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Abstract

Net energy accounts for the proportion of energy expenditure attributed to the digestion,

metabolism, and absorption of ingested food. Currently, there are no models available to

predict net energy density of food for domestic cats. Therefore, the objectives of this study

were to measure the heat increment of feeding in cats, and to model the net energy of com-

mercial diets. Metabolizable energy and calorimetry data from two previous studies was

reanalyzed to create net energy models in the present study. Energy expenditure was calcu-

lated using measurements of CO2 production and O2 consumption. Net energy was deter-

mined as the metabolizable energy of the diets minus the heat increment of feeding. The

heat increment of feeding was determined as the area under the energy expenditure curve

above the resting fed metabolic rate. Eight net energy models were developed using metab-

olizable energy, 1 of 4 dietary parameters (crude protein, fat, fiber, and starch), and heat

increment of feeding values from 0–2 h or 0–21 h. Two hours postprandial, and over the full

calorimetry period, the heat increment of feeding amounted for 1.74, and 20.9% of the

metabolizable energy, respectively. Of the models tested, the models using crude protein in

combination with metabolizable energy as dietary parameters best fit the observed data,

thus providing a more accurate estimate of dietary energy availability for cats.

Introduction

Net energy (NE) models have been developed for use with multiple agricultural species such as

swine and cattle [1, 2], but to date, they do not exist for the domestic cat. North American pet

food industry standards currently use the modified Atwater equation to estimate the metabo-

lizable energy (ME) of pet foods [3, 4]. This equation assigns coefficients to three macronutri-

ents–protein, fat, and carbohydrate (calculated as nitrogen-free extract)–to predict the ME

content of a diet [3]. However, these equations result in inaccurate predictions of dietary

energy content [3]. Developing models to accurately predict the available energy density of

food intended for cats is critical to provide consumers with optimal feeding recommendations

[4].
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Net energy can be described as the ME minus the heat increment of feeding (HIF) [5]. The

HIF, also commonly referred to as dietary-induced thermogenesis, is variable and can be

altered by dietary macronutrient content, diet processing conditions, and environmental tem-

perature [6, 7]. Therefore, the HIF is important to measure for an accurate representation of

dietary energy directly available to the animal [6]. The HIF can be measured through indirect

calorimetry, which uses measures of oxygen and carbon dioxide exchange to calculate energy

expenditure of animals [8]. Compared to ME, which accounts for fecal and urinary energy

losses, NE is more complex to quantify. To overcome this issue, mathematical models have

been developed that predict the NE content of feeds based on macronutrient composition [1,

2]. Unlike ME models, NE gives a precise estimate of the energy directly available for use by an

animal [5]. Noblet et al. [1] proposed a model to estimate the NE of pig feed, using macronutri-

ent composition and ME content of the complete diet as parameters. This model provides a

superior prediction of the true energy content of a feed and allows for increased accuracy of

formulation and subsequent feeding recommendations.

The objectives of this study were to calculate NE content of three diets differing in macro-

nutrient profile, ingredient composition, and perceived glycemic responses (PGR), and to pro-

pose new models that can accurately predict NE of domestic cat diets. We hypothesized that 1)

parameters used for NE models in other monogastric species can be used to predict NE of

domestic cat diets; and 2) due to differences in macronutrient profile, ingredient composition

and PGR, HIF would be different between diets.

Materials and methods

Data from two previous studies were reanalyzed to create net energy models in the present

study. Metabolizable energy data, analyzed by measuring fecal and urinary energy losses, was

obtained from Asaro et al. [4], and calorimetry data was obtained from Asaro et al. [9], which

were both conducted under Animal Utilization Protocol 013–9127 (dated 17 March 2013).

The cats used for these different collection methods were purpose bred and trained for these

specific methodologies and as such, we were unable to keep the same cohort of cats for both

previously conducted studies. Therefore, to limit opportunity for differences in digestibility

and energy expenditure measurements, both cohorts of cats were of similar age and BCS and

were fed the same batches of the three commercial diets. All procedures were reviewed and

approved by Proctor and Gamble Pet Care’s Institutional Animal Care and Use Committee

and were in accordance with the United States Department of Agriculture and the Association

for Assessment and Accreditation of Laboratory Animal Care guidelines.

For further information regarding study design, such as animal housing and calorimetry,

readers are referred to Asaro et al. [4, 9].

Net energy modelling and statistical analyses

Calorimetry data from Asaro et al. [9] which included 57 observations (n = 19; 3 diets) was

reanalyzed in the present study for the purpose of creating models to predict dietary net

energy. Energy expenditure (EE) was calculated as EE (kcal/d) = [3.94 x O2 exchange (L/h)
+ 1.11 CO2 exchange (L/h)] x 24 h [10] and was segmented by time point, similar to Gooding

et al. [11]. Fasted measurements were taken 60 and 30 min prior to feeding. Postprandial EE,

fed EE, return to fasted EE, and late fasted EE were measured between 0–5.5 h, 5.5–10.5 h,

10.5–15.5 h, and 15.5–21 h post feeding, respectively. Since a distinct increase in EE was

observed between 0 and 2 h, the average EE during the first 2 h post feeding was also analyzed.

The resting fed metabolic rate (RFMR) was defined as the lowest observed value of energy

expended by each animal [3].
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In period 2, data was not recorded past the 10.5 h calibration for 4 cats due to software mal-

function. Two of these cats were fed the LowPGR diet, one was fed the MediumPGR diet, and

one was fed the HighPGR diet. The data that was collected in the 12 h previous to calibration

was included in our analyses. In period 3, the calorimetry software did not record the first 12 h

of data for one cat fed the HighPGR diet. Data from this cat was not included in our HIF

calculations.

The NE of the diets was determined as the ME per 100 g dry matter, minus HIF associated

with consuming the same amount of food [12]. Heat increment of feeding was calculated for

the first 2 h post feeding and the entire calorimetry period (0–21 h), as the difference in area

under the curve of postprandial EE minus the RFMR. Area under the curve was calculated

using the linear trapezoidal rule [13].

Our proposed NE models were developed using both the HIF from 0–2 h postprandial, and

the HIF for the complete calorimetry period (0–21 h). The pool of candidate predictor vari-

ables was selected to match the variables included in net energy prediction equations for

swine, as suggested by Noblet et al [1]. Parameter estimates and fit statistics for each model

were determined using 10-fold cross validation (seed = 495857) [14] and the PROC REG pro-

cedure in SAS (version 9.4; SAS Institute Inc., Cary, NC). Multicollinearity of predictors was

declared when variation inflation factor > 10 [15]. The developed models were compared

using root mean-square percentage error (RMSPE), and MSPE values were decomposed into

error in central tendency, error due to regression, and error due to random disturbance [16].

Statistical analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary, NC).

Statistical power was calculated for EE and was determined to be 97.4% for the sample of 19

cats [10]. Correlations between calculated NE and analyzed ME were calculated using the

CORR procedure. HIF data were analyzed using the MIXED procedure with individual cat as

the experimental unit, diet as a fixed effect, and cat and period as random effects. Repeated

measures analyses were performed for EE over time using a compound symmetry covariance

structure, which was selected as it was associated with the lowest Akaike information criterion.

The PDIFF option was specified to estimate differences in fixed effects. Energy expenditure

was pooled from all diets, and differences in EE across time were compared against fasted EE

(time = -30 min), using the MIXED procedure with a Dunnett test. Statistical significance was

declared based on a Type I error rate of 0.05. Data were reported as least-squares

means ± SEM.

Results

Diet composition, bodyweight & feed intake

The composition of the three test diets differed in macronutrient content (Table 1; [4]). Over

the duration of the study, body weight did not differ among dietary treatments (P = 0.987). On

an as-fed basis, daily food intake was higher for the HighPGR treatment (45.6 ± 2.7 g/d) than

the MediumPGR (37.9 ± 2.7 g/d) and LowPGR treatments (40.0 ± 2.7 g/d) (Table 2; [9]). How-

ever, ME intake did not differ between diets, as intended (Table 2; [9]). Differences in energy

intake would have required inclusion of energy intake on the HIF. Indeed, the effect of volume

of food should be pursued in the future.

Indirect calorimetry

Following feeding, EE increased until 1.5 h, decreased between 2 and 4 h, remained constant

until 20.5 hours, then increased until the end of the calorimetry period (P< 0.001; Fig 1).

Energy expenditure did not differ between dietary treatments in the fasted state (-1–0 h;
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P = 0.160), the immediate postprandial state (0–2 h; P = 0.148), or the postprandial state (0–5.5

h; P = 0.167). There were also no differences in RFMR between dietary treatments (P = 0.890).

In the fed state (5.5–10.5 h), EE was highest in cats fed the HighPGR diet, intermediate in

cats fed the MediumPGR diet, and lowest in cats fed the LowPGR diet (P< 0.001). In the

return to fasted state (10.5–15.5 h), EE was higher in cats fed the HighPGR and LowPGR diets

than cats fed the MediumPGR diet (Table 3; P< 0.001). In the late fasted state (15.5–21 h), EE

was higher in cats fed the HighPGR diet compared to cats fed the Medium and LowPGR diets

(P< 0.001). The cumulative EE over the 21 h period was higher in cats fed the HighPGR diet

compared to cats fed the other two diets (P< 0.001).

For the first 2 h postprandial, the HIF per 100 g DM of diet was higher for MediumPGR

than the Low- and HighPGR dietary treatments (Table 4; P< 0.001). For the complete calo-

rimetry period (0–21 h), the HIF per 100 g DM of diet did not differ among dietary treatments

(P = 0.127). Over the first 2 h postprandial, HIF amounted to 1.58%, 2.03% and 1.60% of ME

intake for the High-, Medium- and LowPGR diets, respectively, and did not differ among die-

tary treatments (P = 0.130; Table 4). Over the whole calorimetry period, (0–21 h) the HIF was

21.7%, 21.6% and 19.5% of ME intake for the High, Medium and LowPGR diets, respectively,

and did not differ among dietary treatments (Table 4).

Table 1. Proximate analysis of commercial diets differing in PGR1.

Component HighPGR2 MediumPGR3 LowPGR4

Moisture, % 7.16 6.76 5.31

Ash, % 6.36 6.31 6.38

Crude protein5, % 38.02 35.86 42.06

Crude fat, % 10.83 20.02 20.42

Nitrogen-free extract, % 34.1 29.5 23.6

Starch, % 36.75 30.72 23.56

Crude fiber, % 1.17 1.78 2.58

1Adapted from Asaro et al. [4] (S1 Table).
2Purina ONE Chicken and Rice (Nestlé, St. Louis, MO) containing as main ingredients: chicken, brewer’s rice, corn gluten meal, poultry by-product meal, wheat flour,

animal fat preserved with mixed-tocopherols, whole grain corn, soy protein isolate, fish meal, animal liver flavor, KCl, H3PO4, CaCO3, caramel color, choline chloride,

and salt.
3Iams Kitten Proactive Health (Procter & Gamble, Cincinatti, OH) containing as main ingredients: chicken, chicken by-product meal, corn meal, chicken fat preserved

with mixed tocopherols, dried beet pulp, ground whole grain sorghum, dried egg product, natural flavor, fish oil preserved with mixed tocopherols, KCl,

fructooligosaccharides, choline chloride, CaCO3, brewer’s dried yeast, DL-Met, and salt.
4Innova (Procter & Gamble, Cincinatti, OH) containing as main ingredients: turkey, chicken, chicken meal, whole grain barley and whole grain brown rice, chicken fat

preserved with mixed tocopherols, peas, natural flavors, apples, herring, flaxseed, eggs, blueberries, pumpkin, tomatoes, sunflower oil, KCl, DL-Met, carrots, pears,

cranberries, menhaden oil, cottage cheese, taurine, green beans, alfalfa sprouts, parsnips, and salt.
5Percentage of N × 6.25

https://doi.org/10.1371/journal.pone.0218173.t001

Table 2. Bodyweight, food and energy intake for cats (n = 19) consuming three commercial diets differing in PGR1.

Variable HighPGR MedPGR LowPGR SEM

Bodyweight (kg) 4.99 4.95 4.94 0.33

Food intake (g/day) 45.6a 37.9b 40.0b 2.68

Calculated ME Intake (kcal/day) 155.8 154.5 154.3 10.08

Calculated ME Intake (kJ/day) 652.2 646.4 645.4 40.17

1Adapted from Asaro et al. [9] (S2 Table).
a-bWithin a row, means without a common superscript differ (P< 0.05).

https://doi.org/10.1371/journal.pone.0218173.t002
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Net energy & proposed models

Net energy models were created with HIF values taken from 0–2 h (Table 5; equations 1–4),

and 0–21 h (Table 5; equations 5–8). There were no numerical differences in fit statistics

among models which used the same set of HIF values. However, multicollinearity (VIF> 10)

was detected in every model except those which included metabolizable energy and crude pro-

tein as dietary predictors (equations 1 and 5) (Table 5). Therefore, equations 1 and 5 were con-

sidered the most reliable to predict dietary net energy (Figs 2 and 3).

Fig 1. Average EE of cats (n = 19) consuming three experimental diets differing in PGR. Vertical dotted lines separate fasted, immediate postprandial,

postprandial, fed, return to fasted and late fasted time points, respectively.

https://doi.org/10.1371/journal.pone.0218173.g001

Table 3. Energy expenditure in kcal/kg d-1 (and kJ/kg d-1) of cats (n = 19) consuming three commercial diets differing in PGR.

Variable HighPGR MedPGR LowPGR SEM P-value

RFMR1 36.5 (152.7) 36.1 (151.0) 35.4 (148.1) 2.18 (9.12) 0.89

Overall

(0–21 h)

43.3 (181.2)a 41.8 (174.9) 41.6 (174.1) 0.29 (1.21) < 0.001

Fasted

(-1–0 h)

42.1 (176.1) 40.9 (171.1) 39.8 (166.5) 1.19 (4.98) 0.160

Postprandial

(0–5.5 h)

41.7 (174.5) 41.5 (173.6) 40.7 (170.3) 1.54 (6.44) 0.167

Immediate postprandial

(0–2 h)

43.4 (181.6) 44.5 (186.2) 42.4 (177.4) 1.78 (7.45) 0.148

Fed

(5.5–10.5 h)

42.2 (176.6)a 41.1 (172.0)b 39.9 (166.9)c 0.47 (1.97) < 0.001

Return to fasted

(10.5–15.5 h)

44.7 (187.0)a 42.4 (177.4)b 43.6 (182.4)a 0.60 (2.51) < 0.001

Late fasted (15.5–21 h) 44.1 (184.5)a 41.3 (172.8)b 42.0 (175.7)b 0.56 (2.34) < 0.001

1RFMR: Resting fed metabolic rate
a–cWithin a row, means without a common superscript differ (P< 0.05).

https://doi.org/10.1371/journal.pone.0218173.t003
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Discussion

The present study is the first to propose equations that estimate NE values of domestic cat

diets. Though indirect calorimetry has previously been used to analyze EE, this study is origi-

nal in quantifying the HIF as a proportion of ME intake in cats. Furthermore, to our knowl-

edge, this is the first study to follow cats for a prolonged period of time post-feeding and

determine changes in energy expenditure at different points throughout the 21 h calorimetry

period. The results of this study were novel and resulted in the development of equations that

have potential to drastically alter how we determine dietary energy and the resultant feeding

recommendations for adult cats.

Basal metabolic rate (BMR) could not be measured in the current experiment. Measure-

ments of BMR require an animal to be in a postabsorptive state, and not have undergone sig-

nificant activity [17]. However, eliminating activity in an animal study requires restraining of

animals, which would thereby increase stress and lead to inaccurate measurements. Thus,

RFMR was used to approximate BMR, which has been defined as the lowest observed value of

energy expended by an animal in a fed state that otherwise meets the criteria for basal metabo-

lism [3].

The observed measurements of EE were expected and are similar to those reported in litera-

ture [18–22]. In 16 neutered normal-weight cats, the least observed metabolic rate (LOMR)

was approximately 39 ± 1 kcal/kg d-1 [19]. The LOMR can be described as the lowest metabolic

rate observed during a continuous record of metabolic rate and is synonymous to our RFMR

measurements [19, 23]. In cats fed both high fat and high carbohydrate diets, fasted EE ranged

from 44–47 kcal/kg d-1, and fed EE ranged from 43–51 kcal/kg d-1 [18]. Furthermore, Center

et al. [20] found daily resting EE to be 36 ± 7.7 kcal/kg d-1 in cats with underweight, normal

and overweight body condition scores. These similarities provide support for our results and

validate their use to predict energy algorithms for the domestic cat in general.

The duration of observed postprandial EE increase in the present study is similar to that of

other species, both monogastric and ruminant. In sheep, EE increased by 40–80% during

Table 4. ME and HIF used to determine NE per 100g of diet.

Variable HighPGR MedPGR LowPGR SEM P-value

ME (kcal/100g DM)1 458.9a 490.6b 505.5c 3.85 < 0.001

ME (kJ/100g DM) 1920.0a 2052.7b 2115.0c 16.1 < 0.001

HIF0–2 h
2

HIF (% ME) 1.58 2.03 1.60 0.25 0.130

HIF (kcal/100g DM) 5.82a 8.87b 6.56a 1.00 < 0.001

HIF (kJ/100g DM) 24.4a 37.1b 27.4a 4.18 < 0.001

Measured NE (kcal/100g DM) 453.03a 481.7b 499.0c 1.00 < 0.001

Measured NE (kJ/100g DM) 1895.5a 2015.4b 2087.8c 4.18 < 0.001

HIF0–21 h
3

HIF (% ME) 21.7 21.6 19.5 2.15 0.501

HIF (kcal/100g DM) 77.6 94.6 79.3 9.20 0.127

HIF (kJ/100g DM) 324.7 395.8 331.8 38.5 0.127

Measured NE (kcal/100g DM) 381.3a 396.0b 426.3c 9.20 < 0.001

Measured NE (kJ/100g DM) 1595.4a 1656.9b 1783.6c 38.5 < 0.001

a–cWithin a row, means without a common superscript differ (P< 0.05).
1Analyzed in Asaro et al. [4]
2HIF from 0–2 h postprandial
3HIF from 0–21 h postprandial

https://doi.org/10.1371/journal.pone.0218173.t004
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consumption of a meal and persisted for up to 2 h before rapidly declining to rates similar to

those recorded in a fasted state [24]. In fur seals and sea lions, metabolism peaked approxi-

mately 3 h after a meal, and returned to fasting levels between 6 and 10 h [25]. Furthermore,

dietary induced thermogenesis in humans lasted for 4.8 h and 5.8 h after consumption of pro-

cessed-food meals and whole-food meals respectively [26]. Certainly, variances in animal size,

meal composition, and experimental methods may contribute to differences in HIF among

species. Thus, it was not surprising to see a 2 h postprandial energy response in cats in the pres-

ent study.

Heat increment of feeding values from 0–2 h were lower than expected compared to terres-

trial herbivores and omnivores. Although HIF values have not been previously reported for

the domestic cat, the HIF accounts for up to 30% of ME intake in other mammals and birds

[27]. However, in other carnivorous endotherms, HIF values appear to be much lower; in

house wrens [28], harbor seals [29], and penguin chicks [30], the HIF amounted to 6.3%, 4.7%,

and 10.0% of ingested ME, respectively. Furthermore, Kendall et al. [31] found that cats have

significantly lower costs to maintain body weight versus beagles when compared on a meta-

bolic body weight basis [11]. Interestingly, HIF values in this study were similar to those

reported in carnivorous fish; in salmonids fed complete diets, the HIF was less than 3% of

ingested ME [27]. Furthermore, due to the low energy cost of protein metabolism in fish, the

NE of protein is higher for salmonids than mammals and birds [27]. This similarity suggests

that perhaps a high efficiency of utilization, and thus low energy production in the postpran-

dial state, results in analogous HIF values among carnivorous species. Perhaps like carnivorous

fish, cats have a low energy cost of protein metabolism [27]. The unique relationship between

protein metabolism and energy production in cats may explain why our HIF values are consid-

erably lower than those reported in other mammals, but similar to carnivorous fish.

When HIF was taken from 0–21 h and expressed as a proportion of ME, the present results

were comparable to those in other mammals. In pigs, the HIF for starch, sugars, and digestible

crude protein represented 29% of ME content on average [1]. In ruminants, the HIF is variable

and can represent 30–70% of ME intake, though microbial fermentation and rumination con-

tribute largely to these costs [32]. However, by taking the complete calorimetry period into

Table 5. Proposed NE models and associated R2 and RMSPE values using HIF values from 0–2 h and 0–21 h postprandial.

Proposed Model R2 RMSPE ECT%1 ER%2 ED%3

HIF0–2 h 1. NE� = (.946 × ME¶) + (.519 × CP§)– 2.186 .976 2.99 0 2.42 97.58

2. NE = (.747 × ME)—(.752 × Starch) + 139.799 .976 2.99 0 2.42 97.58

3. NE = (1.158 × ME)—(.816 × CL†)– 68.523 .976 2.99 0 2.42 97.58

4. NE = (.756 × ME) + (7.282 × CF‡) + 97.013 .976 2.99 0 2.42 97.58

HIF0–21 h 5. NE = (.693 × ME) + (3.375 × CP)– 74.533 .330 25.94 0.01 67.37 32.62

6. NE =—(.595 × ME)—(4.886 × Starch) + 848.147 .330 25.94 0.01 67.37 32.62

7. NE = (2.069 × ME)—(5.306 × CL)– 505.621 .330 25.94 0.01 67.37 32.62

8. NE =—(.541 × ME) + (47.320 × CF) + 570.107 .330 25.94 0.01 67.37 32.62

1ECT: error in central tendency; expressed as percentage of RMSPE
2 ER: error due to regression; expressed as percentage of RMSPE
3 ED: error due to random disturbance; expressed as percentage of RMSPE

�Net energy (kcal/100g DM)
¶Metabolizable energy (kcal/100g DM)
§Crude protein (g/100g DM)
†Crude lipids (refers to crude fat; g/100g DM)
‡Crude fibre (g/100g DM)

https://doi.org/10.1371/journal.pone.0218173.t005
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account, measurements cannot necessarily be categorized as HIF, which are usually measured

in a postprandial rather than a fasted state. Furthermore, models (equations 5–8) created using

the HIF values from 0–21 h fit our data poorly as shown by the low R2 values. Due to the

amount of data collected and the variation in the data over the 21 h postprandial period, it was

difficult to achieve a good fit while being limited to the inclusion of 2 dietary parameters. Eval-

uating a greater number of experimental diets would allow for the fitting of more parameters,

which could potentially result in equations that more accurately fit the observed NE values.

Regardless, it is suggested that the observed increase in EE at the end of the calorimetry period

is a characterizing feature of cat nutrient metabolism in general, as it was consistently observed

among all diets. As previously mentioned, the costs associated with protein metabolism are

higher compared to other macronutrients [33]. It is possible that the cats used in this study dis-

played increased rates of protein oxidation or deposition at the end of the calorimetry period.

Investigation of the timing and specifics of nutrient metabolism in cats may elucidate this

unexplained increase in EE.

This study was limited in the ability to parameterize variables in our models. Net energy

prediction equations have been developed for other species that parameterize all the dietary

macronutrients in a single equation [1, 2]. However, as the present study only employed the

Fig 2. Observed versus predicted plot of dietary net energy using equation 1 (NE = (.946 × ME) + (.519 × CP)– 2.186); R2 = .976.

https://doi.org/10.1371/journal.pone.0218173.g002
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use of three diets, only one macronutrient input, in combination with ME, could be parame-

terized at a time. Because of these limitations, fit statistics did not differ among models using

the same set of HIF values. However, assessment for multicollinearity determined that predic-

tor variables were highly correlated in every model except those which included metabolizable

energy and crude protein as dietary parameters (equations 1 and 5). It is likely that this issue is

reflective of issues in the sampling methodology as data has been collected from a small subset

of independent variables, and not multicollinearity within the population. Regardless, multi-

collinearity can create inaccurate estimates of regression coefficients and degrade the predic-

tive ability of a model [14]. Therefore, we cannot be confident that the parameterized

coefficients or fit statistics of the multicollinear models are accurate. Indeed, the authors of the

present study investigated methods such as ridge regression and lasso regression to combat

issues of multicollinearity. However, due to the likelihood that the issue is due to sampling

methodology, these methods were not implemented. Obtaining an expanded data set with

multiple experimental diets would likely rectify the problem. As such, the equations which

included metabolizable energy in combination with crude protein (equations 1 and 5) were

determined to be the most reliable models to predict dietary net energy. Additionally, this

study was the first to express HIF as a proportion of ME for cats, therefore restricting the abil-

ity to comment on the accuracy the developed prediction equations until more work is

Fig 3. Observed versus predicted plot of dietary net energy using equation 5 (NE = (.693 × ME) + (3.375 × CP)– 74.533); R2 = .330.

https://doi.org/10.1371/journal.pone.0218173.g003
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completed. Thus, further research would focus on testing the accuracy of these equations to

predict NE values of additional commercial diets.

Conclusion

In conclusion, NE, which accounts for energy spent in the digestion, absorption and metabo-

lism of nutrients, is a more accurate measure of energy directly available to an animal [3].

Expressing energy density on an NE basis could allow a more accurate feeding recommenda-

tion than what is currently utilized for commercial feeding recommendations and limit the

provision of excess calories to cats. Thus, the present study proposed multiple equations to

estimate a NE value and recommends using the dietary parameters of ME and CP to predict

NE of complete diets for domestic cats.
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