
RESEARCH ARTICLE Open Access

Machine learning prediction of stone-free
success in patients with urinary stone after
treatment of shock wave lithotripsy
Seung Woo Yang1†, Yun Kyong Hyon2†, Hyun Seok Na1, Long Jin1, Jae Geun Lee1, Jong Mok Park1, Ji Yong Lee1,
Ju Hyun Shin1, Jae Sung Lim1, Yong Gil Na1, Kiwan Jeon2, Taeyoung Ha2, Jinbum Kim3 and Ki Hak Song1*

Abstract

Background: The aims of this study were to determine the predictive value of decision support analysis for the
shock wave lithotripsy (SWL) success rate and to analyze the data obtained from patients who underwent SWL to
assess the factors influencing the outcome by using machine learning methods.

Methods: We retrospectively reviewed the medical records of 358 patients who underwent SWL for urinary stone
(kidney and upper-ureter stone) between 2015 and 2018 and evaluated the possible prognostic features, including
patient population characteristics, urinary stone characteristics on a non-contrast, computed tomographic image.
We performed 80% training set and 20% test set for the predictions of success and mainly used decision tree-based
machine learning algorithms, such as random forest (RF), extreme gradient boosting trees (XGBoost), and light
gradient boosting method (LightGBM).

Results: In machine learning analysis, the prediction accuracies for stone-free were 86.0, 87.5, and 87.9%, and those
for one-session success were 78.0, 77.4, and 77.0% using RF, XGBoost, and LightGBM, respectively. In predictions for
stone-free, LightGBM yielded the best accuracy and RF yielded the best one in those for one-session success
among those methods. The sensitivity and specificity values for machine learning analytics are (0.74 to 0.78 and
0.92 to 0.93) for stone-free and (0.79 to 0.81 and 0.74 to 0.75) for one-session success, respectively. The area under
curve (AUC) values for machine learning analytics are (0.84 to 0.85) for stone-free and (0.77 to 0.78) for one-session
success and their 95% confidence intervals (CIs) are (0.730 to 0.933) and (0.673 to 0.866) in average of methods,
respectively.

Conclusions: We applied a selected machine learning analysis to predict the result after treatment of SWL for
urinary stone. About 88% accurate machine learning based predictive model was evaluated. The importance of
machine learning algorithm can give matched insights to domain knowledge on effective and influential factors for
SWL success outcomes.
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Background
Shock wave lithotripsy (SWL), which was first intro-
duced by Chaussy in 1980 [1], has been recognized as
convenient, noninvasive management for urinary stones,
and now it is widely used as primary treatment for urin-
ary stones smaller than 2 cm sized due to high stone-
free rate [2–4]. However, the stone-free rate of SWL in
the treatment of urinary stone is affected by the size, lo-
cation, composition, and radiological density of the
stone. Especially in cases of large stones, the success rate
is relatively low, and the rate of retreatment is high, thus
requiring more time and resulting in low cost-
effectiveness [5].
Ineffective procedures can be avoided, and unneces-

sary resource waste can be prevented by choosing better
treatment methods for stone management by evaluating
whether patients with urinary stones can respond well to
SWL or not. The popular use of non-contrast computed
tomography (NCCT) in the diagnosis of urinary stone
has allowed accurate measurement of stone characteris-
tics such as size, shape, location, and consistency, using
Hounsfield units (HU). Therefore, considering the fac-
tors that may affect the stone-free rate, it is possible to
reduce such retreatment and economic costs by select-
ively applying SWL. Many researchers have tried to de-
termine these factors by using statistical methods, and
various studies have been reported to predict the stone-
free rate after SWL [6–8].
Recently, the importance of machine learning and arti-

ficial intelligence technology has increased, and get more
attention in medical areas with the advent of big data. In
the medical field, researchers applied machine learning
methodology to various disease diagnoses and predic-
tions [9, 10]. The purposes of this study are to investi-
gate retrospective information on patients with a
diagnosis of urinary stone who underwent SWL and to
establish a machine learning model in binary classifica-
tion for predicting the stone-free, or not and one-session
success, or not after SWL. Furthermore, the resulting
machine learning prediction models can be implemented
as an actual diagnostic support system for urinary stone
treatment and provide more capability or new function-
ality for it.

Methods
We retrospectively identified patients with kidney and
upper-ureter stones who underwent the first start ses-
sion of SWL at our institution between January 2015
and December 2018. All data analysis was carried out in
accordance with applicable laws and regulations de-
scribed in the Declaration of Helsinki and approved by
Chungnam national university hospital institutional re-
view board approval (CNUH 2018–07-047). Three hun-
dred fifty-eight patients with previously untreated stones

and a solitary stone diameter of 5 to 20 mm were in-
cluded. Patients were excluded if they were younger than
18 years old; had a congenital genitourinary tract anom-
aly, history of previous open urinary-tract surgery, or
multiple stones, or who had not undergone imaging for
4 weeks after SWL. We retrospectively reviewed the
medical records and picture archiving and communica-
tion system (PACS) data of these patients and evaluated
the possible prognostic features, including age and sex;
presence of diabetes mellitus (DM) or hypertension
(HTN); stone characteristics such as stone laterality, lo-
cation, maximal length, stone volume, skin to stone dis-
tance (SSD), mean stone density (MSD), and stone
heterogeneity index (SHI); double-J stenting and percu-
taneous nephrostomy (PCN) procedure before SWL;
simple psoas muscle cross-sectional area measurement
for sarcopenia; complete blood cell count; liver function
test; renal function test; electrolyte test; and urinalysis.

Stone characteristics on NCCT
The stone characteristics were interpreted by NCCT,
and each maximal length was measured on axial, cor-
onal, and sagittal NCCT scan. The volume of the stone
was computed by the ellipsoid method (X-axis length x
Y-axis length x Z-axis length x π/6). The SSD was calcu-
lated using radiographic calipers from the point of the
largest stone diameter at 90o from the horizontal plane
because of vertical shockwave delivery through the pa-
tient’s back. HU was carefully calculated on the magni-
fied, axial NCCT image from a circle with a diameter of
about 2–3 mm in the center of the middle cross-section
without including the adjacent tissue. MSD was identi-
fied as the mean value of HU, and SHI was identified as
the standard deviation of HU.

SWL protocol
SWL was performed on an outpatient basis, without
anesthesia. The same lithotripter was used to treat all
patients, with fluoroscopic guidance. The lithotripter
was an electromagnetic lithotripter made by the Dir-
exGroup (Integra SL, Initia Ltd., Israel). The intensity of
the shock wave started from 10.0 kV and gradually in-
creased less than 18.0 kV to improve stone fragmenta-
tion and reduce the risk of adjacent tissue trauma. The
number of shock waves per SWL session varied from
2300 to 2500 at a rate of 60 shock waves per minute.
Additional SWL was performed at intervals of 1 week

if evidence of stones remained. The stone-free was de-
fined as the absence of observed stone with X-ray stud-
ies or asymptomatic condition and clinically insignificant
residual fragments ≤3 mm in maximal length 4 weeks
after the first SWL treatment as measured by simple ab-
dominal radiography or NCCT. One-session success was
defined as patients who were stone-free after a single
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SWL treatment. Enough water intake and appropriate
exercise were recommended for all patients.

Data analytics
The SWL data has 42 features including the two target
variables, stone-free and one- session success, and a total
of 358 cases. The SWL data were analyzed using well-
known machine learning methods such as random forest
(RF), which is a statistical machine learning method [11]
and extreme gradient boosting trees (XGBoost), which is
a decision tree–based gradient boosting regression
method [12] and light gradient boosting method
(LightGBM) [13]. The machine learning models were
trained in binary classifications for predicting the targets,
stone-free and one-session success. Experiments were
performed with 80% of the data for training the predic-
tion model (training set) and 20% for testing the trained
model (test set). For the experiment, we randomly sam-
pled 10 times, and then take average of its results, which
is similar to n-fold validation method, and performed
the prediction for stone-free and one-session success.
The sampling strategy shows a certain capability of pre-
dictive models obtained from the given SWL data set.
For calculating sensitivity, specificity, PPV, we computed
the confusion matrix and do computed their values in
average over sample data sets for prediction tests, and
AUCs, we adopted sklearn.metric module in Python. For
95% CIs, we used bootstrapping methods with 1000
bootstraps for each sampled data sets, and then took the
average over samples.

Results
The number of cases with stone-free and one-session
success were 253 (70.7%) and 154 (43.0%). Table 1
shows the patient and stone characteristics of the patient
data, which we used for predictions. We present the pre-
diction accuracies in Table 2. The prediction accuracies
for the stone-free were 86.0, 87.5%, and 87.9 and those
for one-session success were 78.0, 77.4, and 77.0% using
RF, XGBoost, and LightGBM, respectively. In predic-
tions for the stone-free, LightGBM offers better accuracy
than XGBoost and RF; and for one-session success, RF
algorithms showed better accuracy than XGBoost and
LightGBM.
The sensitivity, specificity, positive predictive value,

confidence interval and area under the roc curve (AUC)
for machine learning analytics are presented in Table 3.
As the result in Table 3, the specificity of stone-free was
better than the sensitivity. The result implied that the
predictive models were more accurate in prediction
stone-free. On the contrary, the models were good in
the prediction of one-session fail. In AUC for the stone-
free, RF and LightGBM offered higher value than
XGBoost; and for one-session success, RF offered higher
value than XGBoost and LightGBM. Here, we also have
shown the feature importance, which had certain inter-
pretability of prediction results related to domain in-
sights. In Fig. 1, we present the feature importance of
LightGBM for stone-free predictions. It shows that MSD
was the main factor that had decided the stone-free and
stone volume (mm3) and SSD 90o (mm) played an im-
portant role in supporting the stone-free decision. It

Table 1 General characteristics of all urinary stone patients

Kidney stone Ureter stone P-value

Patient characteristics

Numbers of patients 167 191

Age, mean ± SD 56.4 ± 13.9 60.4 ± 13.7 0.007

Sex, numbers of men, % 90, 53.9 108, 56.5 0.615

Diabetes mellitus, % 48, 28.7 57, 29.8 0.820

Hypertension, % 65, 38.9 86, 45.0 0.243

Psoas muscle cross-sectional area (mm2), mean ± SD 1105.9 ± 373.1 1067.4 ± 368.7 0.326

Stone characteristics

Stone laterality, numbers on left side, % 87, 52.1 93, 48.7 0.520

Stone length (mm, X-axis), mean ± SD 9.2 ± 3.5 6.6 ± 1.5 < 0.001

Stone length (mm, Y-axis), mean ± SD 9.3 ± 3.2 7.4 ± 1.7 < 0.001

Stone length (mm, Z-axis), mean ± SD 9.7 ± 3.1 9.4 ± 2.8 0.345

Stone volume (mm3), mean ± SD 516.8 ± 479.6 268.2 ± 182.2 < 0.001

Skin to stone distance 90o (mm), mean ± SD 87.9 ± 14.8 108.9 ± 16.3 < 0.001

Mean stone density, mean ± SD 834.3 ± 296.9 766.6 ± 274.7 0.025

Stone heterogeneity index, mean ± SD 178.0 ± 83.9 174.2 ± 84.9 0.669

SD standard deviation
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might match a typical intuition of stone-free; however,
with the machine learning method, LightGBM caught
the intuition for that. In addition, in the prediction of
one-session success, stone volume (mm3) was the main
factor (Fig. 2).

Discussion
To be able to predict the result of treatment and the pa-
tient’s condition with easy measurement would be

beneficial for all concerned. The prediction could pro-
vide the ability to choose an effective treatment for urin-
ary tract stones and reduce unnecessary resource waste.
One promising approach to obtain an appropriate pre-
diction is to adopt machine learning based artificial
intelligence methods.
The machine learning methods can show the potential

to make decisions that are best suited to the situation
without the involvement of emotions, based solely on
thorough statistics and calculations. There are some ad-
vantages to analyzing data by using machine learning
methods. First, machine learning can provide interpret-
ability for analysis and prediction results. Second, insuffi-
cient number of data set to apply deep learning
algorithms can be handled by certain types of machine
learning algorithms, such as tree-based ones; statistical
machine learning especially is more effective in predict-
ing with small data, even though more data usually yield
more accuracy. Third, machine learning treats heteroge-
neous data, which is statistically and structurally quite
different, simultaneously; for instance, data about kidney
stone and ureter stone properties differ distinctly [14,
15]. Machine learning could find new values from data
and derives important factors for predicted target vari-
ables from the analytical/predicting perspective of ma-
chine learning. These factors can be used to validate
known domain insights and sometimes reveal factors
that were not previously recognized. The main factors of
them derived from machine learning are expected to
play a major role in developing an auxiliary system for
diagnosing diseases and a supporting system.
In this study, data on SWL is accumulated in the treat-

ment of urinary stone, and valid data is available, and we
applied three well-known tree-based machine learning
methods and compared their results. The decision tree-
based methods, such as RF, XGBoost, and LightGBM in-
creased the interpretability of the predicted results by
providing the importance of the properties used in the
prediction, suggesting new functionality of the machine
learning methodology. The reason, why we applied the
above decision tree-based machine learning algorithms
rather than well-known deep learning ones, is that the
tree-based predictive models give better performance in
prediction accuracy in case of the relatively small num-
ber of data for deep learning ones, in general. Moreover,
the algorithms give certain interpretation of their results
in feature importance. Another strategy to overcome the
relatively small number of data, we collected SWL treat-
ment data for both the upper ureter and kidney stones
without their positional information. Then the trained
machine learning model with the collected data can
show the capability of prediction for stone-free and one-
session success. Even though the positional information
for urinary stones is neglected, the predictive model can

Table 2 Comparison of prediction accuracies for stone-free and
one-session success according to three machine learning
methods

Stone-free One-session success

Random forest (RF)

Training Accuracy (%) 86.47 76.83

Test Accuracy (%) 85.98 78.02

Extreme gradient boosting trees (XGBoost)

Training Accuracy (%) 87.50 75.60

Test Accuracy (%) 87.46 77.39

Light Gradient Boosting Method (LightGBM)

Training Accuracy (%) 88.09 74.92

Test Accuracy (%) 87.95 77.04

Table 3 Comparison of Receiver Operating Characteristic (ROC)
values for stone-free and one-session success according to
three machine learning methods

Stone-free One-session success

Random forest (RF)

Sensitivity 0.74 0.81

Specificity 0.92 0.75

AUC 0.85 0.78

CI (95%) (0.75–0.94) (0.67–0.86)

PPV 0.82 0.79

Extreme gradient boosting trees (XGBoost)

Sensitivity 0.75 0.80

Specificity 0.93 0.75

AUC 0.84 0.77

CI (95%) (0.74–0.93) (0.68–0.87)

PPV 0.78 0.79

Light Gradient Boosting Method (LightGBM)

Sensitivity 0.78 0.79

Specificity 0.92 0.74

AUC 0.85 0.77

CI (95%) (0.73–0.93) (0.67–0.87)

PPV 0.81 0.78

AUC area under ROC curve, CI confidence interval, PPV positive
predictive value
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catch the effective accuracy in predictions. After filtering
the missing data, carefully, three hundred and fifty-eight
cases were obtained for applying machine learning algo-
rithms. The experiment results obtained by taking an
average of ten samplings of the given data set. In these
prediction experiments, the parameter tuning was not
performed for comparison purpose, because parameter
tuning shows different results for different sampling of
given data.
The major contribution of this study was to enable urolo-

gists to choose patients who would realize the most optimal
results from SWL. After prediction analysis, patients who
have a high risk of stone-free failure can select another
method, such as percutaneous nephrolithotomy or retro-
grade intrarenal surgery, using flexible ureteroscopy to man-
age urinary stone. The first objective of this study was
achieved because each outcome in the predictive analysis
exceeded 85% for stone-free and 77% for one-session suc-
cess, especially, LightGBM and XGBoost showed good pre-
diction outcomes of more than 87% in stone-free prediction.
In most cases of the SWL, the stone analysis could not

be done without analyzing the stone fragments that had
been discharged from the body directly. Therefore, pa-
tients and stone characteristics should have an import-
ant role in the pretreatment prediction of treatment

outcomes. Even though stone volume, MSD, and SSD
are known as important factors that can affect the stone-
free rate after SWL, controversy about SSD still exists
[16, 17]. In our feature importance analysis, as with the
results from various other studies that have been ana-
lyzed using general statistical methods, MSD and stone
volume were the most influential factors, and SSD was
less affected than MSD and stone volume.
MSD is the mean value of the HU of each pixel in a

specific stone area and is known as a potential predictor
of successful treatment of urinary stone with SWL [18–
20]. Eisner et al. found that by measuring the mean HU
of defined regions just smaller than the stone in magni-
fied images on each slice of the transverse planes with a
standard bone window was the most accurate method of
determining MSD [21]. In addition, PACS may provide
pixel statistics such as minimum, maximum, and stand-
ard deviation of HU values. Lee et al. [22] defined SHI
as the standard deviation of stone density on NCCT and
assessment that SHI was independently associated with
SWL success in patients with ureter stone. In our study,
we easily determined MSD by measuring the mean HU
from NCCT by using a PACS in the same way. It was
significant that MSD was a more important feature than
SHI in the prediction of stone-free. All things are taken

Fig. 1 Feature importance of LightGBM for stone-free prediction. Stone-free was affected with mean stone density, stone volume, and skin to
stone distance

Yang et al. BMC Urology           (2020) 20:88 Page 5 of 8



together, although the predictive level of SHI seems to
be lower than MSD, SHI can play a supplementary role
in the prediction of SWL treatment outcomes.
The question of whether body mass index (BMI) af-

fects the success rate of SWL treatment has been a con-
troversial issue. Most of the studies have shown that
BMI was an independent predictor of stone-free status
after SWL [23, 24]. However, several studies took a dif-
ferent view [25, 26], so we tried to think about muscle
mass, which is a factor that can indicate the whole-body
health condition. No previous study has considered the
relationship between muscle mass and the success rate
of SWL treatment. Sarcopenia brings about mobility
limitation and an inability to perform simple activities of
daily life [27]. The psoas muscle cross-sectional area has
been used in many studies to provide estimates of over-
all muscle mass and has been shown to be a simple and
easily performed measure of a reliable marker of sarco-
penia [28–30]. In this study, we found that the psoas
muscle cross-sectional area was ranked as an important
feature in the prediction of one-session success rather
than in those of stone-free. That is, the higher the
muscle mass, the higher the activity in daily life. Muscle
mass can be regarded as an important factor in deter-
mining the extent of stone removal for a short period.

The results of blood and urine tests showed a gener-
ally low feature ranking. Among them, hemoglobin,
glomerular filtration rate, and platelet count were judged
to give a little meaning.
In the current study, there were some limitations. Its

retrospective design may have introduced sampling bias.
To compensate for its retrospective sampling bias and
small sample size, we applied three machine learning
methods, which can reduce bias from commonly used
general statistical accesses. However, further studies with
prospective data are needed to prove our monitoring on
the relationship of feature importance.
MSD was the most significant in feature importance, and

stone volume, SSD and stone length were the next most
closely associated with stone-free prediction of SWL treat-
ment outcomes in patients with urinary stone. In addition,
stone volume was the most significant in feature import-
ance, and MSD, stone length, SSD and psoas muscle cross-
sectional area were the next most closely associated with
the one-session success prediction in this study. Thus, these
would be clinically useful parameters in order.

Conclusions
We analyzed the effect of SWL treatment by using three
machine learning methods and confirmed that prediction

Fig. 2 Feature importance of Random Forest for one-session success prediction. One-session success was affected with stone volume, mean
stone density, stone length, skin to stone distance, and psoas muscle cross-sectional area

Yang et al. BMC Urology           (2020) 20:88 Page 6 of 8



accuracy can rise up to as much as 87.9% by using various
patients and stone characteristics. We propose that the
new machine learning based artificial intelligence and
medical encounter are important. When further large
studies, validated in a prospective group of urinary stone
patients, become available, our machine learning methods
might be useful for guiding SWL treatment selection and
prediction of patients with urinary stone.
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