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Abstract: Classical swine fever (CSF) is one of the most important viral diseases in swine, causing
severe economic losses in the swine industry. In China, CSF is one of the key diseases that needs to
be controlled; the government has implemented control measures, and vaccination with C-strain
check for vaccines (C-vacs) has been compulsory since the 1950s. C-vacs do not allow the differentiation of field
updates virus-infected and vaccinated animals (DIVA). In 2012, China proposed a goal of eradicating CSF.
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Additionally, a baculovirus-expressed E2 subunit vaccine (E2-vac) was licensed in 2018. However,
the C-vac and E2-vac characteristics have not been compared. Here, we demonstrate that both the
C-vac and E2-vac provide complete protection against CSF in pigs. The E2-vac allows DIVA, and
the E2 antibody responses of stimulated pigs are developed earlier and are stronger than the C-vac
antibody responses. Therefore, the E2-vac is a new candidate licensed vaccine to completely eradicate
CSF on pig farms.
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1. Introduction

Classical swine fever (CSF) is one of the most important viral diseases in swine,
including wild boar. CSF causes severe economic losses in the swine industry worldwide
and is a disease listed by the World Organisation for Animal Health (OIE) [1]. CSF is caused
by the classical swine fever virus (CSFV), a member of the Pestivirus genus within the
Flaviviridae family [1]. Other members of this genus are bovine viral diarrhea virus (BVDV)-
1, BVDV-2, and border disease virus (BDV). The CSFV genome consists of a positive single-
stranded RNA genome that is approximately 12.3 kb in length and encodes one polyprotein.
The translated polyprotein is processed by viral and cellular proteases to form 12 mature
proteins, four of which are structural (core protein (C) and envelope glycoproteins EQ, E1,
and E2) and eight of which are nonstructural (Npro, p7, NS2, NS3, NS4A, NS4B, NS5A,
and NS5B) [2]. Among these proteins, E2 is a multi-functional glycoprotein that plays roles
in viral attachment, viral replication and host immunoreactions [3-6]. Additionally, the E2
protein is the major protective antigen inducing neutralizing antibody in the host [7], and
has been selected as the most effective immunogen for development of subunit vaccines
against CSFV [7-10].

CSF is distributed nearly worldwide, with subgenotypes 1.1,1.3,1.4,2.1,2.2,2.3,3.2,
and 3.4 [11]. Governments have implemented control measures with a nonvaccination,
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stamping-out policy or a prophylactic vaccination strategy. Currently, the disease is at least
sporadically present in several countries in South and Central America, Eastern Europe,
and Asia [11]. Nevertheless, after the implementation of strict control measures, several
countries, such as the U.S., have succeeded in eradicating CSF [12]. In China, despite the
implementation of prophylactic vaccination control measures, CSF is still endemic in many
regions. The virus is characterized by high strain variability, primarily in the subgenotypes
1.1,2.1, 2.2, and 2.3 [13-16]. Therefore, the complete eradication of CSF in China remains a
challenging task using existing measures. China is the largest pork producer in the world,
with 441.59 million pigs being slaughtered in 2017 [17]. A modified live virus (MLV) vaccine
derived from the C-strain, the administration of which is mandatory, is used to establish
protective immunity in naive pig populations and prevent CSF outbreaks. The main
drawback of MLV vaccines, including the C-strain vaccine, is the lack of a serological marker
that allows the differentiation of field virus-infected and vaccinated animals (DIVA) [18].
Thus, several E2 subunit marker (DIVA) vaccines have been evaluated worldwide [9,19-22].
In 2012, China established a goal of eradicating CSE. Several marker vaccines have also
been evaluated, including a chimeric adenovirus/alphavirus vector-based vaccine [23-25]
and a yeast/baculovirus-expressed E2 subunit vaccine [26,27]. Additionally, a baculovirus-
expressed E2 subunit vaccine (Rb-03, Tianwenjing) was licensed in 2018. Therefore, two
types of CSF vaccines are available, the C-strain vaccine (C-vac) and the E2 subunit vaccine
(E2-vac), and Chinese swine farmers must choose which vaccine to use. A study has shown
that this commercial E2 subunit vaccine provides full protection to pigs against lethal
challenge with CSFV. In this study, we evaluated the protective efficacies and compared
different antibodies of the two CSF vaccines, providing important data for farmers to make
informed choices regarding which swine vaccine to use.

2. Materials and Methods
2.1. Virus and Vaccines

The CSFV strain GD11 (2.1 subgenotype) that was isolated from Guangdong Province
was used for the challenge experiment. CSFVs belonging to genotype 2.1 are dominant
strains in the field and thus we chose the GD11 isolate of this category as a challenge virus.
PK-15 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10%
fetal bovine serum (FBS; Gibco) and streptomycin at 37 °C in a 5% CO, atmosphere. CSFV
titers were determined using log10 dilutions that were added to cells in quadruplicate.
Viral titers were calculated as the 50% tissue culture infectious dose (TCID50) per mL.
C-vac was obtained from WINSUN Biology Co., Ltd., Guangzhou, China, and E2-vac
was obtained from Tecon Biology Co., Ltd., Urumgqi, China (Lot 2018009, expiration date
10 November 2019). The E2 sequence in E2-vac is basically copied from the C-strain E2
gene (1.1 genotype) as C-strain has been shown to confer protection against all genotypes
of CSFV strains isolated from China including 1.1 and 2.1 (a—j).

2.2. Pigs

In total, 30 weaning female pigs (five weeks old) were used for the animal experiments.
The piglets were provided by Qingyuan Pig Farm in Guangdong Province. The piglets
were tested and shown to be free of antigens from CSFV, BVDV, porcine reproductive
and respiratory syndrome virus (PRRSV), porcine pseudorabies virus (PRV) (IDEXX Labs
Inc., Westbrook, ME, USA), porcine circovirus type 2 (PCV2) (Biochek, Reeuwijk, The
Netherlands), and porcine parvovirus (PPV) ((Laboratoire Service International, Lissieu,
France) by ELISA; they also tested negative for antibodies against CSFV and BVDV (IDEXX
Labs Inc., Westbrook, ME, USA). All animal studies were conducted in accordance with the
guidelines approved by the Animal Care and Use Committee of South China Agricultural
University.
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2.3. Animal Experiment

The animal experiment was conducted by veterinarians who have special training in
animal care or handling. The procedure for the animal experiment is presented in Figure 1.
The piglets were randomly divided into six groups (5/group). The piglets received an
initial intramuscular injection (2 mL each as per the manufacturer’s instructions) that was
defined as occurring at 0 days post vaccination (dpv). The blank control group (Group 1:
DMEM) received no immunization and no challenge. The infection control group (Group 2:
CSFEV) received no immunization. Group 3 (C-vac one dose) and Group 5 (E2-vac one
dose) pigs were intramuscularly injected with the relevant vaccines (2 mL each as per the
manufacturer’s instructions) at 23 dpv. Group 4 (C-vac two doses) and Group 6 (E2-vac
two doses) pigs were intramuscularly injected with the relevant vaccines (2 mL each as per
the manufacturer’s instructions) at 0 dpv and received a booster immunization at 23 dpv.
At 35 dpv, pigs in all groups except Group 1 were challenged with 105 TCID50 GD11 in a
1 mL volume.

Challenge with:
group 1: DMEM
group 2: CSFV
group 3/4/5/6: CSFV

Vaccination with:
group 3: C one-dose
group 4: C two-dose
group 5: E2 one-dose
group 6: E2 two-dose

Initial boos?er .
vaccination vaccination challenge
(group 4/6) (group 3/4/5/6) (group 1/2/3/4/5/6)
N N N
"~ N §
> ®
0d 23d 35d 56d
@ (n: 5/group)

Figure 1. Diagram of the animal experimental design. Piglets received an initial intramuscular
injection that was defined as occurring at 0 days post vaccination (dpv).

Clinical symptoms, including animal health and behavior, were observed daily
throughout the study, and rectal temperatures were recorded daily before feeding. Blood
samples and oropharyngeal swabs were collected at 0, 1, 2, 5, 7, 9, 12, 16, 20, 23, 28, 30,
35,37, 40,42, 44,47, 51, 55, and 56 dpv for the determination of viral load. The viral load
was quantified by real-time reverse transcription polymerase chain reaction (RT-qPCR)
using a SYBR Green kit (SYBR Premix Ex Taq, Takara, Japan) and the following primers:
CSF-qPCR-F: GCAGAAGCCCACCTCGAGAT and CSF-qPCR-R: TACACCGGTTCCTC-
CACTCC. The qPCR standard curve was as follows: y = —3.5851lyX + 38.845. The serum
samples were collected for antibody detection by ELISA (E2 antibody: IDEXX Labs Inc.,
Westbrook, ME, USA; E0 antibody: Qiagen Labs Inc., Hilden, Germany). In order to
minimize animal suffering and distress, animals were euthanized by intravenous injection
of pentobarbital within an hour while animals were determined to be moribund (as indi-
cated by increased respiratory rate and inability to ambulate), and all remaining pigs were
euthanized at 56 dpv.

2.4. Statistical Analysis

ANOVA was used for the analysis of fixed effects on different traits using GraphPad
Prism 8 (Prism 5 for Windows, Version 8.01, GraphPad Software, Inc. La Jolla, San Diego,
CA, USA).

3. Results
3.1. Both the C-Vac and the E2-Vac Provided Complete Protection against CSF in Pigs

In the infection control group, two piglets died at 13 days post challenge (dpc), and
one piglet died at 16 dpc (Figure 2A); the remaining two piglets were euthanized due to
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severe clinical symptoms, including fever (Figure 2B), anorexia, labored breathing, and
astasia at 56 dpv. All vaccinated animals from the C-vac and E2-vac groups and the blank
control group survived and were healthy (Figure 2A,B). The viral loads were detected and
quantified by qPCR. The number of viral copies in the blood (Figure 2C) and oropharyngeal
swabs (Figure 2D) were detected from day 37 (2 days post challenge) until the death of the
pigs in the infection control group. No virus was detected in pigs in the vaccination groups.
Additionally, the viral loads were reevaluated using isolation in PK-15 cells, and these results
were consistent with those of the gPCR assays (data not shown). These results suggested that
GD11 is fatal for pigs and could cause viremia and virus shedding from the oropharynx, and
both C-vac and E2-vac provided complete protection against CSF in the pigs.
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Figure 2. The survival curves, body temperatures, viremia, and virus shedding of the experimental pigs. (A) Survival rate,
the lines of dates are covered by the lines of DMEM and CSFV data. (B) Body temperature. (C) Viral copies in oropharyngeal
swab samples. (D) Viral copies in the blood. The dotted line represents the minimum detection threshold. DMEM: the
blank control group that received no immunization and no challenge. CSFV: the infection control group that received no
immunization. C-vac one dose and E2-vac one dose: pigs were intramuscularly injected with the relevant vaccines at 23 dpv.

C-vac two doses and E2-vac two doses: pigs were intramuscularly injected with the relevant vaccines at 0 dpv and received
a booster immunization at 23 dpv. At 35 dpv, pigs in all groups except DMEM group were challenged with ASFV.

3.2. C-Vac Stimulated Different Antibodies, and E2-Vac Stimulated Only the E2-Specific Antibody

Antibodies play an important role in protective immunity. As an MLV vaccine, C-vac
stimulates the production of antibodies against the whole virus particle. However, the
envelope glycoprotein E2 is the only target in the E2-vac and therefore stimulates the
production of only the E2-specific antibody. No antibody responses were observed in pigs
in the infection control and blank control groups according to the results of the E2 and E0
antibody detection tests (Figure S1).

In the C-vac two-dose group, one pig first produced E2 antibodies at 20 dpv, and
all animals produced E2 antibodies starting at 23 dpv (Table 1). On average, the pigs
tested positive for the E2 antibody at 23 dpv (Figure 3A). The antibody level subsequently
gradually increased and reached a 100% ELISA blocking rate at 51 dpv (Figure 3A). Two
pigs first produced the EQ antibody at 40 dpv, and all animals produced the EQ antibody
starting at 42 dpv (Table 1). On average, the pigs tested positive for the E0 antibody at
40 dpv (Figure 3B). Subsequently, the antibody level increased dramatically and reached a
100% ELISA blocking rate at 44 dpv (Figure 3B). In the C-vac one-dose group, four pigs
first tested positive for the E2 antibody at 35 dpv, and all animals tested positive at 37 dpv
(Table 1). On average, the pigs tested positive for the E2 antibody at 35 dpv (Figure 3C),
after which the antibody level increased gradually but did not reach a 100% ELISA blocking
rate (Figure 3C). All five pigs had a 100% ELISA blocking rate for the EQ antibody at 40 dpv
(Table 1, Figure 3D).
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Table 1. Numbers of animals with antibody responses after vaccination with one or two doses of C-vac and E2-vac.

G Antibody Days Post Vaccination (dpv)
roup
Type 0* 1 2 5 7 9 12 16 20 23 % 28 30 35* 37 40 42 44 47 51 55 56
C-vac two E2 o/5 o0/5 o0o/5 o0/5 0/5 o0/5 o0/5 0/5 1/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
doses EO o/5 o/5 o0/5 o0/5 0/5 o0/5 0/5 0/5 0/5 o0/5 0/5 o0/5 o0/5 0/5 2/5 5/5 5/5 5/5 5/5 5/5 5/5
C-vac one E2 o/5 o/5 o/5 o0/5 0/5 o0/5 0/5 0/5 o0/5 o0/5 0/5 o0/5 | 4/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
dose EO o/5 o/5 o0o/5 o0/5 0/5 0/5 o0/5 0/5 0/5 o0/5 0/5 o0/5 o0/5 0/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
E2-vac two E2 o/5 o/5 o/5 o0/5 o0/5 o0/5  1/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
doses EO o/5 o0/5 o0/5 0/5 0/5 o0/5 0/5 0/5 0/5 o0/5 0/5 o0/5 o0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5
E2-vac one E2 o/5 o/5 o/5 o0/5 0/5 o0/5 o0/5 0/5 o0/5 o0/5 0/5  1/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
dose 200 o/5 o0/5 o0/5 0/5 0/5 o0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Gray shading: at least one antibody-positive piglet. *: The day with vaccination.
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Figure 3. Antibody responses in pigs in the two-dose (A,B) and one-dose (C,D) vaccination groups according to the blocking
ELISAs. Gray columns represent the ELISA blocking rate of the C-vac groups, and white columns represent the ELISA

blocking rate of the E2-vac groups. The dotted line represents a positive threshold: E2 > 0.4, E0 > 0.5, NS3 > 0.25.

In the E2-vac two-dose group, one pig tested positive for the E2 antibody at 12 dpv,
and all animals tested positive at 16 dpv (Table 1, Figure 3A). Subsequently, the antibody
level increased dramatically and reached an approximately 100% ELISA blocking rate
at 28 dpv (Figure 3A). In the E2-vac one-dose group, one pig tested positive for the E2
antibody at 30 dpv, and all animals tested positive at 35 dpv (Table 1, Figure 3C). The
antibody level subsequently increased dramatically and reached an approximately 100%
ELISA blocking rate at 44 dpv (Figure 3C). No EO antibodies were detected in any of the
E2-vac groups (Figure 3B,D).

4. Discussion

CSF causes severe economic losses in the swine industry in China. Therefore, it is
one of the key diseases that needs to be controlled, and the government has implemented
control measures, including compulsory vaccination with C-vacs, for decades. The C-vac
was developed in China in 1956. The vaccine was shown to be attenuated in rabbits and is
generally considered safe and effective [16,28,29]. To date, among a series of CSF vaccines
that are in development, an E2-vac has been licensed in China, which increases the options
available to pig farmers but makes the choice more difficult.

Previously, a study showed that this commercial E2 subunit vaccine provides full
protection to pigs against lethal challenge with different strains of CSFV genotype 2 [30].
Our study showed consistent results that both the C-vac and the E2-vac provide complete
protection against CSF in pigs. Compared with a previous study [30], which showed high
levels of E2 and neutralizing antibodies, this study verified that the C-vac stimulates the
production of a number of antibodies (E2, EO, and NS3 antibodies detected in this study),
while the E2-vac stimulates only the E2-specific antibody, verifying that the E2-vac allows
DIVA. Additionally, this study showed the E2-vac group pigs developed E2 antibody
responses earlier and stronger than the C-vac group pigs (Figures 2A and 3A). Furthermore,
this study not only showed that two-dose vaccinations of E2 and C provide protection to
pigs against CSFV, it also showed that one-dose vaccinations provide the same protection.
It is hard to avoid missing injections or other special situations in clinical practice. Hence,
effective one-dose vaccination is useful in clinical practice.
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Studies about the efficacy of the classical swine fever live attenuated vaccine and E2
subunit vaccine have one common finding, that is, the neutralizing antibody (NA) induced
by vaccines is a good indicator and has a good correlation with the observed protection. In
this study, we evaluated antibody titers with an IDEXX ELISA kit as the data showed that
the titer of the IDEXX ELISA kit is correlated with NA titer (these data are from a paper in
Chinese). We believe that it is feasible to demonstrate the relative neutralizing antibody
level or the relative protection level by IDEXX ELISA antibody level alone.

However, the C-vac strain is able to provide clinical protection as early as 3 days post
vaccination [31]. Additionally, a previous study reported that another European E2 vaccine
provided clinical protection at 14 dpv [32]; however, the onset of protection of the Chinese
E2 vaccine was not explored herein. In addition, the animals in this study were challenged
with virus on 12 dpv, with a robust antibody response. However, the T cell-medicated
immune response is important for evaluating the application of an emergency vaccination
strategy. Previous studies showed that animals protected from challenge by vaccination
with an E2-based DNA vaccine had increased levels of CSFV-specific IFN-y-producing cells
compared to unvaccinated controls [33]. Additionally, Suradhat et al. showed that CSFV-
specific IFN-y production was detected early after C-strain administration and correlated
with protection against CSFV challenge [34]. Other studies were carried out to support
this finding. The C-strain was able to induce rapid protection to challenge as early as
5 days post administration and that rapid protection was correlated to induction of CSFV-
specific T cell IFN-y responses [35]. In addition, other studies showed that CD3+ CD4—
CD8hi T cell populations were the first and major source of CSFV-specific IFN-y [36,37],
whereas innate immune cells such as NK and gd-T cells were probably not involved in the
development of this rapid protection [38]. Therefore, the protection efficiencies between
the first vaccination and the first antibody appearance as well as the cell-mediated immune
response are significant and need to be explored further.

Infection with virulent CSFV is an immunomodulatory infection that causes immuno-
suppression [39,40]. In this study, no antibodies were detected in the infection control
group pigs from 3 weeks post inoculation (0 dpi to 56 dpi); three animals died, and two
were euthanized due to severe clinical symptoms.

Although C-vac has the disadvantage of not allowing DIVA, it is still generally con-
sidered a safe and effective vaccine. CSF has been controlled by extensive vaccination
with C-vac since the 1950s. Hence, C-vac is still a good choice for farmers. However,
CSF was recently demonstrated to occur sporadically or endemically in many regions in
China [16,41-44]. To completely control CSFE, an elimination program is the only option.
E2-vacis a good candidate licensed vaccine for the control and eradication of CSF, confer-
ring complete protection and allowing DIVA on pig farms. Furthermore, in addition to
implementing prophylactic vaccination control measures, more attention must be paid to
other measures, such as biosecurity procedures.

Although vaccine manufacturers recommend double vaccination for optimal protec-
tion, the effects of both vaccines were evaluated after a single round of vaccination to
evaluate the usefulness of both vaccines in an emergency vaccination scenario.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vetsci8080148/s1, Figure S1: Antibody responses in pigs in the blank control group (DMEM)
and infection control group (CSFV). A: ELISA blocking rate of the E2 antibody; B: ELISA blocking
rate of the EO antibody:.
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