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A B S T R A C T   

Genome-wide sequencing allows for prediction of clinical treatment responses and outcomes by 
estimating genomic status. Here, we developed Genomic Status scan (GSscan), a long short-term 
memory (LSTM)-based deep-learning framework, which utilizes low-pass whole genome 
sequencing (WGS) data to capture genomic instability-related features. In this study, GSscan 
directly surveys homologous recombination deficiency (HRD) status independent of other exist-
ing biomarkers. In breast cancer, GSscan achieved an AUC of 0.980 in simulated low-pass WGS 
data, and obtained a higher HRD risk score in clinical BRCA-deficient breast cancer samples (p =
1.3 × 10− 4, compared with BRCA-intact samples). In ovarian cancer, GSscan obtained higher 
HRD risk scores in BRCA-deficient samples in both simulated data and clinical samples (p = 2.3 ×
10− 5 and p = 0.039, respectively, compared with BRCA-intact samples). Moreover, HRD-positive 
patients predicted by GSscan showed longer progression-free intervals in TCGA datasets (p =
0.0011) treated with platinum-based adjuvant chemotherapy, outperforming existing low-pass 
WGS-based methods. Furthermore, GSscan can accurately predict HRD status using only 1 ng 
of input DNA and a minimum sequencing coverage of 0.02 × , providing a reliable, accessible, 
and cost-effective approach. In summary, GSscan effectively and accurately detected HRD status, 
and provide a broadly applicable framework for disease diagnosis and selecting appropriate 
disease treatment.   

1. Introduction 

Genomic status reflects the driving forces of tumorigenesis in many cancers types [1–3]. By detecting genomic biomarkers that are 
associated with the cancer-driving genomic statuses, we can indirectly predict the clinical responses to many cancer-targeting 
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treatments [4–6]. One of the most commonly used genomic statuses, homologous recombination deficiency (HRD), is deduced by 
analyzing the homologous recombination repair (HRR) pathway, and could indicate sensitivity to both platinum-based chemotherapy 
and poly (ADP-ribose) polymerase inhibitors (PARPi) in many cancers, especially in ovarian, breast, prostate, and pancreatic cancer 
[7–10]. 

Genetic or epigenetic driven loss of function in BRCA1 and BRCA2 genes are the best-characterized causes of HRD. Therefore, 
BRCA1/2 alterations have been the most widely used biomarkers for predicting PARPi response in ovarian and breast cancer [11,12]. 
Beyond BRCA1/2, several methods to predict HRD status have been developed. Such methods detect a set of genomic features 
associated with HRD, including genome-wide loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state 
transition (LST), and have been clinically validated to predict PARPi response [13–16]. Although such methods could reflect the 
genomic instability status caused by HRD, the resulting HRD scores could be influenced by other types of genomic events unrelated to 
HRD, which could potentially mislead disease treatment [17,18]. In addition, the HRD-score cutoffs of these methods are disease 
specific and could not be applied to a broader range of cancer types [19,20]. 

Furthermore, existing HRD detection methods based on LOH, TAI, and LST rely on hybrid capture-based targeted sequencing with a 
high DNA input requirement, higher cost, and complex lab operation [14–16]. Sequencing artifacts in formalin-fixed paraffi-
n-embedded (FFPE) samples also interfere with the accuracy of HRD detection [21]. To reduce costs and simplify operations, another 
method called shallowHRD was developed to detect HRD status by counting the number of intra-chromosome arm copy number 
variation (CNV) breaks [22,23]. Because shallowHRD uses low-pass whole genome sequencing (WGS) data as input, it predicts HRD 
status robustly at a lower cost in both FFPE and fresh samples [23]. Nevertheless, shallowHRD has several limitations. First, shal-
lowHRD heavily relies on the accuracy of CNV calling algorithm, which is often restricted by low tumor fraction in biopsy samples and 

Fig. 1. GSscan model training and validation in simulated low-pass breast cancer WGS data. (A) Overview of the GSscan algorithm. GSscan 
comprised one LSTM layer with 8 hidden units and two consecutive fully connected layers with 16 and 8 hidden units. Two types of inputs were 
used for GSscan model training separately. (B–F) HRD prediction between HRD-positive and HRD-negative patients using bin count GSscan model 
(B), CNV segment model (C), high-depth-based HRDscore (D), and shallowHRD (E), rank-sum test. The dashed line represents the threshold of HRD- 
positive for each method. GSscan and HRDscore used the threshold determined by the training cohort, and shallowHRD used the threshold provided 
in the original paper. (F–I) ROC curve of bin count GSscan model (F), CNV segment model (G), high-depth-based HRDscore (H), and shallowHRD (I). 
****, p < 0.0001, rank-sum test. 

Y. Liu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e26121

3

insufficient sequencing depth [23]. Second, HRD causes different kinds of instabilities in the genome [24]. ShallowHRD only counts 
CNV breaks, while discarding much other information of genomic events, which might cause false negatives in some cases. Moreover, 
the relationship between HRD status predicted by shallowHRD and clinical treatment response has not been validated. 

To capture the genomic features that are directly linked to HRD status, we developed GSscan (Genomic Status scan), a long short- 
term memory (LSTM)-based deep learning framework, which uses the read distribution of WGS for genomic status capturing. We 
applied GSscan framework to optimize for the HRD predicting performance based on low-pass WGS. Evaluated on simulated low-pass 
WGS data and actual low-pass WGS data generated from FFPE samples from breast and ovarian cancer patients, GSscan outperforms 
shallowHRD in terms of predicting HRD status and patient prognosis. Thus, GSscan provides a novel deep-learning based approach 
which directly survey a broad range of genomic events and could be adopted to predict HRD status and treatment response with high 
accuracy, ease of operation, and acceptable cost. 

2. Methods 

2.1. Overview of the GSscan algorithm 

GSscan is a long short-term memory (LSTM) based neural network model. It is comprised of one LSTM layer with 8 hidden units and 
two consecutive fully connected layers with 16 and 8 hidden units. The sigmoid activation function is used to get the final output. This 
LSTM model is applied separately to each individual chromosome of a sample to predict a chromosome feature score. Then sample 
level HRD risk score is obtained by taking the average of 22 autosome feature scores. GSscan is implemented using the Pytorch 
framework. The diagram of GSscan is in Fig. 1A. 

2.2. Patients and sample collection 

FFPE tumor tissues from 68 breast cancer patients (clinical breast cancer cohort) and 61 ovarian cancer patients (clinical ovarian 
cancer cohort) with known BRCA1/2 alteration status were retrospectively collected at Harbin Medical University Cancer Hospital, 
China (Fig. S1). For each specimen, tumor fractions were estimated by pathology reviews, and samples with tumor fraction <5% were 
excluded for further analysis. Progression-free interval (PFI) was defined as the interval from the end of platinum-based chemotherapy 
to objective tumor progression or death, “platinum-sensitive (Pt-sensitive)” with a PFI of at least 6 months and “platinum-resistant (Pt- 
resistant)” if the PFI was less than 6 months. This study was approved by the ethics committee of Harbin Medical University Cancer 
Hospital, China (Approval No. KY2022-26). All participants provided written informed consent. Detailed sample information is 
presented in Table S1 and S2. 

2.3. DNA extraction and sequencing 

As previously described [23], total genomic DNA was extracted from FFPE tissues using the GeneRead DNA FFPE Kit (Qiagen) 
following the manufacturer’s standard protocol. By default, 50 ng of total DNA was used for library preparation. Libraries for WGS 
were prepared using the NEBNext Ultra II FS DNA Library Prep Kit for Illumina (NEB). For each sample, a minimum of 2.5 billion bases 
of raw data was generated using the Illumina Novaseq 6000 platform. 

2.4. Data preprocessing 

After filtering out low-quality reads using fastp [25], the high-quality reads were aligned to the hg38 human reference genome 
using BWA [26]. PCR duplicates were identified and removed using Sambamba [27]. CNV segments for each sample were generated 
using HMMcopy. As the read distribution across the chromosome is associated with genomic status, we split chromosomes into 
non-overlapping regions (referred to as “genomic bins”) and calculated the read counts of each genomic bin (named “bin counts” for 
short) to quantify the read distributions. In detail, we evenly tiled the hg38 autosomes into non-overlapping 100 kb bins, and bins with 
GC content higher than 80% or lower than 20%, or mappability lower than 80% were excluded. Moreover, bins overlapped with Duke 
blacklisted regions [28] (downloaded from the UCSC Genome Browser) or centromere regions were also excluded. After GC content 
adjustment using Loess regression and mappability adjustment using Lowess regression, read counts of 10-neighboring bins were 
merged into non-overlapped 1 Mb bins to reduce the noise introduced by low sequencing depth. To test whether the 1 M bins are large 
enough to reduce the errors caused by noise, we constructed sequencing libraries for three samples in triplicate. The results from three 
repetitions, both in terms of bin profiles and final GSscan scores, are highly consistent (Fig. S2), implying the bin size of 1 M is sufficient 
for GSscan. Finally, Z-score normalized read counts of 1 Mb bins were used as bin counts for further analysis. The pipeline of bin count 
generation is shown schematically in Fig. S3, and an example of the spectrum of bin profiles is shown in Fig. S4. 

2.5. BRCA status and HRD status classification 

The classification of somatic and germline BRCA1/2 mutations’ pathogenicity was determined according to the guidelines set by 
the American College of Medical Genetics and Genomics (ACMG). Samples without any pathogenic BRCA1/2 alterations were cate-
gorized as BRCA-intact. Samples with biallelic pathogenic alterations or with monoallelic pathogenic alteration accompanied by a 
heterozygous deletion of BRCA1 or BRCA2 were classified as BRCA-deficient. The remaining samples were categorized as BRCA- 
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monoallelic-pathogenic. For high-depth WGS data, we estimated allele-specific copy numbers using PureCN [16,29], and calculated 
LOH, TAI, and LST scores using ScarHRD [30]. For low-pass WGS data (including simulated data and data generated from clinical 
samples), shallowHRD and GSscan were used to predict HRD status [29]. For shallowHRD, we used the HRD-positive threshold 
provided in the original paper [22]. For breast cancer samples with high-depth WGS data, we labeled the HRD status using HRDetect, 
because HRDetect is highly accurate in breast cancer [31]. For each sample, the HRD scores determined by each method were listed in 
Table S3. 

2.6. Public datasets 

For breast cancer, high-depth WGS are from the EGA database (Training cohort: EGAD00001001322, public breast cancer cohort: 
EGAD00001002129 and EGAD00001002122). For ovarian cancer, high-depth WGS are from EGA database (Public ovarian cancer 
cohort: EGAD00001003227) and TCGA database (TCGA ovarian cancer cohort) (ref). Enrolled cohorts were described in Fig. S1. 
Simulated low-pass WGS data were down-sampled from high-depth WGS using Sambamba [27]. 

2.7. Training of GSscan 

Two kinds of inputs, namely CNV segments and bin counts, were used to generate two GSscan models separately (Fig. 1A). To train 
GSscan, we degraded patient-level data instances to chromosome-level data instances to increase the sample size. All chromosomes 
would have positive labels if they were from an HRD-positive patient, and negative labels if from an HRD-negative patient. GSscan was 
trained to predict the chromosome level labels. Binary cross entropy (BCE) was used as the target optimization function and was 
optimized using stochastic gradient descent (SGD). The model was trained with a batch size of 1. The training stops if it reaches 500 
epochs or if validation loss does not improve for 5 epochs. The threshold of each model was determined using training data at the 
patient-level, and the threshold was 0.361 for the CNV segment model and 0.404 for the bin count model (Fig. S5). 

2.8. Statistical analysis 

The statistical analyses were conducted using R (v4.1.1). Wilcoxon rank-sum test was utilized to compare variables between two 
groups, while the Kruskal-Wallis rank-sum test was employed to compare variables among three groups using the ggsingif packages 
(0.6.3) in R. ROC curve analyses were performed using the pROC package (v1.18.0) in R to calculate the area under the curve (AUC), 
sensitivity, and specificity. The best cutoff point was determined based on the maximum sum of sensitivity and specificity. Spearman’s 
correlation coefficient was employed to assess the correlation between two datasets. Kaplan-Meier survival curves were analyzed using 
the log-rank test with the survival (v3.2-11) and survminer (v0.4.9) packages. A significance level of p < 0.05 was considered sta-
tistically significant. 

3. Results 

3.1. Read distribution-based GSscan could detect HRD status in simulated low-pass breast cancer WGS data 

To train the low-pass WGS-based GSsan models, we collected 80 breast cancer high-depth WGS data (the training cohort) with 
known HRD statuses identified by HRDetect, which was well-validated in breast cancer [31,32]. We down-sampled all high-depth data 
to 0.5 × , generated bin counts to represent read distribution patterns, and subsequently trained the GSscan model using bin counts 
across each chromosome (Fig. S3, detailed in Method). Because most of the existing HRD biomarkers are based on CNV, we also trained 
a CNV segment-based GSscan model (Fig. 1A). For subsequent analysis, we determined the best cutoff of each model based on training 
cohort (Fig. S5). 

Although both bin count model and CNV segment model achieve AUCs of 1.00 at sample-level in training cohort, the bin count 
model performed better than CNV segment model at chromosome-level (AUC = 0.891 vs. 0.828, p = 2.9 × 10− 9, Delong’s test, Fig. S6). 
Notably, for the CNV segment model, the chromosome-level AUC decreases with the decrease in chromosome length. Correspondingly, 
the variance of chromosome-level AUCs is lower in the bin count model (standard deviation = 0.061 in the bin count model and 0.104 
in the CNV segment model, Fig. S6), suggesting bin count-based GSscan is more stable across chromosomes with different lengths, thus 
performs better at the chromosome level. 

3.2. Validation of GSscan’s performance in public breast cancer cohort 

To evaluate the performance of GSscan, we simulated low-depth whole-genome sequencing data (0.5 × ) using 111 breast cancer 
samples (the public breast cancer cohort) with known HRD status and calculated HRD risk scores using GSscan. In this cohort, all 
samples were either BRCA-deficient or BRCA-intact. As expected, HRD-positive samples had significantly increased GSscan HRD risk 
scores in the bin count and CNV segment models (p = 3.8 × 10− 14 and 1.5 × 10− 13, respectively, rank-sum test, Fig. 1B and C) 
compared with HRD-negative samples. At chromosome level, the bin count model achieved higher AUC than the CNV segment model 
(AUC = 0.770 vs. 0.740, p = 0.017, Delong’s test, Fig. S7), and at the sample-level, the bin count model performed better (AUC =
0.980, with a sensitivity of 0.893 and a specificity of 0.952, Fig. 1F) when compared with the CNV segment model (AUC = 0.968 with a 
sensitivity of 0.857 and a specificity of 0.904, Fig. 1G). Considering the bin count model performs better and doesn’t rely on the third- 
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party CNV calling software, we selected the bin count model as the final GSscan model for all further discussions. Using this GSscan 
model and its corresponding threshold, 19 out of 20 (95%) BRCA-deficient patients were identified as HRD-positive (Fig. 1B), sug-
gesting GSscan could accurately detect BRCAness in HRD patients with BRCA1/2 alteration. 

It’s worth noting that GSscan has comparable performance with existing HRD detection methods. We compared GSscan with 
HRDscore (the mean of LOH, TAI, and LST scores) [15], which is generated from high-depth sequencing and widely used in clinical 
practice, and found the AUCs of the two methods were close (AUC = 0.980 vs. 0.974, p = 0.7235, Delong’s test, Fig. 1H). Moreover, 
when compared with shallowHRD, which is an existing method for HRD detection from low-pass WGS sequencing, although not 
statistically significant, GSscan achieved a slightly higher AUC than shallowHRD (AUC = 0.980 vs. 0.948, p = 0.3215, Delong’s test, 
Fig. 1I). 

3.3. GSscan’s performance in public ovarian cancer cohort 

As GSscan was trained in breast cancer, we investigated whether GSscan could be directly apply to other cancer types without any 
modification. We simulated low-pass data from 63 ovarian cancer cases (the public ovarian cancer cohort). As the ovarian cancer 
cohort lacked HRD status labels, HRDscores generated from high-depth WGS were used to label the samples as “HRD-high” (HRDscore 
≥ the median HRDscore of all samples) or HRD-low (HRDscore < the median HRDscore). Both GSscan and shallowHRD scores are 
significantly elevated in HRD-high samples compared with HRD-low samples using preset threshold (p = 2.3 × 10− 5 and 2.0 × 10− 7, 
respectively, Fig. 2A and B), suggesting GSscan could accurately predict HRD status in ovarian cancer with a threshold consistent with 
that used in breast cancer. 

In addition, we generated LOH, TAI, LST, HRDscore, shallowHRD and GSscan scores in the same ovarian cancer cohort. In this 
cohort, HRDscore highly correlates with LST, TAI and LOH as expected, since it is the average of these three (Spearman’s correlation 
coefficient r = 0.943, 0.889, and 0.744, respectively, Fig. 2C) [15]. ShallowHRD is highly correlated with HRDscore, and LST in 
particular (Spearman’s correlation coefficient r = 0.841, and 0.877, respectively, Fig. 2A), by which we suspect that the captured 
underlying biological events of shallowHRD and LST are mostly similar [22]. GSscan is also highly correlated with HRDscores 
(Spearman’s correlation coefficient r = 0.693, Fig. 2C) as well as shallowHRD scores (Spearman’s correlation coefficient r = 0.777, 
Fig. 2C), albeit not as significantly correlated as the aforementioned pairs, suggesting that GSscan may actually capture different, or a 
wider range of underlying biological events compared with existing methods. 

3.4. Evaluation of GSscan on different sequencing depths 

Sequencing depth is a crucial parameter in next-generation sequencing (NGS)-based tests, where higher sequencing depth improves 
the robustness of read distribution but also increases the cost of testing. Our above results demonstrated that GSscan can accurately 
predict HRD status in low-depth data at 0.5 × coverage. To evaluate its performance in even lower sequencing depths, we mimicked 
data at lower depths (0.2 × , 0.1 × , 0.05 × , 0.02 × , 0.01 × ), and predicted HRD status using the GSscan model trained on 0.5 × WGS. 

Fig. 2. Performance of GSscan on low-pass ovarian cancer WGS data. (A–B) GSscan and shallowHRD between HRD-low and HRD-high patients, 
rank-sum test. The dashed line represents the threshold of HRD-positive for each method. ****, p < 0.0001, rank-sum test. (C) The correlations 
between GSscan scores and other commonly used HRD features. 
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Remarkably, even at a coverage depth as low as 0.02 × , GSscan achieved an AUC of 0.969 (sensitivity of 0.857, and specificity of 
0.976, Fig. 3A) and a high correlation with 0.5 × data (Spearman’s correlation coefficient r = 0.916, Fig. 3B) in the public breast cancer 
cohort. Similarly, in 0.02 × coverage data, GSscan achieved a high correlation with 0.5 × data in the public ovarian cancer cohort 
(Spearman’s correlation coefficient r = 0.942, Fig. S8). These results suggest that GSscan could achieve acceptable performance even 
on ultra-low-depth sequencing data. 

3.5. Performance of GSscan in clinical breast and ovarian cancer cohorts 

To further investigate the performance of GSscan in clinical samples, we collected breast and ovarian cancer tissue samples with 
known BRCA status. The samples with tumor fraction greater than 30% that meet the criteria of HRD detection guidelines were 
selected for performance evaluation [15,33,34]. As we speculate GSscan captured relatively stable features, we used the same 
thresholds of GSscan among all cohorts. Among 50 breast cancer samples, the median GSscan score was significantly higher among 
BRCA-deficient samples than BRCA-intact samples (p = 1.3 × 10− 5, rank-sum test), and all BRCA-deficient samples were identified as 
HRD-positive (Fig. 4A). Additionally, 30.6% (11 out of 36) BRCA-intact patients were identified as HRD-positive, which is similar to 
previous studies (ref). Similarly, among 47 ovarian cancer samples with tumor fraction greater than 30%, the GSscan scores of 
BRCA-deficient samples were significantly higher than BRCA-intact samples (p = 0.039, rank-sum test, Fig. 4B). 13 out of 14 (92.9%) 
BRCA-deficient patients were identified as HRD-positive, and 17 out of 27 (62.9%) BRCA-intact patients were identified as 
HRD-positive. Consistent with previous studies, in BRCA-intact and BRCA-monoallelic-pathogenic groups, the HRD-positive fractions 
are higher in the ovarian cancer cohort than in the breast cancer cohort [16,35,36]. Moreover, even among samples with tumor 
fraction between 5 and 30%, 5 out of 7 (71.4%) BRCA-deficient breast cancer patients and 4 out of 5 (80%) BRCA-deficient ovarian 
cancer patients were unequivocally identified as HRD-positive, suggesting GSScan could identify HRD-positive samples even when the 
tumor fraction is relatively low (Fig. S9). 

We analyzed the same batch of samples using shallowHRD. Surprisingly, although the shallowHRD score is higher in BRCA- 
deficient breast cancer samples (p = 0.041, rank-sum test, Fig. 4C), the default threshold seems not suitable for this cohort [22] 
(dashed line in Fig. 4C). Besides, using shallowHRD, there was no significant difference between the BRCA-deficient and BRCA-intact 
groups in ovarian cancer (p = 0.27, rank-sum test, Fig. 4D). 

For patients unable to undergo tumor resection, only limited amounts of DNA could be obtained from the biopsy tissues. We 
examined the robustness of GSscan with respect to low amount of DNA input in a subset of clinical samples. Rather than using 50 ng 
DNA input as recommended, we tested the performance of GSscan with 1 ng, 5 ng, and 10 ng of DNA inputs. Even using 1 ng DNA 
input, the GSscan scores were comparable to that generated from 50 ng input DNA (Pearson correlation coefficient r = 0.829, Fig. S10). 

3.6. Association of GSscan with platinum-based chemotherapy outcomes 

Since HRD status directly convey sensitivity to platinum-based therapy [37–41], if GSscan can accurately identifying HRD status, it 
should be able to predicts platinum-based chemotherapy outcomes. To evaluate the applicability of GSscan on such treatment 
response, WGS data from 43 TCGA ovarian cancer patients who had received prior platinum-based adjuvant chemotherapy with PFI 
data available were analyzed. We simulated low-pass WGS data and evaluated HRD status using GSscan, a significantly longer PFI was 
observed in GSscan HRD-positive patients than those with GSscan HRD-negative (median 568 vs 315 days, p = 0.0011, Log-rank test, 
Fig. 5A). And all three Pt-resistant patients were identified as HRD-negative (Fig. S11A), suggesting GSscan could serve as an inde-
pendent prognosis marker. Moreover, in patients without BRCA1/2 mutation, HRD-positive patients still had longer PFI (p = 0.0033, 
Fig. S12A), indicating that GSscan has the potential to assist in drug selection for BRCA-intact patients. Additionally, a considerable 

Fig. 3. Performance of GSscan on different sequencing depths. (A) ROC curve of GSscan score on sequencing depth of 0.2 × , 0.1 × , 0.05 × , 0.02 ×
, and 0.01 × . (B) Correlation between GSscan score generated by 0.5 × data and GSscan score generated by sequencing depth of 0.2 × , 0.1 × , 0.05 
× , 0.02 × , and 0.01 × . 
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trend toward significance was observed in PFI between GSscan HRD-positive and GSscan HRD-negative in our clinical ovarian cancer 
cohort (p = 0.085, Log-rank test, Fig. 5C). Contrastively, there was no significant difference in PFI between groups with distinct HRD 
status defined by shallowHRD in both TCGA and clinical ovarian cancer cohorts (TCGA ovarian cancer cohort, p = 0.77, Fig. 5B; 
clinical ovarian cancer cohort, p = 0.15, Log-rank test, Fig. 5D). 

4. Discussion 

Genomic status reflects crucial characteristics of almost all human cancers and has the potential to predict treatment response, 
long-term prognosis, minimal residual disease et al. [4–6,24,42,43]. In this study, we developed a deep-learning based framework, 
GSscan, to capture a wide range of genomic features and predict genomic status using low-pass WGS. Therefore, GSscan could be 
directly adopted to survey HRD status and detects HRD without reliance on existing biomarkers. In breast and ovarian cancer patients, 
GSscan generated comparable results to existing methods and yielded HRD-positive rates in line with epidemiological expectations 
[16,34]. Moreover, GSscan is associated with the prognosis of ovarian cancer patients with platinum-based adjuvant chemotherapy, 
implying GSscan could be served as the predictor of the response to platinum-based or PARPi therapy. Our findings demonstrated both 
the accuracy and robustness of HRD detection by GSscan, and provide evidence for its clinical relevance. 

Existing HRD detection methods can be mainly categorized into several approaches: large genomic aberration based (LOH, TAI, 
LST, and shallowHRD) [15,22], mutational signature based (Signature 3, SigMA) [44,45], and combination of both features 
(HRDetect, CHORD) [31,35]. Except for shallowHRD, these approaches need high-depth WGS or hybrid capture-based targeted 
sequencing, which is either technically complex or highly costly [15,31,35,44,45]. Because GSscan is based on genome-wide coverage 
profiles generated by low-pass WGS, it provides HRD detection with moderate cost and simple operation. Moreover, we demonstrated 

Fig. 4. GSscan score in clinical cohorts. (A–B) GSscan scores among patients with BRCA-intact, BRCA-monoallelic-pathogenic, and BRCA-deficient 
in breast and ovarian cancer. (C–D) ShallowHRD scores among patients with BRCA-intact, BRCA-monoallelic-pathogenic, and BRCA-deficient in 
breast and ovarian cancer. The dashed lines represent the threshold of HRD-positive. *, p < 0.05, **, p < 0.01, ***, p < 0.001, rank-sum test. 
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GSscan can adapt to WGS data with low DNA input amount, thus having the potential to be applied to plasma cell-free DNA and 
minimal biopsy samples. Hence GSscan could provide accurate HRD tests for patients whose health conditions does not allow for 
surgery. 

The calculation of existing HRD scores relies on pre-determined length cutoff of genomic events: the LOH score is the number of 
LOH regions longer than 15 Mb, the TAI score only counts the allelic imbalance region longer than 11 Mb, and the LST score only 
considers the regions longer than 10 Mb [15]. Similarly, shallowHRD uses 10 Mb length as a filter of independent CNV [22]. Although 
the HRD scores generated using these cutoffs were highly predictive of HRD status, the biological basis underlying is not well un-
derstood. Thus, the optimal length cutoff of different chromosomes or genomic regions may differ for these different methods. 
Additionally, the calculation of these scores is based on CNV, which is heavily influenced by the parameters and cutoffs of the CNV 
calling algorithm [23,34]. Because GSscan uses a deep-learning based framework, it automatically learns the best parameters and is 
not limited by the accuracy of CNV calling algorithm [23,34]. Additionally, we have demonstrated that in ovarian cancer, the same 
threshold as determined in the breast cancer training cohort could still apply, implying GSscan captured HRD status features that may 
be universal to multiple cancer types. Thus, GSscan directly captures genomic status features independent of existing HRD markers and 
provides room for further improvement. 

Genomic status provides insight into the biological mechanisms involved in tumorigenesis and has shown their applicability in 
cancer [3,6,24,46]. Because our deep-learning based GSscan can not only fit with HRD status but also be trained to predict other 
genomic statuses, GSscan has the potential to provide companion diagnostic features and predict treatment responses for other cancer 
targeting drugs and treatments. Other than those features based on somatic point mutation (which requires high-depth sequencing), 
several genomic features have proven successful in oncological management and targeted therapies [6,24,43,46–49]. For example, 
microsatellite instability caused by mismatch repair deficiency and CNV burden could indicate treatment response to immune 
checkpoint inhibitors [6,47–49], copy number-based signatures could indicate prognosis in serous ovarian cancer and pancreatic 

Fig. 5. GSscan in ovarian cancer patients received prior platinum-based adjuvant chemotherapy. (A–B) Kaplan–Meier curves for HRD-positive and 
HRD-negative patients identified by GSscan or shallowHRD in TCGA ovarian cancer. (C–D) Kaplan–Meier curves for HRD-positive and HRD- 
negative patients identified by GSscan or shallowHRD in clinical ovarian cancer cohort. 
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adenocarcinoma [43,46], and chromosomal copy number heterogeneity could predict patient survival across multiple cancer types 
[24]. Because many of such genomic features can be deduced by the distribution of sequencing reads, our deep-learning framework has 
the potential to capture these genomic features using only low-pass WGS data. Moreover, there is a growing number of drugs and 
treatments that directly target different forms of genomic instability, and the response might be predictable using specific genomic 
features [5,50,51]. Therefore, our GSscan framework might provide the opportunity to predict the response to some of these drugs or 
treatments, and provides overall guidance for multiple therapies in a single test, which enables the provision of personalized disease 
management in the future. 

Compared with existing HRD detection methods, GSscan not only offers accurate HRD status assessment and treatment prognosis 
evaluation but also enhances cost-effectiveness, usability, and result stability through the utilization of low-pass WGS. Furthermore, 
GSscan exhibits enhanced scalability in comparison to existing methods. It has the potential for utilization in liquid biopsies, expansion 
to capture additional genomic status features, and the ability to predict the response of other drugs or treatments. Therefore, GSscan is 
the only existing method capable of simultaneously predicting the response of multiple drugs and treatments in a single cost-effective 
test. Meanwhile, GSscan has several potential limitations. The deep learning GSscan procedure can have several other potential sources 
of mistakes and misrecognition, including FFPE sequencing noise, different sequencing platforms, changes in sequencing and library 
preparation reagents, and et al. Additionally, shallow sequencing may also introduce some limitations. It is worth noting that 6 cases 
were misclassified in the validation cohort of breast cancer, where HRD status was identified using HRDetect. In cases where the 
diagnostics are not consistent between GSscan and HRDetect, there is no significant difference between GSscan and HRDscore, which is 
based on large-scale genomic variations. However, the GSscan scores differs greatly from Signature 3, which is based on single- 
nucleotide variations. Therefore, for a small subset of HRD patients with inconsistencies between single-nucleotide-level and large 
fragment-level variations, shallow sequencing-based methods might be inconsistent with the existing approaches due to their inability 
to capture single-nucleotide information. Moreover, there is still a significant need for an effective verification of therapy response, 
especially for the HRD-positive patients without BRCA1/2 mutation. To tackle this challenge, the utilization of patient-derived 
xenograft (PDX) models and patient-derived organoids, along with in vitro drug sensitivity assays, will aid in further validating the 
accuracy of HRD prediction. And further clinical trials would verify the effectiveness of HRD test for clinical application. 

In conclusion, using low-pass WGS, we established a genomic feature capturing and status detection framework, GSscan, to predict 
HRD status and treatment response. Independent of existing HRD biomarkers, GSscan could accurately and directly predict HRD status 
and treatment response in breast and ovarian cancer. Further tuning GSscan on other treatment-associated genomic statuses might 
increase the scope of the applications of GSscan, and shed light on guiding various treatment decisions. 
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