influence egg production,

viability and gene expression of the embryos in different model species [23–25]. As DNA

methylation may be mitotically stable and heritable through the germline [26–29], dietary

influence or other environmental exposures can potentially be ‘remembered’ in the epigenome

and transmitted to the next generation [30]. It is conceivable that parental diet can influence

gene expression potential in the progeny, especially under different environmental conditions,

such as lifestyle and diet [31–33]. It has been shown in teleost species that dietary micronutri-

ent levels given to the parents affected gene expression in embryo and fry [23, 33] as well as

DNA methylation in livers of adult offspring [5].

High dietary intake of omega-6 (n-6) PUFAs, especially arachidonic acid (ARA, 20:4n-6)

has evoked some concern due to their role in inflammatory processes and in relation to prev-

alence of certain diseases [34–37]. In fish, increased ARA in the diet has an impact on bone

development [38, 39], growth and reproduction through improving hatching rate and accu-

mulating ARA in ovary and eggs [40, 41]. PUFAs are capable of modulating DNA methyla-

tion patterns as shown in studies in mammals [42, 43], though studies in mice have observed

no link between DNA methylation differences in adult progeny livers and the maternal high

fat diet [44]. However, the latter study did show a strong effect of the maternal diet on the

hepatic expression of genes directing to inflammation, cholesterol synthesis and RXR activa-

tion [44]. A study using human THP-1 monocytes revealed general DNA hypermethylation

in response to ARA, and it was suggested that the changes in β-oxidation and PPAR-α were

important mediators of ARA-induced DNA methylation changes [45]. Another study on

human vascular endothelial cells suggested that ARA metabolism was sensitive to changes

in DNA methylation, but whether these methylation changes affected other enzymes regulat-

ing the ARA metabolism was not known [46]. Although there are findings showing an effect

of dietary fatty acids on methylation profiles, more studies are needed to investigate both

mechanisms and how changes in DNA methylation can influence gene regulation in adult

progeny.

Recently, we showed that parental high dietary ARA levels affected hepatic gene expression

in the offspring, and levels of immune-related eicosanoids, lipids and oxidised metabolites in

the first generation of zebrafish [47, 48]. In the present study, we used zebrafish as a nutritional

model to investigate the effect of a parental high ARA diet on hepatic DNA methylation pat-

terns in both parents and progeny using reduced representation bisulfite sequencing (RRBS).

We compared our DNA methylation results with previously described transcriptomic profiles

in the livers [48].

Materials and methods

Ethical considerations

Animal care and performance of the experimental trial conform to the principles of the Nor-

wegian Animal Research Authority and the study was approved by the Norwegian Food Safety

Authority (division no. 54, reference 2012/145126).
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Zebrafish feeding trial

Study design, zebrafish husbandry and standardized operating procedures for mating, han-

dling and feeding for both F0 and F1 generation of wildtype AB zebrafish (Danio rerio) has

been described previously [23]. In short, fish were kept in 10 gender mixed tanks (containing

60 fish each) per dietary group. F0 and F1 larvae were fed with Gemma micro (Skretting, Nor-

way) and Artemia nauplii (Silver Star Artemia, USA) as start feed from 5 days post fertilization

(DPF) and from 7 DPF until 26 DPF, respectively (Fig 1). The experimental diets were given

twice a day from 27 DPF onwards. The F0 generation got either the control diet that was lower

in ARA (1.87 mg ARA/g diet), or the high ARA diet (20.66 mg ARA/g diet). Diets were based

on the requirement levels for carp [49]. Ingredients and nutritional composition of the diets

are given in S1 File. F0 fish were mated at 97 DPF to receive F1 progeny. The F1 generation

from both parental dietary groups (Control and high ARA group) were fed the control diet

from 27 DPF onwards until liver dissection for DNA and RNA extraction.

Liver tissue sampling

Mature zebrafish were deprived for food 18 h prior to sampling. They were anesthetized with

0.05% Tricaine Methane Sulphonate (PHARMAQ AS, Norway), blotted dry on tissue paper,

weighed and euthanized by cutting the cardinal vein prior to liver dissection. Six single male

livers (98 DPF (F0) and 140–142 DPF (F1)) from six tank populations (6n) of each dietary

group were dissected, rinsed in 1x PBS, snap frozen with liquid nitrogen and stored at -80˚C

until DNA extraction. For RNA extraction, six pooled male livers from each of the six separate

Fig 1. Setup of the intergenerational zebrafish feeding trial. Both generations of zebrafish were fed Gemma micro

and Artemia nauplii as start feed from 5 and 7 days post fertilization (DPF) until 26 DPF, respectively. The

experimental diet (control and high ARA) was given from 27 DPF until sampling for F0 only. Adult F0 were mated at

97 DPF to generate F1. Both F1 groups were fed the control diet from 27 DPF. Body weight and liver sampling for

reduced representation bisulfite sequencing were performed at day 98 for F0 while at 140–142 DPF for F1.

https://doi.org/10.1371/journal.pone.0220934.g001
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tanks from both groups were randomly sampled over two days between 154–156 DPF (F0) and

140–142 DPF (F1) due to simultaneous sampling for other analyses connected to this feeding

trial.

DNA and RNA extraction

Liver tissue was treated with RNase A (50ng/μL, 10 min at room temperature, Wizard SV

Genomic DNA Purification System, Promega, USA) and proteinase K (20μg/μL, 1.5h at 55˚C,

NEB #P8102S, New England Biolabs (NEB), USA) prior to DNA extraction following the man-

ufacturer’s instructions (Wizard SV Genomic DNA Purification System). DNA was eluted in

nuclease-free water, quantity was measured using Qubit fluorometric quantitation (Life Tech-

nologies, USA) and extracted DNA was stored at -20˚C.

Total RNA was extracted using QIAzol Lysis Reagent (Qiagen, Germany) and DNase

treated with the Ambion™ DNA-free™ DNA Removal Kit (Invitrogen, USA). RNA quantity

was measured using NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies,

USA). RNA integrity (RIN), which was 9.06 ± 0.39 on average, was determined using an Agi-

lent 2100 Bioanalyzer (RNA 6000 Nano LabChip kit, Agilent Technologies, USA).

RRBS and DNA methylation calling

Reduced representation bisulfite sequencing (RRBS) was used to measure DNA methylation

with single-base resolution, and to enrich amplified genomic regions [50]. RRBS and initial

processing of the RRBS data was completed by the Biomedical Sequencing Facility (BSF,

Vienna, Austria). RRBS library preparation was based on previous RRBS studies [51, 52].

Genomic DNA was digested by MspI (NEB #R0106L, 20 U/μL), followed by single-end prepa-

ration of the DNA fragments consisting of adapter ligation and A-tailing. Fragments were

size-selected by performing a 0.75× cleanup with AMPure XP beads (A63881, Beckman

Coulter, Inc, USA) for bisulfite conversion, enriched by PCR amplification and subsequent

sequencing on an Illumina HiSeq 2000 platform in a 50/51bp single read mode [51]. FastQC

software [53] was used for quality control of the sequences. Bisulfite reads were trimmed

for low-quality and adapter sequences using a custom pipeline [52]. Bisulfite conversion met-

rics are given in S2 File. Reads were aligned to the Zebrafish Genome Assembly GRCz10

(danRer10) using BSMAP [54]. DNA methylation calls were performed using BiSeq [50]. Due

to low DNA quality for sequencing of two samples and divergent sequencing results of one

sample (all three samples were control F0), they were excluded from further downstream anal-

ysis. The data discussed has been stored in SRA (https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA418670) and is accessible through accession number PRJNA418670.

Differential methylation and functional enrichment analysis

Differential methylation and downstream analysis was completed in R version 3.3.2 [55].

Methylation calls were filtered after a minimum read depth per locus of 10, and replicates were

combined into a single table based on genomic loci that were present in all replicates and con-

trol samples to compare the same loci for differential methylation in all samples. One outlier

replicate was removed after principal component analysis and pairwise sample distance plot

inspection (dendrogram, heatmap). Differentially methylated loci (DML, differentially methyl-

ated cytosine in CpG context) were detected using the methylKit package, based on logistic

regression analysis and Benjamini-Hochberg false discovery correction of p-values (q-values)

[56]. Methylation events with a methylation difference +/-�25% and q-value�0.01 were con-

sidered for assigning hypermethylation (positive percentage) or hypomethylation (negative

percentage) in the high ARA group compared to control. The ‘genomation’ package [57] was
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used to annotate DML by genomic regions such as promoters (±1000bp from the transcription

start site), introns, exons, intergenic regions (gene nearest to the DML), CpG islands and CpG

shores (±2000bp flanking regions around a CpG island). Definitions for genomic regions were

obtained from the UCSC Genome Browser [58], which were coordinate mapped to GRCz10

Ensembl transcripts. Using a hypergeometric test in R, we also examined if genomic regions

(CpG islands, CpG island shores, exons, introns and promoters) were significantly enriched or

depleted (p<0.05) for DML. In addition, we calculated enrichment scores based on the ratio of

DML to methylated loci within the genomic region (i.e. detected number of DML) divided by

the ratio of total DML to total methylated loci within the entire genome (expected number of

DML). Positive scores indicate the genomic region is enriched for DML (i.e. more DML

detected than expected) and a negative score indicates depletion for DML (S3 File). Annota-

tion of DML to gene identifiers such as Ensembl and Entrez gene identifier, gene symbol and

gene description was completed using the genomicRanges [59] and biomaRt packages [60].

The annotated DML (S4 File) were used for functional annotation for KEGG pathways and

GO terms by over-representation testing using the R package ‘clusterProfiler’ [61] (S5 File).

Gene expression data

RNA-sequencing (RNA-seq) was performed by the Norwegian Sequencing Centre (NSC)

doing the library preparation using TruSeq™ Stranded mRNA Library Prep Kit (Illumina, Inc,

USA), and sequencing on the NextSeq500 platform (Illumina, Inc, USA) to generate single-

end 75bp reads as previously reported [48]. Briefly, reads were mapped to the GRCz10

(Genome Reference Consortium Zebrafish Build 10) assembly based on Ensembl annotation

data, [62] using the default parameters of HISAT2 [63]. Read counts per gene were quantified

using featureCounts [64] and pre-filtered to exclude combined mean read counts smaller than

10. Differential gene expression was estimated using DESeq2 [65] and the complete list of

expressed genes from F0 and F1 livers is reported in the S6 File. We identified significant differ-

ential expressed genes (DEG) using an adjusted p-value cut-off <0.05 for F1 DEG and<0.1 for

F0 DEG due to fewer genes in the latter [48]. The gene expression data was obtained from a dif-

ferent cohort of zebrafish than the DNA methylation data, though the experimental treatment

was the same as for the zebrafish in this present study. Raw data is accessible at the NCBI’s

Gene Expression Omnibus [50] through GEO Series accession number GSE104692 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104692).

DEG were converted to human orthologues to identify upstream regulators that can explain

the observed gene expression changes using Ingenuity Pathway Analysis software suite (IPA,

Ingenuity Systems, USA). Human orthologues were predicted using the OrthoRetriever v1.2

software. An overlap p-value using Fisher’s Exact test and an activation z-score (positive or

negative) for upstream regulators is calculated based on prior knowledge stored in the Ingenu-

ity Knowledge Base. Upstream regulators with missing z-scores and p>0.05 were filtered out

from our analysis. Upstream regulators, which were only differentially methylated in F0, were

also excluded from the final list. Positive and negative z-scores predict an activation and inhi-

bition of an upstream regulator, respectively. Higher positive z-scores or lower negative z-

scores indicate stronger directional relationship.

Statistical analysis

Body weight of 98 DPF (F0, control: 36 fish, high ARA: 36 fish) and 140–142 DPF (F1, control:

48 fish, high ARA: 47 fish) zebrafish was initially tested for tank variances (10 tanks in F0 and 6

tanks in F1) using one-way ANOVA (GraphPad Prism 8, GraphPad Software, Inc, USA). An

unpaired, two-tailed t-test (GraphPad Prism 8, GraphPad Software, Inc, USA) was used for
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significance testing (p-value <0.05) of body weight from all tank populations within a dietary

groups given as mean ± standard deviation. For RRBS and RNA-seq, statistical treatment such

as filtering, multiple comparison correction and hypergeometric test are described in previous

respective sections. Downstream statistical analysis of RRBS and RNA-Seq data was completed

using R v3.3.2 (http://cran.rproject.org/).

Results

Body weight

No significant differences in body weight were observed between the dietary groups of either

F0 or F1. Mean body weight of F0 zebrafish was 0.31 ± 0.12 g in the control and 0.35 ± 0.13 g in

the high ARA group. Mature F1 progeny body weight was on average 0.35 ± 0.04 g in the con-

trol and 0.34 ± 0.05 g in the high ARA group.

Differential DNA methylation in F0 and F1 livers

General DNA methylation patterns. An average of 84% of reads per sample were

mapped to the zebrafish genome using BSMAP (S2 File). Bisulfite conversion rate was on aver-

age 99% for all sample groups and consistent between the sample groups (S2 File). Principal

component analysis (Fig 2A) and pairwise distance clustering of the samples (dendrogram/

heatmap) (Fig 2B) revealed that the overall DNA methylation pattern distinguishes samples by

generation and to a lesser extent by dietary group. It must be noted that livers were sampled at

a different age of the zebrafish in F0 (98 DPF) and F1 (140–142 DPF). The F0 generation was

clearly separated between the dietary groups although there were only three samples left in the

control group as the other three samples did not meet DNA quality cut-offs for sequencing.

The PCA plot shows a higher degree of overlap for the F1 generation compared to the F0

generation.

Among all samples, the number of common methylated loci was less for F0 than for F1 livers

(Table 1). After filtering by a minimum read depth per locus of 10, and combining samples

based on methylated loci common to all samples within a treatment comparison group (e.g. F1

high ARA vs F1 control), the remaining methylated loci were analysed for differential methyla-

tion between the dietary groups. We found that the number of DML between high ARA and

control group was marginally higher in F0 livers (2338) than in F1 livers (2142). In addition,

the number of hypermethylated (1091) compared to hypomethylated (1051) loci was almost

identical in F1 livers, whereas F0 livers showed greater hypermethylation (1411) than hypo-

methylation (927). We found no difference between high ARA and control livers when com-

paring total CpG methylation rates, both groups showed on average 85% methylation (S2

File).

Differential methylation across genomic regions. The distribution of DML was investi-

gated in promoters, exons, introns, and intergenic regions (Fig 3A) to verify if the DML were

randomly distributed or specifically enriched in specific locations of the genome. The results

show that the overall DML distribution across genomic regions was similar between F0 and F1

livers, with fewer DML in promoters and exons compared to DML in introns and intergenic

regions. However, the increased number of hypermethylation within the F0 group is predomi-

nantly in the introns (625) and especially in the intergenic regions (658) compared to F1

(introns: 490, intergenic: 483). In addition, exons of F0 have proportionally more hypermethy-

lation (119) than hypomethylation (65) compared to F1 (hypermethylation: 104, hypomethyla-

tion: 97).

Searching for DML in CpG islands and CpG shores, we noticed increased differential meth-

ylation in CpG islands (F0: 702, F1: 551) than in the CpG shores (F0: 294, F1: 328) for both
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generations (Fig 3B). Again, we found that the F0 generation had more hypermethylation espe-

cially in the CpG islands (425) than F1 (292). However, the majority of DML fell outside the

CpG island and CpG shore annotation categories, into other genomic regions (F0: 1342, F1:

1263), where again F0 high ARA livers show noticeably more hypermethylation (809) and less

hypomethylation (533) than F1 (617/646). In terms of enrichment and depletion of DML

within genomic regions, for the F0 cohort only CpG islands were significantly depleted with

Fig 2. Clustering of livers from parents (F0) and progeny (F1) with regard to DNA methylation. Principal

component analysis (A), and pairwise distance clustering of the samples (dendrogram and heatmap) (B) show the

grouping of dietary groups based on percent methylation per locus in F0 livers from fish fed either the control or high

ARA diet, and F1 fed the control diet. The scale for Fig 2B (0:1200) indicates Euclidean distance between samples as

calculated by the base R package ‘dist’ (http://cran.rproject.org/).

https://doi.org/10.1371/journal.pone.0220934.g002
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no significant difference found within CpGi shores, exons, introns and promoters. For the F1

cohort, all genomic regions were significantly enriched or depleted for DML, with CpG islands

and introns depleted and CpGi shores, exons and promoters enriched for DML (S3 File).

Functional annotation of DML. We associated DML within promoters and gene bodies

with specific biological pathways (S5 File). No KEGG pathways and only one GO term (pro-

teinaceous extracellular matrix) was significantly enriched (q-value cut-off <0.05) in F0,

whereas in F1 no significantly enriched terms were identified.

Among the most differentially methylated loci between the dietary groups in F1 livers,

crebbpb was dominating with three hyper- and one hypomethylated DML (S4 File). crebbpb
codes for the nuclear coactivator cAMP-response element-binding protein (CREB) binding

protein that plays a key role in various signaling pathways through interacting with numerous

transcription factors.

Common F0 and F1 DML. DML from high ARA vs. control group analysis in both gener-

ations were merged to find common loci between the F0 and F1 methylation differences (S4

File). In total, 190 DML assigned to promoter, gene body and intergenic regions were common

between F0 and F1 DML. Among them, 5 DML exclusively assigned to promoters were at iden-

tical sites in F0 and F1 following both same (cryabb and nup160) and opposite methylation pat-

terns (rsf1b.1, si:dkey−4c2.11 and zbtb24) between the generations. For cryabb, nup160 and

Table 1. Total methylated loci before and after filtering, number of differentially methylated loci (DML) and hyper- and hypomethylated loci in F0 and F1 livers fol-

lowing a high ARA diet in F0.

Total methylated loci Total methylated loci after filtering 1 DML 2 Hyper-methylated loci Hypo-methylated loci

F0 1 323 478 491 007 2 338 1 411 927

F1 1 584 128 790 735 2 142 1 091 1 051

1 Minimum read coverage�10 reads.
2 Methylation difference�25% (q-value�0.01) of high ARA compared to control group.

https://doi.org/10.1371/journal.pone.0220934.t001

Fig 3. Differentially methylated loci across genomic regions in F0 and F1 livers. Differential methylation here

shown as hyper- and hypomethylated loci across promoters, exons, introns and intergenic regions (A), CpG islands

(CpGi) and shores (B).

https://doi.org/10.1371/journal.pone.0220934.g003
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zbtb24 that have one assigned DML in F0 livers, at least two or more DML have been associ-

ated to same gene showing same methylation patterns in the F1 livers (S4 File). Among the

genes, cryabb (crystallin alpha B) assigned to four F1 DML codes for a small heat shock protein

that is involved in the stabilization of stress-related cellular processes such as cell cycle, differ-

entiation, apoptosis and redox homeostasis.

Differential methylation and gene expression

Genes linked to differential methylation and differential expression. We searched for a

connection between DML (S4 File) and DEG (S6 File) for F0 and F1 generation. We found 5

concordant genes between DML and DEG in F0 and 37 concordant genes in F1 (Fig 4A and

Table 2). All overlapping genes for both generations are listed in S7 File.

Plotting methylation differences against gene expression in F1, we found 29 overlaps (corre-

sponding to 24 genes due to several DML annotated to the same gene) between DML assigned

to a gene body and DEG showing no significant correlation between methylation (hyper/

hypo) and gene expression (up/down). 16 overlaps (corresponding to 14 genes) involving F1

DML assigned to intergenic regions were significantly and positively correlated as shown in

Fig 4A (p = 0.0011). Correlation and linear regression analysis is reported in S8 File. For single

overlapping F1 genes flagged in Fig 4A, individual read counts (RNA-seq) and individual CpG

methylation (RRBS) for each of the replicates in high ARA and control group are shown in Fig

4B. Excluding uncharacterized genes, DML associated with an F1 locus showing the greatest

hyper- or hypomethylation were mgat4b (mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-acet-

ylglucosaminyltransferase, isozyme B) and roraa (RAR-related orphan receptor A, paralog a),

respectively.

Three hypomethylated loci in F1 were associated with the closest gene, roraa, which encodes

a nuclear hormone receptor involved in lipid regulation. roraa was significantly downregu-

lated in F1 high ARA livers. esr2a (estrogen receptor 2a), involved in retinoid signalling, was

found as the closest gene to a hypomethylated locus in F1. esr2a showed significant downregu-

lation in F1 high ARA livers. A hypomethylated locus in F1 overlapped with sult1st3 (sulfo-

transferase family 1, cytosolic sulfotransferase 3), which functions in lipid homeostasis.

sult1st3 showed significant upregulation in F1 high ARA livers. One of the key genes in the

methionine cycle, called mat1a (methionine adenosyltransferase I, alpha), was overlapping

with a hypermethylated locus in both F0 (28% increased methylation) and F1 (29%). mat1a
was significantly upregulated in F1 high ARA livers compared to the control, but not differen-

tially expressed in F0. Three hypomethylated loci were overlapping with ccnf (cyclin F) that

was upregulated in F1 livers.

One of the overlapping F0 genes was mboat2a (membrane bound O-acyltransferase domain

containing 2a), which is involved in lysophospholipid metabolism. A hypomethylated locus

was associated with mboat2a as the closest gene and mboat2a was upregulated in F0 livers.

Upstream regulators. Upstream regulators affecting downstream biological functions

were predicted using IPA based on F1 DEG. Among the 399 predicted upstream regulators, 44

showed an overlap with the F0 and F1 list of DML linked to a gene annotation (S9 File). After

filtering, the cannabinoid receptor 1 (CNR1) had the strongest positive z-score of the upstream

regulators predicted by IPA (S9 File). cnr1 was overlapping with a hypomethylated locus in F1.

However, cnr1 was not among the DEG as it was filtered out prior to differential expression

calling due to low read count in the sequenced livers. The majority of the upstream regulators

were transcriptional regulators (PPARGC1A, NCOA2) and nuclear receptors (PPARD,

RORA, PPARA, ESR2, NR0B2) involved in the regulation of fatty acids, lipids, estrogen and

energy metabolism.
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Fig 4. Genes associated with differential methylated loci (DML) and differential expression in F0 and F1 livers. A:

Plot showing genomic locus-specific methylation differences and gene expression of concordant genes in F0 (5) and F1

(37) livers. Differentially expressed genes (adjusted p<0.05 for F1 and p<0.1 for F0) and DML (methylation difference

+/-�25% and q-value�0.01) were obtained from F0 and F1 livers comparing high ARA and control group. Some of

the genes in F1 were annotated to more than one DML, which led to 46 comparisons in total (S8 File). A best fit line

with equation and goodness of fit (R2) quantified by linear regression (S8 File) is shown for F1 DML located in gene

bodies and intergenic regions. B: Bar graphs showing individual read counts and individual CpG methylation levels of

single genes tagged in Fig 4A for each replicate of the high ARA and control group. Gene expression is shown as mean

normalized read counts (MNRC) in high ARA versus control livers. CpG methylation was calculated as the percentage

of total methylated CpGs over the total number of CpGs assessed.

https://doi.org/10.1371/journal.pone.0220934.g004
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Discussion

In the present study, we have shown that feeding the parents a diet high in ARA, an n-6 PUFA,

can alter the DNA methylation patterns in livers of both the parents and their adult progenies.

This demonstrates that the epigenetic DNA methylation pattern is sensitive to dietary ARA

levels over generations. We reported previously, that a diet high in ARA did not alter the

growth of adult zebrafish in either parents or progeny [47, 48]. Earlier studies have shown that

nutrition can influence DNA methylation, which affects phenotypes [5, 66, 67]. To our knowl-

edge, this is the first study showing that changing the fatty acid profile in the parental diet can

affect DNA methylation at locus-specific sites in zebrafish liver.

DNA methylation is the most studied epigenetic mechanism, which is known to regulate

gene expression potential. When comparing the DNA methylation pattern and gene expres-

sion profiles in mature zebrafish livers in this study, it was hard to find a consistent pattern

between direction of methylation and changes in gene expression. In general, we observed a

higher degree of overlap between methylation and transcription profiles in the F1 generation

than in the F0 probably due to a greater number of differentially expressed genes detected in

F1. In response to the ARA fortified diet, we observed a larger distribution of DML in introns

and intergenic regions than in exons and promoters for both generations. However, the latter

was a significantly enriched region in F1 livers, meaning more DML detected than expected. A

latest study [5] examined DNA methylation in livers of zebrafish fed a micronutrient-modified

diet, also reported similar findings, with promoters enriched for DML. Methylation in pro-

moters is widely believed to alter gene expression [68] though methylation outside promoters

has also been shown to play a role in gene regulation [69]. Although not differentially

expressed, crebbpb is one gene that was assigned to four among the most differentially methyl-

ated loci present in either an exon or an intron in the F1 livers. CREBBP is playing critical roles

in embryonic development, growth control, and homeostasis by coupling chromatin remodel-

ing to transcription factor recognition [70, 71]. A previous zebrafish study suggested that

methylation associated with promoters was not the major determinant of transcription when

comparing methylation and transcriptional data [72]. This is in line with our results, which

showed relatively few promoter region associations between DML and DEG. Regardless, we

reported interesting patterns among promoter DML that are identical between F1 and F0 DML

(5 DML), where e.g. two identical DML show the same methylation pattern in both genera-

tions. Interestingly, those genes were assigned to one F0 DML and at least two or more F1

DML showing same methylation patterns. One of them we reported was cryabb that functions

in skeletal muscle tissue development, repair and stabilization of stress-related cellular pro-

cesses such as cell cycle, differentiation, apoptosis and redox homeostasis [73, 74]. Whether

some of the reported methylation differences across different genomic regions are due to ran-

dom chance and others due to the dietary treatment in this study, remains unanswered.

Although the number of total DML were similar in both generations of the present study, a

slightly higher number of hypermethylated DML were observed in the parental F0 compared

Table 2. Genes linked to differentially methylated loci (DML) concordant with differentially expressed genes (DEG) in F0 and F1 livers due to inclusion of high

ARA in the parental (F0) diet.

Generation # Concordant genes to DML

and DEG

Concordant gene symbols to DML and DEG

F0 5 phldb2a, CABZ01052815.1, si:ch1073-189o9.1, mboat2a, fam20a
F1 37 magi1b, mgat4b, col14a1a, sult1st3, oxsr1b, phkg1a, slc4a4b, nek7, wdr62, abca12, crtc1b, si:ch211-194p6.12, si:dkey-

10p5.10, gne, polr3h, ccnf, zgc:77086, sema3fb, park7, rpia, hykk.2, filip1b, roraa, si:dkey-248g21.1, esr2a, elac2, slc38a3b,

add1, rps17, tomm70a, nrxn3a, cxxc5b, mat1a, lpar2a, prpf40a, CABZ01079024.1, slc26a2

https://doi.org/10.1371/journal.pone.0220934.t002
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to the F1. A general increase in genome methylation following ARA exposure has previously

been shown in mammalian cells [45]. As noted by us and by others using rodents [75], DNA

methylation patterns are sensitive to both parental (previous) and within generation environ-

mental changes. This highlights nutrition as important modulator of DNA methylation pat-

tern changes, as earlier implied for vitamins by others [76].

Several genes associated with F0 and F1 DML overlap between the generations, however, no

significantly enriched pathways were observed for either F0 or F1 DML except from one GO

term in the F0 generation. Despite few overlaps between DML and DEG in F0, we associated

DML with the metabolic profiles reported previously [47]. The F0 metabolic profiles of juvenile

zebrafish from the present study showed that high dietary ARA induced both inflammatory

and anti-oxidative responses affecting lipids and amino acids [47]. Interestingly, mboat2a was

one of the overlapping genes between DML and DEG in the F0 generation. This gene functions

in lysophospholipid metabolism, which is consistent with the reported shift in lysophospholi-

pid profiles for F0 fish fed high ARA levels [47]. However, surprisingly few concordant genes

to F0 DML and DEG were detected. Many factors might have masked some differences in the

F0 generation leading to few overlaps for instance general low differential gene expression,

plasticity of DNA methylation [77, 78], age [79] and variation introduced by the cell type spe-

cific nature of DNA methylation [80].

An intriguing finding was the significant positive correlation between intergenic DML

and DEG in offspring livers (and no correlation between gene body DML and DEG). Genes

annotated to intergenic DML were based on the nearest gene TSS to the DML, which varied

between a few thousand to hundreds of thousands of bases distant. Regulatory elements, such

as promoters, enhancers, silencers, noncoding RNA, etc, can be many thousands of bases dis-

tant from the genes. They often have a considerable and complex combinatorial effect on gene

expression and phenotype [81]. We need to stress that though we found a significant correla-

tion between DML and DEG in intergenic regions, this is still based on a relatively small num-

ber of overlaps (n = 16) and we have not identified any causal links. That we found a positive

correlation, i.e. hypermethylation correlating with upregulation (e.g. solute carriers 38a3b and

26a2) and hypomethylation correlating with downregulation (e.g. roraa and esr2a), was sur-

prising, given that the focus of functional methylation has been primarily on promoter regions,

where hypermethylation has been shown to functionally repress gene expression [82]. How-

ever, the functional associations between gene expression and methylation in different geno-

mic regions (such as gene bodies) is still poorly understood [83, 84]. We have reported the

neighboring genes and associated intergenic DML as a reference for further functional explo-

ration. It is possible that future studies will identify functionally associated regulatory elements

using the DEG associated DML we have reported here.

DNA methylation changes might control gene expression at early developmental stages and

in specific tissues that can prime gene expression changes later in life controlling specific path-

ways [30, 85, 86]. In the present study, we found several genes with parental diet-associated

methylation changes that also showed differential gene expression in the mature progeny liv-

ers. We found no significant pathway enrichment for F1 DML, but interestingly some of the F1

DML genes related to pathways previously reported to be affected by ARA at both a transcrip-

tional and a metabolic level [47, 48]. Of the genes overlapping between DML and DEG in F1,

some function in the methionine cycle (mat1a), lipid (roraa, sult1st3, lpar2a, abca12) and

estrogen signalling (esr2a). In the present study, we looked for possible upstream regulators

based on the F1 DEG and if some of them could explain the observed differences in both DNA

methylation and gene expression. Several of the upstream regulators predicted by IPA were

linked to DML, of which most were transcriptional regulators and nuclear receptors regulating

fatty acid, lipid, estrogen and energy metabolism. Another gene, cannabinoid receptor 1
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(CNR1), with an associated DML was suggested as the most activated upstream regulator in

the progeny livers. Cannabinoid receptor 1 gets activated by endocannabinoids in liver, affect-

ing de novo lipogenesis and fatty acid catabolism [87]. Remarkably, we observed increased

endocannabinoid levels in F0 fish fed the high ARA diet [47], but no causal relationship has

been found.

We showed that the overall changes in methylation were bigger in between generations and

to a lesser extent between dietary groups. This can be attributed to natural occurring variation

across generations representing a covariate and differences in the age of the samples analyzed

for DNA methylation [79]. Based on the few associations we made between the methylation

and transcription changes in grown offspring, it is also difficult to conclude on whether paren-

tal (F0) diet influenced the environment of the developing embryo while priming hepatic gene

expression of progeny [18, 33, 88]. Two studies in rodents could not link parental diet-associ-

ated DNA methylation changes with gene expression in the progeny [44, 89]. This underlines

the need for more detailed knowledge on the complex link between nutrients and epigenetic

modifications, for example, in the germline and early embryo resulting in altered gene expres-

sion and metabolic phenotypes in grown offspring [88]. Nevertheless, we reported several

DNA methylation differences present in the livers of grown offspring. Although we could not

link overall methylation differences to DEG in the liver, it is conceivable that the reported

methylation changes rather regulate gene expression during early development or in other tis-

sues. This indicates that epigenetic mechanisms of gene regulation may act in a spatio-tempo-

ral matter, meaning tissue-specific and specific for developmental stages. More studies are

needed to further illuminate and validate the mechanisms.

Conclusions

This study has shown that parental dietary ARA influences DNA methylation in zebrafish

liver. Hepatic methylation patterns across different genomic regions have been reported in

two generations. We identified 2338 loci in the parental livers and 2142 loci in the livers of

their progeny showing differential methylation between the dietary groups. We compared

the DNA methylation changes in progeny livers to existing gene expression changes, but only

based on few gene annotations. Although we reported several genes possibly regulated by diet-

associated methylation changes, our results are limited to liver tissue, and causal or functional

associations remain undiscovered. Thus, it is possible that the relation between DNA methyla-

tion and gene expression changes is stronger during early developmental stages or in tissues

other than liver. The effects of nutritional induced DNA methylation changes at specific CpG

loci in a transgenerational context and the extent of epigenetic gene regulation need to be veri-

fied by further studies.
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