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Further investigation of
blockade effects and binding
affinities of selected natural
compounds to immune
checkpoint PD-1/PD-L1

Huifang Li, Navindra P. Seeram, Chang Liu* and Hang Ma*

Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences,
College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States
The breakthrough in the discovery of immune checkpoint PD-1/PD-L1

inhibitors, such as the series of Bristol Myers Squibb synthetic compounds,

boosted the research of small molecules with blockade effects on the

interaction of PD-1/PD-L1. However, the search for natural products derived

PD-1/PD-L1 inhibitors can be impeded by the false positive and/or negative

results from the screening assays. Herein, we combined a PD-1/PD-L1

blockade assay (pair ELISA) and a PD-L1/PD-L1 binding assay (surface

plasmon resonance; SPR) to evaluate a panel of natural compounds

previously reported to show anti-PD-1/PD-L1 activity. The test compounds

included kaempferol, cosmosiin, tannic acid, pentagalloyl glucose, ellagic acid,

resveratrol, urolithin A, and rifubutin. Based on the analyses of their responses

to the combined screening assays, these compounds were categorized into

four groups: I) PD-1/PD-L1 inhibitors that can bind to PD-1 and PD-L1; II) PD-1/

PD-L1 inhibitors selectively bind to PD-L1 protein; III) PD-1/PD-L1 inhibitors

without binding capacity, and IV) PD-1/PD-L1 binders without blockade effect.

Discrimination of positive responders in the PD-1/PD-L1 blockade and binding

assays can provide useful insights to avoid false outcomes. Examples

demonstrated in this study suggest that it is crucial to adopt proper

evaluation methods (including using multiple-facet functional assays and

target binding techniques) for the search for natural products derived PD-1/

PD-L1 inhibitors.
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Introduction

Programmed cell death protein 1 (PD-1), a cell surface

receptor expressed by T and B cells, is an immune checkpoint

that regulates the immune system (1). PD-1 interacts with its

ligands, including the programmed cell death-ligand 1 (PD-L1)

expressed by antigen-presenting cells or cancer cells, to maintain

immune homeostasis. In the tumor microenvironment, when PD-

L1 binds to PD-1, T cell’s immune responses are undermined,

which impairs its function of recognizing cancer cells.

Consequently, cancer cells escaping from the immunological

surveillance of T cells can lead to the proliferation of cancer

cells and the expansion of tumor tissues (2). Thus, disrupting the

interaction between PD-1 and PD-L1 has become a promising

strategy for cancer immunotherapy. Molecules (e.g. immune

checkpoint inhibitors) with blockade effects on the interaction

of PD-1/PD-L1 can block the immune escaping signals of cancer

cells and, consequently, reactivate immune cells to restore their

anti-tumor response. Several antibody-based PD-1 inhibitors (e.g.

Pidilizumab and Nivolumab) and PD-L1 inhibitors (e.g.

Atezolizumab and Durvalumab) have been approved by the

U.S. Food and Drug Administration (FDA) for the treatment of

various cancers (3). Although these antibody drugs have shown

potent anti-cancer efficacy in clinical trials, they are facing several

inherent limitations, such as toxic off-target effects, poor

permeability (of the tumor tissues), and immunogenicity, as well

as prohibitive costs and challenging quality control (4, 5). On the

contrary, compared to antibody drugs, small molecule derived

PD-1/PD-L1 inhibitors may display a more favorable safety

profile (6). Several synthetic small molecules with potent

blockade effects on PD-1/PD-L1 have been developed. For

instance, compounds including BMS1166 and BMS202 (by

Bristol Myers Squibb Pharma Co.) are designed to directly bind

the PD-L1 protein and consequently blockade the interaction of

PD-1/PD-L1 (7). The strategy of combining both functional assay

(for PD-1/PD-L1 inhibition) and binding characterization (for

binding affinity to PD-1/PD-L1 proteins) to search for natural

compounds including kaempferol (8), cosmosiin (9), resveratrol

(10)and rifabutin (11) with anti-PD-1/PD-L1 effects has been

adopted by our group and others. Our group has also summarized

the methodologies for the development of small molecule based

PD-1/PD-L1 inhibitors utilizing proper functional assays and

biophysical methods (12). During the investigation, we noticed

that several natural compounds (e.g. punicalagin) were identified

as ‘false hits’ as they showed a detectable binding capacity to PD-

1/PD-L1 proteins (characterized by surface plasmon resonance;

SPR) but were not active in the PD-1/PD-L1 blockade assay

(assessed by pair ELISA). This discrepancy is crucial for screening

small molecules based PD-1/PD-L1 inhibitors given that the

blockade effect of small molecules and their binding capacity to

PD-1/PD-L1 proteins should be scrutinized to avoid false

positives. Herein, in this current study, a panel of natural
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were selected to study the relationship between their blockade

effects on PD-1/PD-L1 interaction (by pair ELISA assay) and

binding capacity to the PD-1/PD-L1 proteins (by SPR assay). In

addition, a series of natural polyphenols including tannic acid,

pentagalloyl glucose, and urolithin A, which have similar chemical

structure moieties as punicalagin, were included in the screening.

Based on their positive responses to either the blockade assay or

the binding affinity assay, these compounds were sorted in four

categories: I) PD-1/PD-L1 inhibitors that bind to both PD-1 and

PD-L1 proteins; II) PD-1/PD-L1 inhibitors that only bind to PD-

L1 protein; III) PD-1/PD-L1 inhibitors without the binding

capacity to PD-1/PD-L1 proteins; and IV) PD-1/PD-L1 binders

with no blockade effect.
Materials and methods

Chemicals and reagents

BMS202 and BMS1166 were purchased fromMedChemExpress

LLC (Monmouth Junction, NJ, USA). Rifubutin, kaempferol, tannic

acid, and cosmosiin were purchased from Cayman Chemical (Ann

Arbor, MI, USA). Ellagic acid and resveratrol were purchased from

Sigma Chemical Co. (St. Louis, MO, USA). Urolithin A (13) and

pentagalloyl glucose (14) were synthesized and isolated, respectively,

by our group as previously reported. Phosphate-buffered saline (PBS,

pH 7.2) and dimethylsulfoxide (DMSO) were purchased from

Thermo Fisher Scientific (Waltham, MA, USA). The test

compounds were dissolved in DMSO (at 100 mM as a stock

solution) and stored at -80°C for further use.
PD-1/PD-L1 function assay with
pair ELISA

The PD-l/PD-L1 blockade effect was determined by a pair

ELISA assay kit (ACRO Biosystems, Newark, DE, USA). Briefly,

human PD-L1 (200 ng/per well) was coated into a 96-well

microplate and incubated overnight at 4°C. Next, the plate was

washed with washing buffer followed by incubating with

blocking buffer at room temperature for 1.5 h. Test samples

were then added (at concentrations of 10 and 100 mM dissolved

in dilution buffer with 0.1% of DMSO) prior to adding human

PD-1-biotin (200 ng/per well). The plate was incubated at room

temperature for 1 h. After horseradish peroxidase-conjugated

streptavidin was added and incubated at room temperature for 1

h, the substrate was added into each well and incubated at room

temperature for 20 min. The stop solution was then added to

each well followed by measuring the absorbance of each well at a

wavelength of 450 nm using a SpectraMax M2 plate reader

(Molecular Devices; Sunnyvale, CA, USA).
frontiersin.org

https://doi.org/10.3389/fonc.2022.995461
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.995461
PD-1/PD-L1 binding assay with SPR

The PD-1/PD-L1 binding affinity of test natural compounds

was measured on a SPR Biacore T200 instrument (GE Healthcare;

Marlborough, MA, USA). Human PD-L1and PD-1 proteins (both

with a Fc Tag) were purchased from ACRO Biosystems (Newark,

DE, USA). Carboxymethylated CM 5 SPR chips were purchased

from GE Healthcare (Marlborough, MA, USA). The SPR binding

channels were set as: Cell-1, blank immobilization; Cell-2, human

PD-L1 protein was immobilized by the injection of protein solution

(40 mg/mL) in sodium acetate buffer (10 mM; pH 4.5); Cell-3,

human PD-1 protein was immobilized by the injection of protein

solution (40 mg/mL) in sodium acetate buffer (10 mM; pH 5.0).

Approximately, 5500 and 4500 RU of human PD-1 and PD-L1

proteins, respectively, were immobilized on the flow cells with an

amine coupling method.
Results and discussion

Category I: PD-1/PD-L1 inhibitors
bind to PD-1 and PD-L1 (tannic acid
and kaempferol)

Natural compounds including tannic acid (TA) and

kaempferol (Figure 1A) were identified as active PD-1/PD-L1

inhibitors by data from a combination of pair ELISA and the

SPR binding assay. TA and kaempferol (10 and 100 mM)
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blockaded the PD-1/PD-L1 interaction by 11.0 and 36.9% and

4.1 and 63.4%, respectively (Figure 1B). TA and kaempferol also

bound to PD-1 and PD-L1 proteins in the SPR measurements

(Figures 1C–F). The binding capacity between TA and PD-1 or

PD-L1 protein was identical with a comparable KD value of

1.46×10-6 and 1.21×10-6 M, respectively. Kaempferol had a

stronger binding affinity to PD-1 protein (KD = 3.04 ×10-7 M)

than PD-L1 protein (KD = 3.3×10-5 M). The positive controls,

BMS1166 and BMS202, showed a potent blockade effect (99.3

and 87.4% at 10 µM, respectively) and a strong binding affinity

to PD-L1 (KD = 5.7×10-9 M and 3.20 ×10-7 M, respectively). The

positive results obtained in this category must be carefully

examined. Although these compounds, in a manner similar to

the positive controls, displayed both blockade effects and

binding capacity to PD-1/PD-L1, TA and kaempferol had far

less potent anti-PD1/PD-L1 effects as compared to BMS202.

This is possibly due to BMS202’s distinct mechanism of

blockading PD-1/PD-L1 interaction. BMS202 binds to PD-L1

and subsequentially induces the dimerization of PD-L1

monomers (15). The complex of dimerized PD-L1 and

BMS202 further prevents the interaction with PD-1, which

contributes to the dissociation of the PD-1/PD-L1 complex.

This principle may not be applicable to the case of natural

compounds (e.g. TA and kaempferol) due to the lack of data

supporting that they can induce the dimerization of PD-L1,

despite they can bind to PD-L1. Moreover, kaempferol’s binding

affinity to PD-1 protein was 100-fold stronger than PD-L1

protein, whilst TA’s PD-1 and PD-L1 binding affinities were
B
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G

A

FIGURE 1

Chemical structure of TA and kaempferol (A). Blockade rate of TA and kaempferol (at 10 and 100 mM) on the PD-1/PD-L1 interaction
determined by the pair ELISA assay (B). Binding profile of natural compounds at various concentrations with PD-1 and PD-L1 proteins
characterized by the SPR measurements. Sensograms of TA with PD-L1 (C) or PD-1 (D) protein at 1.56-12.5 mM and 0.06-0.5 mM, respectively.
Sensograms of kaempferol with PD-L1 (E) and PD-1 (F) protein at 1.56-25 mM. Summarized binding parameters including Ka, Kd, and KD
between test compounds and PD-L1 and PD-1 proteins (G).
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comparable. This observation suggests that TA and kaempferol

did not selectively bind to PD-L1, and thus, may not be able to

induce the dimerization of PD-L1 to exert the anti-PD-1/PD-L1

effect. Apart from the ambiguous mechanisms of action, the

development of these natural compounds for PD-1/PD-L1

inhibitors can be challenging due to their low druggability (e.g.

low bioavailability and non-specific targets) (16). Therefore,

further studies using physiological relevant models to examine

the effectiveness of compounds in this category are warranted to

avoid false positives.
Category II: PD-1/PD-L1 inhibitors
selectively bind to PD-L1 protein
(resveratrol and cosmosiin)

This group of natural compounds included resveratrol and

cosmosiin (Figure 2A), which showed the PD-1/PD-L1 blockade

effect in the pair ELISA assay by 43.5 and 55.8%, respectively (at a

concentration of 100 mM). Notably, resveratrol and cosmosiin

displayed a selective binding to the PD-L1 protein with a KD value

of 3.79 ×10-5 and 3.32 ×10-6 M, respectively (Figures 3C–E). This is

in agreement with a reported study using in silico methods

(including computational docking and molecular dynamic

simulation) to predict that resveratrol can facilitate the
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dimerization of PD-L1 (10). However, to date, resveratrol’s effect

on the dimerization of PD-L1 is not confirmed by experimental

data. This limitation is, at least partially, due to the lack of feasible

functional assays to evaluate the dimerization of PD-L1. Therefore,

specific functional assays, i.e. PD-L1 dimerization assay, are crucial

for the development of natural compounds based PD-1/PD-L1

inhibitors. Nevertheless, apart from the dimerization of PD-L1,

other mechanisms may also be involved in the disruption of PD-1/

PD-L1 interaction. For instance, resveratrol was reported to disrupt

the PD-1/PD-L1 interaction by altering the structure of PD-L1

protein (via post-translational modifications, i.e., N-linked

glycosylation), accumulating abnormally glycosylated form of

PD-L1, and reducing tumor cells induced cytotoxicity to T cells

(10). Therefore, compounds in this category may have the scaffold

of lead compounds for PD-1/PD-L1 inhibitors but further

structural modifications (by medicinal chemistry) and biological

evaluations (with proper functional assays) are warranted.
Category III: PD-1/PD-L1 inhibitors
without binding capacity (rifabutin
and urolithin A)

Natural compounds in this category only showed a weak

blockade effect on the interaction of PD-1/PD-L1. Rifabutin and
B

C

D

E

A

FIGURE 2

Chemical structure of resveratrol and cosmosiin (A). Blockade rate of resveratrol and cosmosiin (at 10 and 100 mM) on the PD-1/PD-L1 interaction
determined by the pair ELISA assay (B). Binding profile of natural compounds at various concentrations with PD-L1 protein characterized by the SPR
measurements. Sensograms of resveratrol with PD-L1 (C) protein at 1.56-12.5 mM. Sensograms of cosmosiin with PD-L1 (D) protein at 1.56-25 mM.
Summarized binding parameters including Ka, Kd, and KD between test compounds and PD-L1 proteins (E).
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urolithin A (UA; Figure 3A) blockaded the interaction of PD-1/

PD-L1 by 58.6 and 39.7% at 100 mM, respectively (Figure 3B).

This is in agreement with a reported study showing that

rifabutin had a moderate blockade effect of PD-1/PD-L1 in a

homogenous AlphaLISA assay (IC50 = 25 mM) (11). Similarly, a

study supported the inhibitory effect of UA on PD-1/PD-L1

interaction by showing that urolithins may exert a sensitizing

effect in the inhibition of immune checkpoint targeting the PD-

1/PD-L1 interaction (17). However, the binding affinity between

these compounds and PD-1 or PD-L1 protein was not detectable

by the SPR assay. It is possible that these compounds may have

shown false positive results. Further functional assays, preferably

using cellular or in vivo models, are warranted to further

evaluate the anti-PD-1/PD-L1 activity of these compounds to

avoid false positive outcomes. For instance, a cellular assay,

namely, the PD-1/NFAT reporter assay (18), using a

recombinant Jurkat cell line, can be used as a functional assay

to validate the anti-PD-1/PD-L1 effects of natural compounds.
Category IV: PD-1/PD-L1 binders without
blockade effect (pentagalloyl glucose
and ellagic acid)

Compounds in this group including two hydrolyzable tannins

pentagalloyl glucose (PGG) and ellagic acid (EA; Figure 4A) were

able to bind to the PD-L1 proteins. PGG and EA bound to PD-L1

protein with a KD value of 2.23×10-6 and 2.62×10-5 M, respectively.

PGG and EA also bound to PD-1 protein in the SPR assay with a

KD value of 2.72×10-5 and 1.82×10-6 M, respectively (Figures 4B–F).

However, their blockade effect on the PD-1/PD-L1 interaction was

not detected in the pair ELISA assay. To avoid possible false

negative results, a PD-L1 dimerization assay should be used to

confirm that they are not able to blockade the PD-1/PD-L1

interaction. The challenges shown in these assays were not

surprising given that the search for small molecules targeting the

PD-1/PD-L1 interface can be challenging. This is because, from a

structural perspective, it requires the small molecule inhibitors to be

fixed at the center of the PD-L1 homodimer (19), which is a surface
Frontiers in Oncology 05
with a deep hydrophobic pocket contributing to molecular

interactions between the PD-L1 monomers [see Supplementary

Data Figure S1]. Thus, although PGG and EA were able to bind to

PD-L1, they may not able to be located at the desired binding

pocket in the PD-L1 dimer complex to exert the blockade effect.

Similar to the aforementioned limitation, a PD-L1 dimerization

assay should be used to discrete the false negative results from

compounds in this category. It should be noted that, apart from the

PD-L1 dimerization, other small molecules may confer the anti-

PD-1/PD-L1 effects via other mechanisms of action of PD-1/PD-L1

interaction. These compounds may also be considered as in a

distinct category, which should be further investigated.
Conclusion

A combination of a PD-1/PD-L1 blockade assay (pair ELISA)

and a target-binding assay (SPR) was used to screen the PD-1/PD-

L1 blockade effect of a series of natural compounds. Based on their

responses from the assays, these compounds were categorized into

four groups: I) PD-1/PD-L1 inhibitors bind to PD-1 and PD-L1; II)

PD-1/PD-L1 inhibitors selectively bind to PD-L1 protein; III) non-

binder PD-1/PD-L1 inhibitors, and IV) PD-1/PD-L1 binders

without blockade effect. Further functional assays, such as the

PD-L1 dimerization assay, should be used to confirm the anti-

PD-1/PD-L1 activity to avoid false positive (in the I and III groups)

and false negative (in the IV group) outcomes. A promising positive

‘hit’ should exhibit both potent PD-1/PD-L1 blockade activity and

desirable binding affinity with the specific target proteins (i.e. PD-

L1). Despite it is challenging to identify natural compounds-based

PD-1/PD-L1 inhibitors, compounds in the II group may serve as

lead compounds for further structural modifications to improve

their PD-1/PD-L1 blockade effect. However, a larger sample size of

compounds (e.g. the type II compounds) with promising blockade

effect and binding capacity should be included in future studies to

evaluate their biological effects in the functional assays. The current

study is limited by a confined number of representing compounds

included in the bioassays due to, at least partially, the fact that the

discovery and development of natural products based PD-1/PD-L1
BA

FIGURE 3

Chemical structure of rifabutin and UA (A). Blockade rate of rifabutin and UA (at 10 and 100 mM) on the PD-1/PD-L1 interaction determined by
the pair ELISA assay (B).
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inhibitors are still in the early stage. In summary, observation

demonstrated in the current study suggest that, although natural

product may exert PD-L1/PD-L1 blockade effect with target protein

binding capacity, their effectiveness should be verified by multiple

functional bioassays to exclude false results. Further investigations

using medicinal chemistry approaches are warranted to optimize

the PD-1/PD-L1 blockade effects of lead natural compounds.
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FIGURE 4

Chemical structure of PGG and EA (A). Binding profile of natural compounds at various concentrations with PD-1 and PD-L1 proteins
characterized by the SPR measurements. Sensograms of PGG with PD-L1 (B) or PD-1 protein (C) at 3.13-25 mM. Sensograms of EA with PD-L1
(D) and PD-1 (E) protein at 1.56-25 mM. Summarized binding parameters including Ka, Kd, and KD between test compounds and PD-L1 and PD-1
proteins (F).
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