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ABSTRACT Increasing evidence shows that the influence of microbiota on biogeo-
chemical cycling, plant development, and human health is executed through a com-
plex network of microbe-microbe interactions. However, characterizing how mi-
crobes interact and work together within closely packed and highly heterogeneous
microbial ecosystems is extremely challenging. Here, we describe a rule-of-thumb
framework for visualizing polymicrobial interactions and extracting general principles
that underlie microbial communities. We integrate elements of metabolic ecology,
behavioral ecology, and game theory to quantify the interactive strategies by which
microbes at any taxonomic level compete for resources and cooperate symbiotically
with each other to form and stabilize ecological communities. We show how the frame-
work can chart an omnidirectional landscape of microbial cooperation and competition
that may drive various natural processes. This framework can be implemented into
genome-wide association studies to unravel the genetic mechanisms underlying micro-
bial interaction networks and their evolutionary consequences along spatiotemporal gra-
dients.

IMPORTANCE Identifying general biological rules that underlie the complexity and
heterogeneity of microbial communities has proven to be highly challenging. We pres-
ent a rule-of-thumb framework for studying and characterizing how microbes interact
with each other across different taxa to determine community behavior and dynamics.
This framework is computationally simple but conceptually meaningful, and it can pro-
vide a starting point to generate novel biological hypotheses about microbial interac-
tions and explore internal workings of microbial community assembly in depth.
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Microbial communities affect a wide range of natural processes, from biogeochemi-
cal cycling to plant development and animal and human health (1, 2). Surveys of

microbiome composition across various ecological settings from the soil to the human
body have consistently revealed that microbes are organized into functional and stable
communities through fundamental ecological principles (3, 4). However, the manner in
which the structural-functional relationship of polymicrobial communities is estab-
lished remains poorly understood, largely because we know little about the ways in
which microbes interact with each other.

Different microbes in the same community would compete for resources and space
but also cooperate through metabolic exchange or quorum sensing to reach the
community’s equilibrium (5, 6). This process proceeds like a game. Game theory,
originally developed in economic research (7), enables the formulation of an individual
strategy that maximizes payoff by incorporating the strategies of other members (8).
Several authors have used pairwise game theory to study the structure of microbial
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communities (9–11). However, in microbial community assembly as a densely packed
ecosystem, one microbe may interact not merely with a single member but rather with
multiple members to form a complex network. Recent attempts have been made to
elucidate the architecture of microbial interactions using network tools (12–17), but
these tools need difficult-to-collect longitudinal abundance data to infer informative
microbial networks.

Here, we build a quantitative framework for interrogating and interpreting the
pattern and distribution of microbial interactions within microbial community assem-
bly. We expand and scale up game theory to large, complex network systems through
a simplified mathematical formulation. Not relying on the availability of longitudinal
data, our network game framework constructs microbial networks of any dimension
and at any level of phylogenetic taxa. The quantitative feature of the framework
enables it to identify and predict the general principles that modulate the alterations
of microbial interactions.

RESULTS
Integrating metabolic theory and game theory into microbial networks. Met-

abolic theory states that the physiological, morphological, and life history traits of an
organism vary with its size among individuals or species in the power law (18, 19). This
theory characterizes a phenomenon that is widespread at all levels of organization from
individuals to the biosphere. Here, we use a power equation to describe how the
capacity of a particular microbe to survive and proliferate, broadly defined as fitness (F),
scales with its abundance (N), expressed as

F � N0Nb, or F ⁄ N0 � Nb (1)

where N0 is a normalized constant and b is the scaling exponent. By taking the
logarithm of the two sides of equation 1 and moving b to the left side, we obtain

log�F/N0�/b � log N (2)

Here, we define G � log�F/N0�⁄b as the fitness index of the microbe. The equality of
equation 2 implies that the abundance N can be used as a proxy of the fitness of the
microbe.

Consider a pairwise interaction as a game, in which two microbes, each as a player,
tend to maximize their own payoff (fitness) through an action contingent upon the
strategy of the counterpart. In a so-called zero-sum game, the interests of the players
are in complete conflict; that is, one player’s gain is always another player’s loss.
Complete cooperation implies that the two players achieve a maximum gain simulta-
neously. Let G1 and G2 denote the fitness indices of two microbes A and B, respectively,
whose sum is positively correlated with the strength of their cooperation. This can be
proven by the following expression for the “inclusive” fitness of the two microbes:

G1 � G2 � log N1 � log N2 � log N1N2 (3)

where N1 and N2 are the abundance levels of microbes A and B, respectively. Given the
amount of resources shared by the two microbes, i.e., N1 � N2 is fixed, this sum
(inclusive fitness) achieves a maximum value only when N1 is equal to N2, which implies
that complete mutual cooperation (N1 � N2) can ensure that both microbes obtain a
maximum fitness simultaneously and, therefore, a maximum inclusive fitness (Fig. 1).
Any value below this maximum is due to deviation from the equality N1 � N2. As such,
the log product of abundances of two microbes, log N1N2, can be used to measure and
quantify the strength of their cooperation, i.e., the amount of mutualism or mutual
benefits.

In microbial communities where resources become limited, a microbe will grow at
the cost of its conspecific microorganism. The asymmetric form of such a competitive
relationship is called predation or parasitism by which one microbe benefits by
consuming and damaging the resources of others. We define the difference of fitness
of two microbes as exclusive fitness to mathematically describe the strength of
parasitism, expressed as
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G1 � G2 � log N1 � log N2 � log�N1 ⁄ N2) (4)

where the growth of microbe A proceeds at the expense of microbe B, with the extent
of such parasitism quantified by the log ratio of the abundances of two microbes, log
(N1/N2). This ratio can be used as a measure for the parasitism of one microbe at the
expense of the other, depending on whether it is larger or less than zero (Fig. 1). For
consistency, we stipulate the larger abundance as the numerator and the smaller
abundance as the denominator to calculate the ratio.

Plotting log products and log ratios of the abundance of two microbes in the same
illustration allows the comparison of mutualism and parasitism as two distinct pro-
cesses that govern the microbial community assembly (Fig. 1). The two microbes
approach their highest peak of mutualism when their abundance levels, N1 and N2,
tend to be equal, whereas parasitism becomes predation in the case in which one
microbe completely inhibits the other, leading N1 and N2 to have opposite abundance
levels. Between complete cooperation and complete competition are the intermediate
processes that not only include cooperation but also implicate competition. In other
words, cooperation may contain competition, while competition may also include
cooperation. It is likely that cooperation and competition, two different but dynamically
related processes, together underlie the overall microbial community behavior.

Interpreting the mathematical descriptors of ecological interactions from be-
havioral ecology. Equations 3 and 4 that quantitatively describe the strengths of
mutualism and parasitism have an ecological basis. In behavioral ecology, collective
motion phenomena, such as swarming, flocking, and schooling behavior, are regarded
as being ubiquitous in a large variety of animal species ranging from bacteria to
humans (20, 21). Under natural selection, such collective animal behavior has been
shaped in two important ways. First, animals of roughly similar size in a population tend
to cooperate with each other to form group-level coordination under rules of attraction
and alignment (22–25). Animals prefer to shoal and cooperate with individuals that
resemble themselves, because any shoal member that stands out in appearance will be
preferentially targeted by predators, a phenomenon called the “oddity effect” (26). As
such, if two animals cooperate mutually, they tend to be of similar body size. In

FIG 1 Quantitative description of mutualism (blue) and parasitism (red). Assume a microbial community
in which two microbes A and B, whose abundance is denoted by N1 and N2, respectively, interact with
each other. The blue curve, specified by log N1 � log N2, describes how the two microbes cooperate to
form mutualism, with arrows indicating the increase of mutualism with increasing equality of their
abundance. The red curve, specified by log N1 – log N2, is indicative of parasitism through competition,
by which one microbe gains by reducing the fitness of the other, with arrows representing the direction
of increasing parasitism. The black circle is the position at which mutualism achieves a maximum degree
whereas parasitism is minimum.
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mathematics, given that the sum of two variables is fixed, their product reaches a
maximum when they have the same value. Thus, since the magnitude of the product
is related to how much the two variables are similar in value, we hypothesize that the
product of two animals’ body sizes is positively correlated with the strength of
cooperation.

Second, dominant animals of large body size tend to be agonistic to subordinates
of small body size during a conflict between members of the same population (27, 28).
Such agonistic behavior, regarded as an adaptive aggressive and defensive action, plays
a pivotal role in resource acquisition, reproductive success, and even survival (29). On
the basis of the animal behavioral theory described above, we hypothesize that the
ratio of body mass of a larger animal to a small animal in the socialized environment
can serve as a surrogate of the strength of parasitism.

Topological landscape of cooperation and competition: a true story from the
gut microbiota. The gut of a healthy human contains symbiotic interactions among
500 to 1,000 bacterial species, belonging to different genera, all the way up through
families, orders, classes to phyla (30). All these highly heterogeneous bacteria interact
and work together to determine the stability of the microbial community and further
impact human health. Davenport et al. (31) reported 16S rRNA gene sequencing data
of the gut microbiota at 101 genera and 8 phyla collected from 127 hosts of a founder
population, the Hutterites, of which 93 were sampled in winter, 91 in the following
summer, and 57 in both winter and summer. We calculated pairwise log products of
abundance between different genera and pairwise log ratios of abundance of a bigger
genus over a smaller genus, which allowed us to reconstruct 93 winter-specific 101-
node networks and 91 summer-specific 101-node networks for mutualism and para-
sitism, respectively. We merged higher-dimensional genus-level networks into lower-
dimensional phylum-level networks by averaging log values over genera from within
the same phylum (used as nodes) and those over genus pairs from different phylum
pairs (used as edges). Averaged over all hosts from the same season, we reconstructed
eight-node mutualism and parasitism networks for winter and summer, respectively
(Fig. 2). The significance of mutualism and parasitism within and between phyla was
tested using information about sampling variances among hosts. A detailed procedure
of reconstructing and testing networks is given in Materials and Methods.

Strong mutualism and parasitism exist in the gut microbiota, but the extent and
frequency of these interactions depend on the phylum considered and how phyla are
paired and are also affected by seasonal change. Of all phyla, Firmicutes and Bacte-
roidetes not only display the most intense genus-genus mutualism within their own
phyla but also pursue the most intense cooperation with one another and other phyla
as well (Fig. 2A). It seems that the mutualism involving these two phyla dominate the
network of mutualism. Many phyla were found to have strong internal competition,
although such within-phylum competition mostly increases from winter to the next
summer (Fig. 2B). In general, mutualism between pairwise phyla is strongly correlated
between winter and summer (r � 0.93), with a larger extent than the correlation of
competition between the two seasons (r � 0. 65). Significance tests discerned different
patterns of how the strengths of mutualism and parasitism vary with season. From
winter to summer, within-phylum mutualism decreases for Firmicutes and increases for
Bacteroidetes, but it is stable for the other phyla, whereas between-phylum mutualism
generally decreases (Fig. 2A). The strength of mutualism involving Firmicutes, Actino-
bacteria, and Proteobacteria decreases dramatically from winter to summer (P � 10�9).
Lentisphaerae and Deinococcus-Thermus are the two phyla that exhibit weak internal
and weak external cooperation with other phyla, with a slight season-dependent
change.

From winter to summer, within-phylum parasitism increases for most phyla, includ-
ing Firmicutes and Bacteroidetes, decreases for Deinococcus-Thermus and Lentisphaerae,
and is unchanged for Verrucomicrobia. Figure 2B shows the topological network of
directed and weighted between-phylum parasitism. Both Firmicutes and Bacteroidetes
tend to parasitize other phyla, such as Actinobacteria, Proteobacteria, and Fusobacteria,
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but are parasitized by Verrucomicrobia in the two seasons. It is interesting to see that
Firmicutes parasitizes Bacteroidetes in winter, but this relationship changes during
summer. All these above parasitic relationships construct the main sketch of the
network. In general, the strength of parasitism between phyla decreases from winter to
summer, and this phenomenon may be due to the necessity in winter to favor microbes
allowing for higher digestion and absorption of nutrients to store more energy for the
cold season as well as to the fact that summer offers a greater nutritional variety which
per se enhances a greater microbial diversity compared to winter.

Our theory can estimate and test the correlations of microbial cooperation and
competition with host health risk. The plot of correlation significance tests shows how
mutualism or parasitism covaries with the health risk trait of body mass index (BMI) over
sampled hosts. Considering all possible pairs, mutualism has a much larger likelihood
to correlate with BMI than parasitism (Fig. 2). In general, the correlations of both
mutualism and parasitism with BMI are largely consistent over season, except for a few
cases. Mutualism within phyla is highly correlated with BMI, especially for some phyla
such as Firmicutes, Bacteroidetes, and Actinobacteria, and parasitism within phyla is also
highly correlated with BMI, but with some of these correlations changing over seasons.
A strong correlation of within-phylum parasitism with BMI for Deinococcus-Thermus
occurs in winter, but it decreases dramatically in summer. There is a particular group of
phylum pairs that are correlated with BMI through mutualism or parasitism. For

FIG 2 The network of mutualism (A) and parasitism (B) among eight phyla (distinguished by colors) derived from 127 hosts
of the Hutterites, including 93 in winter and 91 in summer. (Panels 1 and 3) Mutualism (indicated by double arrowed lines)
and parasitism (indicated by T-shaped lines) expressed independently in winter and summer. The size of the circles indicates
the strength of mutualism or parasitism among different genera within phyla, whereas the thickness of the lines indicates the
strength of pairwise mutualism or parasitism among different genera from different phyla. (Panels 2) On the diagonal of the
matrix are the signs of within-phylum mutualism or parasitism changes from winter to summer (� for increase, 0 for no
change, and – for decrease). The right bottom part reports the correlation coefficient (with its estimated confidence interval)
of mutualism or parasitism between the two seasons, representing the season-dependent similarity of the mutualism or
parasitism networks. The left top part reports a colored scale representing the results of the significance test of the
season-dependent strength difference of mutualism or parasitism between the same phylum pairs. The more intense the color,
the higher the degree of mutualism or parasitism. (Panels 4) Cells on the diagonal of the matrix represent the significance tests
of correlations of within-phylum mutualism (A) or parasitism (B) with BMI, each of which is separated into two parts for winter
(left top) and summer (right bottom). The left top and right bottom portions represent the significance test of the correlations
of between-phylum mutualism or parasitism with BMI. The significance tests of the correlations of the microbial abundance
of each phylum with BMI are given in the BMI columns (winter) and the BMI rows (summer).
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example, Firmicutes and Bacteroidetes each cooperate with all other phyla to relate to
BMI (Fig. 2A). Actinobacteria cooperates with more phyla in summer than in winter to
link to BMI. The parasitism of Firmicutes negatively impacting Actinobacteria and
Proteobacteria is remarkably correlated with BMI in both seasons (Fig. 2B). A similar case
is true for the parasitism of Proteobacteria affecting Bacteroidetes and Actinobacteria.
Bacteroidetes parasitizes Verrucomicrobia, and this interaction is linked to BMI in sum-
mer, but not in winter.

In previous studies, the microbiota impact on host performance was assessed by the
correlation analysis of microbial abundance with a host trait (31). However, if we
incorporate microbial interactions into such a correlation analysis, we can make new
discoveries. For example, within-phylum mutualism for Bacteroidetes is more strongly
correlated with BMI than Bacteroidetes microbial abundance in both seasons, especially
in summer (Fig. 2A). A similar phenomenon was observed for other phyla, such as
Verrucomicrobia. Also, parasitism is associated with BMI in a different way than micro-
bial abundance is. For instance, within-phylum parasitism for Verrucomicrobia exhibits
much stronger correlations with BMI than its abundance in both winter and summer
(Fig. 2B). All these data suggest that our theory provides a new view of the influence
of microbiota, thanks to dissecting how different microbes interact with each other in
a topological network.

Transition from cooperation to competition. There are many biological processes
at all levels of organization, where cooperation intertwines with competition (32, 33). In
a microbial system like the one shown in Fig. 1, two microbes may strive to cooperate
until they achieve a complete level of cooperation. Any incomplete cooperation
accompanies competition by which two microbes hinder each other’s fitness. Again,
using Davenport et al.’s (31) gut microbiota data, we standardized the values of log
products and log ratios among 8 phyla and 28 phylum pairs and plotted standardized
log ratios (parasitism) against standardized log products (mutualism) in winter and
summer, independently (Fig. 3). The results show that mutualism and parasitism are
independent of one another, and therefore, these two interaction states may mutually
and reciprocally transit from one state to the other over seasons.

By linking maximum mutualism to maximum parasitism by a line, we can charac-
terize how a particular microbe transits from cooperation to competition. The microbes
located on or near this line are thought to be in a cooperation-competition steady state.
Microbes below this line tend to display milder interactions, whereas those above this
line exert more intense interactions. Genera within Actinobacteria trigger moderate
strengths of mutualism and parasitism in winter (Fig. 3A), but they are characterized by

FIG 3 Correlations between mutualism and parasitism over phylum pairs in winter (A) and summer (B).
Single-colored and double-colored circles are within-phylum and between-phylum mutualism or para-
sitism, respectively. The arrowed line on the diagonal shaded area indicates the change of microbial
interaction from maximum mutualism to maximum parasitism.

Wang et al.

September/October 2019 Volume 4 Issue 5 e00550-19 msystems.asm.org 6

https://msystems.asm.org


stronger parasitism and weaker mutualism during summer (Fig. 3B). In general, for
some phyla, such as Verrucomicrobia, the relative importance of mutualism and para-
sitism is stable between the two seasons, but for many phyla and phylum pairs, the
relative importance of mutualism and parasitism changes dramatically from winter to
summer. A quantitative assessment on how each phylum or phylum pair is apt to
cooperate or compete can be seen from Fig. 3, along with its season-dependent
change.

DISCUSSION

Of the ecological forces that govern the assembly and stability of microbial com-
munities, microbial interactions have proven to be extremely difficult to study because
of their high complexity, high heterogeneity, and high dynamics. Although temporal or
perturbed data are powerful for inferring microbial networks, they are usually unavail-
able and expensive (34). As such, a simple, or even rough, approach that can capture
main information about microbial interaction networks from high-dimensional micro-
bial consortia becomes highly essential. Results from such an analysis can serve as a
starting point to investigate how microbes interact with each other to determine
community phenotypes at high resolution. By integrating elements of metabolic
ecology, behavioral ecology, and game theory, we proposed a rule-of-thumb frame-
work for detecting, testing, and cataloguing microbial interactions. This network game
model enables the reconstruction of microbial networks at any dimension for microbial
community assembly with any density and heterogeneity.

Our model found that the greatest amount of mutualism and parasitism occurs
within and between the Bacteroidetes and Firmicutes phyla. Using more informative
longitudinal abundance data from the gut microbiota, Venturelli et al. (34) identified
the critical role of microbial interactions exerted by these two phyla in shaping microbial
communities. The consistency of our result with the results from a well-designed
experiment suggests the biological relevance of our model. Interactions may occur
between different microbes from the same taxon and different taxa. It is also possible
that interactions take place across phylogenetic clades. For example, one microbe from
a taxon may interact with the entire group of other higher taxa. In Materials and
Methods, we describe a full model to characterize microbial interactions at all possible
levels of phylogeny. There is some evidence that intraspecific interactions can influence
interspecific interactions (5, 17). Similarly, interspecific interactions may affect interac-
tions between different genera, and intergenus interactions may influence interactions
between different families, etc. These complex hierarchical patterns of interactions
across clades can be identified using a statistical testing procedure outlined in Materials
and Methods (Tables 1 and 2).

Although we focus on modeling mutualism and parasitism, our model can be
quantitatively generalized to study other types of microbial interactions, such as
antagonism (by which two microbes compete against each other), commensalism
(where one microbe benefits the second, but the latter has no effect on the former),
and ammensalism (in which one microbe harms the second, whereas the second

TABLE 1 Data structure of microbial abundance from different strains, species, genera, families, orders, classes, and phyla

Phylum Class Order Family Genus Species Strain Abundance

1 1 1 1 1 1 1 y1111111

1 1 1 1 1 1 2 y1111112

1 1 1 1 1 2 3 y1111123

1 1 1 1 1 2 4 y1111124

1 1 1 1 2 3 5 y1111235

1 1 1 1 2 3 6 y1111236

1 1 1 1 2 4 7 y1111247

1 1 1 1 2 4 8 y1111248
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microbe has no effect on the first). Because the log product of abundance of two
microbes is proportional to the strength of mutualism, its value may span a range from
cooperation to competition. Similarly, the magnitude of the log ratio of abundance of
a bigger microbe to a smaller microbe reflects the strength of parasitism, which covers
commensal or ammensal relationship. Yet, distinguishing between commensalism and
ammensalism needs additional information.

It should be pointed out that our model was derived from the integration of
multiple disciplines. Its biological interpretation is founded on the metabolic and
behavioral ecology of animal body size, which allows us to reconstruct microbial networks
from abundance data. However, predators discern a target from a group of prey not
only based on prey size but also prey color or even prey smell (26). It is unclear how to
incorporate color- or smell-based oddity effects into our game network model, which
presents a topic of great interest deserving further investigation.

By quantifying the inner workings of microbial community assembly, our network
game model overcomes the descriptive limitation of empirical approaches for describ-
ing the global behavior of microbial communities. The model can be merged with
evolutionary studies to investigate the fitness consequences of ecological interactions
along a spatiotemporal gradient helping to identify the reason why a particular pattern
of microbial interactions is favored by natural selection. In host-microbe interaction
studies, this model can find its application in unveiling the genetic and molecular
mechanisms underlying microbial interactions and identify genes that play a key role
in shaping microbial networks. It can further construct a causal or predictive link of
microbial networks within host phenotypes. With these capacities, the model provides
a tool to dissect and engineer the interactions within microbial communities.

MATERIALS AND METHODS
Estimating mutualistic and parasitic relationships. Consider a microbial community in which

ecological interactions occur at the lowest taxonomic level. Suppose that we use a high-resolution
technique that allows constituent microbes to be classified at the strain level. Let yijklmn denote the
abundance of strain i from species j from genus k from family l from order m, class n, and phylum o, with
i � 1, . . ., Ij, j � 1, . . ., Jk, k � 1, . . ., Kl, l � 1, . . ., Lm, m � 1, . . ., Mn, n � 1, . . ., N, o � 1, . . ., O. To illustrate
the idea of game theory integration, we use a didactic example with the data structure (Table 1), where
abundance is shown at hierarchic levels of classification. We describe the mutualism and parasitism of
two different strains by the product of the abundances of the two strains and the inverse of the product,
respectively, and the reciprocal altruism of two strains by the ratio of the abundance of the two strains.
By taking log transformation of these derivatives, we obtain measures of cooperation versus competition
and reciprocal altruism by the summation and difference of two log-transformed abundances, respec-
tively. To reflect these measures, we reorganize the data by pairing different strains in the format given
in Table 2. Since the total number of strains is I, there are W � 1/2I(I – 1) pairs. Let yw

� and yw
– denote the

summation and difference of abundance between two strains in pair w (w � 1, . . ., W), on which we can
test the effect of species pairs. Species pairs have 1/2J(J – 1) possibilities. For the sth species pair, the
number of strain pairs is denoted by Ts.

Testing mutualistic and parasitic interactions. We formulate a multiplicative likelihood at the
species pair level, expressed as

Ls(y�, y�) � �
s�1

1
2

(J�1)J �
w�1

Ts

fs(yw
�, yw

�) (5)

where fs�yw
�,yw

�� is a bivariate normal density function of the summation and difference of abundance of
strains in pair w, characterized by mean vector ��s

�,�s
�� and the covariance matrix composed of variance

of strain summation ��
2 , variance of strain difference ��

2 , and their correlation �.
After the parameters determining the density function are estimated, we can formulate the following

hypotheses:

H0:(�s
�, �s

�) � (��, ��)

H1:(�s
�, �s

�) � (��, ��) for all s � 1 , . . . ,1 ⁄ 2J(J � 1)

The acceptance of H1 suggests that species pairs determine ecological interactions among different
strains through the summation and difference of abundance between different strains. Furthermore, by
testing H0: �s

� � ��, we can characterize whether mutualism or parasitism exists among microbes at the
species level. Similarly, the existence of reciprocal altruism can be characterized by testing H0: �s

� � ��.
Similar procedures can be extended to test whether and how microbes interact at the other higher

levels, such as genus, family, order, class, and phylum levels. More interesting, the model can test
whether and how microbes from a lower level interact with those from a higher level. For example, a
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particular set of species may interact with the microbes at the order level. This can be tested by
formulating a certain hypothesis.

Calculating correlations. The following correlations are calculated.

(1) Network correlation. How two networks differ can be assessed by calculating the correlations (r)
of nodes and edges between the networks. We calculate r between mutualism networks from
winter and summer and between parasitism networks from winter and summer. These r values
allow us to compare how networks change from season to season.

(2) Interaction correlation. How microbial interactions at the phylum level change from winter to
summer can be assessed by calculating the correlations of edges of genus-level networks across
hosts from each season. These results are given in the upper part of winter-summer matrix in
panels 2 (Fig. 2).

(3) Microbial abundance-host trait correlation. We calculated the correlations between microbial
abundance at the phylum level and BMI across hosts from a different season. These results are
given in the BMI columns and rows in panel 3 (Fig. 2).

(4) Microbial interaction-host trait correlation. We calculate the correlations between microbial
interactions within and between phyla and BMI across hosts from a different season. The
correlations between microbial interactions within and between phyla and BMI across hosts from
a different season are given on the diagonal and top part of matrix, respectively, in panels 3
(Fig. 2).

Data availability. The data used can be downloaded at https://doi.org/10.1371/journal.pone
.0140301. The computer code can be requested from the corresponding author.
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