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Abstract

The Collaborative Cross and the Diversity Outbred mouse populations are related multiparental populations, derived from the same
8 isogenic founder strains. They carry >50 M known genetic variants, which makes them ideal tools for mapping genetic loci that regulate
phenotypes, including physiological and molecular traits. Mapping quantitative trait loci requires statistical and computational training,
which can present a barrier to access for some researchers. The QTLViewer software allows users to graphically explore Collaborative
Cross and Diversity Outbred quantitative trait locus mapping and related analyses performed through the R/qtl2 package. Additionally,
the QTLViewer website serves as a repository for published Collaborative Cross and Diversity Outbred studies, increasing the accessibility
of these genetic resources to the broader scientific community.
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Introduction
Multiparental populations (MPPs; de Koning and McIntyre 2017)
improve upon traditional experimental crosses by interbreeding
more than 2 isogenic strains capturing greater genetic diversity.
The Collaborative Cross (CC) and Diversity Outbred (DO) mouse
populations are related MPPs that have been used to genetically
dissect complex traits, including obesity (Svenson et al. 2012),
bone strength (Al-Barghouthi et al. 2021), short-term memory
(Hsiao et al. 2020), and benzene response (French et al. 2015). As
recombinant populations, the CC and DO are well-suited for
mapping quantitative trait loci (QTLs), which can be powerful in
studies of -omic traits, including gene expression, protein abun-
dance, and chromatin accessibility (Aylor et al. 2011; Chick et al.
2016; Abu Toamih Atamni et al. 2018; Keller et al. 2018; Keele et al.
2020, 2021; Takemon et al. 2021; Gerdes Gyuricza et al. 2022).

The CC and the DO were bred from the same 8 strains: A/J,
C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ,
and WSB/EiJ (Churchill et al. 2004, 2012; Iraqi et al. 2012). The use of
classical and wild-derived founder strains drives high levels of ge-
netic variability (Yang et al. 2007, 2011). The CC represents �60 re-
combinant strains that are fully inbred (>99%) whereas DO mice are
outbred, thus each mouse is genetically unique. Mapping resolution
is finer for the CC and the DO compared to intercrosses or back-
crosses due to additional generations of meiosis, which facilitates
the identification of candidate genes (Solberg Woods 2014).

Mouse experiments support the collection of multiple types of
data on the same individuals, including physiological traits and
molecular assays (e.g. gene expression) across multiple tissues.
Integrative approaches like mediation analysis can be used to de-
lineate the relationships among traits with shared QTLs (Chick
et al. 2016; Keele et al. 2020). This series of analyses enable richer
findings from CC and DO experiments but can also obstruct
researchers without statistical and computational expertise.

The R/qtlcharts software (Broman 2015) provided a set of in-
teractive data visualization tools for QTL analysis, built on the
JavaScript library D3 (Bostock et al. 2011) and accessible from R
(R Core Team 2021), but it does not provide a comprehensive or
user-friendly graphical user interface. Konganti et al. (2018) devel-
oped the gQTL webtool, a graphical interface QTL mapping tool
for CC data based on the R package DOQTL (Gatti et al. 2014).
However, DOQTL is no longer maintained and instead, the R/qtl2
package (Broman et al. 2019) should be used. Here, we present the
QTLViewer software (https://qtlviewer.jax.org), an interactive
QTL mapping webtool built for both CC and DO that utilizes
the R/qtl2 package to perform QTL mapping as well as variant
association mapping based on the founder strain genotypes.
QTLViewer can perform mediation analysis for QTL through -
omic traits to identify candidate causal mediators of physiologi-
cal trait QTL. The primary goal of QTLViewer is to allow users to
interactively perform and visualize QTL mapping for publicly
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available CC and DO datasets, and so, QTLViewer represents a
data repository that can be also downloaded for further investi-
gation. This software will empower researchers to analyze and
explore CC and DO data while facilitating access to relevant data
and findings from others across the community.

Methods
The QTLViewer is an interactive web application designed to in-
teractively perform and visualize QTL mapping and related anal-
yses in experimental CC or DO data. We make use of modern
computing tools, such as application programming interfaces
(APIs) and Docker containers, to make QTLViewer efficient, porta-
ble, and extendable.

Implementation
The QTLViewer is comprised of 3 Docker (https://www.docker.
com/—v18.09.3 last accessed 06/13/2022) images that are man-
aged with Docker-Compose (https://docs.docker.com/compose/—
v1.23.2 last accessed 06/13/2022). The user interface is contained
in the churchilllab/qt2lweb container (v1.0.0), which is a Python
(v3.6.9) web application that processes all requests made by the
user. Each request is parsed and analyzed to determine which
analyses need to be performed.

All computational requests are performed by the churchilllab/
qtl2rest container (v0.1.0). This container loads data upon startup
and listens to Web API calls via RestRserve (https://restrserve.
org/—v0.4.1 last accessed 06/13/2022). All data returned from
these APIs are in JSON format. Since some requests require longer
time to complete than others, we use another instance of the
churchilllab/qtl2web container to manage them. We utilize
Celery (https://docs.celeryproject.org/—v4.47 last accessed 06/13/
2022) with a Redis (https://redis.io/—v6.2 last accessed 06/13/
2022) backend as a task queue.

The containers work together to handle all requests. Requests
generated from the web page are submitted via AJAX
(Asynchronous JavaScript) and processed by the churchilllab/
qtl2web container. A dialog box with a spinning wheel is dis-
played to the end-user to show that the request is being proc-
essed. The request is parsed to determine which APIs need to be
called. There could be one to many API calls per request. Those
API calls are bundled together and submitted to the task queue
for processing. Once the task queue receives the request, a
unique ID is generated and sent back to the web page. The web
page parses the unique ID and begins polling the task queue until
the task is complete or an error occurs. While the web page is
polling the task queue for a status, the API calls are submitted to
the churchilllab/qtl2rest container for computational analyses.
When all API calls are complete, the task queue bundles the data
together and marks the job as complete. The background polling
that has been happening on the web page see that the job is com-
plete, removes the dialog box, and processes the JSON data to dis-
play the appropriate graphs and data.

A diagram illustrating the implementation process is shown in
Fig. 1.

Supporting tools
QTLViewer relies on a set of tools that facilitate the analyses of
MPPs. Ensimpl (v 1.0.0) is a customized small version of Ensembl
(https://www.ensembl.org last accessed 06/13/2022) that pro-
vides a web API to retrieve genomic information. Ensimpl
extracts the necessary data from Ensembl and creates efficient
SQLite (https://www.sqlite.org/ last accessed 06/13/2022)

databases for querying purposes. The databases are separated by
Ensembl release and species (mouse and human). The web API is
written in Python utilizing FastAPI (https://fastapi.tiangolo.com/
last accessed 06/13/2022) framework. The API functionality pro-
vides search, genomic location lookup, gene lookup, and gene
history.

In addition to Ensimpl, QTLViewer also utilizes a Founder SNP
Database (https://churchilllab.jax.org/foundersnps last accessed
06/13/2022). The Founder SNP database is a custom version of
the Sanger SNP VCF files that have been processed via a Python
script and stored in an SQLite (https://www.sqlite.org/ last
accessed 06/13/2022) database. The SNP genomic location and al-
lele calls for the 8 founder strain alleles are stored. A custom
Strain Distribution Pattern is stored for easy query and dissemi-
nation of data. Currently, GRCm38 (https://www.ncbi.nlm.nih.
gov/assembly/GCF_000001635.20/ last accessed 06/13/2022) re-
lease 1410 and 1505 are supported.

Data visualizations make use of the JavaScript library
Highcharts (https://highcharts.com last accessed 06/13/2022)
which is built on D3 (Bostock et al. 2011).

Statistical methods
The QTLViewer carries out several types of analysis to map and
characterize QTL. QTL mapping analysis is run using the R/qtl2
package (Broman et al. 2019—v0.28). The QTLViewer maps QTL
by testing for an additive locus effect (additive QTL) or a locus-
by-factor interaction effect (interactive QTL). For the additive
model, the following linear mixed model is used to test an addi-
tive locus effect at loci spanning the genome:

traiti ¼ QTLim þ covariatesi þkinshipi þ errori; Equation 1

where traiti is the phenotype value of mouse i, QTLim is the effect
of locus m on mouse i being tested, covariatesi is the cumulative
effect of all covariates on mouse i, kinshipi is a random term that
captures noise variation for mouse i due to population structure,
and errori is the independent random noise for mouse i. The
structure of the kinship term is encoded in a genetic relationship
matrix (K) estimated from the genotypes. We use the “leave one
chromosome out” (LOCO) approach in which the K used for each
locus m fit by Equation (1) excludes all markers from the chromo-
some of locus m, which improves QTL mapping power (Wei and
Xu 2016). The QTLViewer uses the same statistical model for
mapping on all chromosomes including the X chromosome. The
precomputed genotype probabilities take account of sex-specific
differences (Broman et al. 2006).

For additive QTL, the QTLim term represents allele dosages
founder haplotypes at the locus. The QTLViewer will also plot the re-
gression coefficients from the QTLim term, i.e. the founder allele
effects, when doing haplotype-based analysis. These effects can also
be re-estimated as best linear unbiased predictors (BLUPs), which re-
duce the impact of rare alleles and can make signals clearer.

For interactive QTL, a similar model to Equation (1) is used to
test a locus-by-factor interaction effect at loci across the genome:

traiti ¼ QTLim þ factori þðQTLm � factorÞim þ covariatesi

þkinshipi þ errori;

Equation 2

where factori is a covariate of interest for mouse i that may have
an interaction effect with genotype at the locus m,
ðQTLm � factorÞim is the QTL-by-factor interaction term at locus
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m being tested, and all other terms as defined before. Possible fac-
tors include sex and age.

The QTLViewer can also perform association mapping on bial-
lelic variants using both additive and interactive models. Rather
than encoding genetic effects based on doses of founder haplo-
types, the QTLim and ðQTLm � factorÞim terms in Equations (1) and
(2) can be fit to doses of alleles of specific variants, imputed from

dense genotypes of the founder strains. Although variant associa-
tion mapping sacrifices some of the information present in the
founder haplotypes, it does enable researchers to potentially
identify specific variants of interests and prioritize candidate
genes.

Finally, the QTLViewer can perform mediation analysis for ad-
ditive QTL to identify candidate causal mediators (Chick et al.

Fig. 1. Diagram of QTLViewer data flow. (1) URL is parsed and, if not an API call, returns requested information (Flask is used as the web application
framework and Bootstrap 4 as the interface framework). (2) If the requested URL is an API call, the tool either returns a cached version if found or proceeds
to call the API (Celery is used as a distributed task queue). (3) R/RestRserve package routes the URL to the correct R method to be performed. (4) A
compressed JSON object is returned and if the HTTP request creates several QTL API calls, Redis will store the intermediate result from each call until all of
them are finished. (5) Results are cached, and data is returned to Flask/Python. (6) The request is complete. The headers are checked and, if the response
needs to be compressed, Flask will compress the data and send to the end-user. The front-end user interface is now responsible for rendering the data.
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2016; Keller et al. 2018; Keele et al. 2021) if -omic data, such as
gene expression, have been collected on the same mice or strains.
Briefly, Equation (1) is reused (with the kinship term excluded for
computational efficiency) and the QTL of interest retested, but
now conditioning one-by-one on candidate mediators. A strong
candidate mediator will localize near the QTL and strongly re-
duce the QTL LOD score.

Results and discussion
The QTLViewer webtool can be accessed at https://qtlviewer.jax.
org/. After clicking “Datasets” on the top right of the screen, users
will find a list of available datasets from CC and DO mice with
their corresponding references and links to the specific
QTLViewer instances. Here, we describe how a user would get
started in analyzing a publicly available CC or DO dataset using a
QTLViewer.

Step 1: Selecting a dataset
To start exploring QTLViewer data, users should click on the
QTLViewer link corresponding to the project of interest. All
QTLViewer projects contain at least 1 dataset such as a table of
physiological traits, gene expression, or protein abundance data.
Using the JAX Center for Aging Research DO data from the heart
as an example (https://churchilllab.jax.org/qtlviewer/JAC/
DOHeart last accessed 06/13/2022; Gerdes Gyuricza et al. 2022),
we find transcript and protein data available. Users can switch
datasets by clicking the selection box arrow next to the text
“Current Data Set” (Fig. 2a). All datasets in a QTLViewer instance
are linked to a common set of mice and genotypes.

Step 2: Searching the dataset by key word
QTL mapping and additional analyses can be performed for any
trait in the data. To conveniently specify traits of interests, users
can search via key word in the Search text box and press Enter.
The search algorithm is specialized for -omics data like gene ex-
pression, recognizing gene symbols, gene names, and Ensembl
identifiers. All elements that match the search criteria will be dis-
played in a table below, but only elements that are in the dataset
will be displayed in blue and clickable. For example, the genes
Ace and Ace2 are available in the transcriptome heart data, but
not Ace3 (Fig. 2b). This feature takes advantage of the Ensimpl
database and webservice, which currently hosts human and
mouse gene information with backward compatible versioning
through Ensembl (Yates et al. 2020).

Step 3: Visualizing large-scale -omic QTLs
(e.g. expression QTLs)
The QTL mapping features of the QTLViewer are flexible and tai-
lored to different types of data. For -omics data, such as tran-
scripts and proteins, an LOD Peaks tab is available (Fig. 2c), which
shows the position of the QTL vs the genomic coordinate of the
transcript or protein. When selecting this option, a genomic grid
is displayed with LOD scores from each gene or protein and in-
stead of visualizing single transcripts/proteins, users can visual-
ize all the -omic QTLs at the same time. This is the easiest way to
look for regions of the genome where many QTLs comap (geno-
mic hotspots). Genomic hotspots are an indication that distal ge-
netic variation regulates multiple genes/proteins that are
potentially involved in common biological functions. The grid
can be filtered based on an LOD threshold via a slider or manu-
ally setting the threshold in the LOD Threshold box. Factor–QTL in-
teraction (e.g. sex-interactive QTL) LOD peaks can be viewed by

changing the Plot type select box. Additional information on
specific QTLs can be interactively accessed by hovering and
clicking on the points in the grid. The plot supports pan and
zoom features.

Step 4: Generating genome-wide LOD plots
(i.e. genome scans) for individual traits
To visualize a genome-wide LOD plot for a specific trait, users
should click on a point from the LOD Peaks grid or select a trait in
the text search. Genome-wide LOD plots are useful to visualize
peaks on the genome associated with the phenotype of interest.
For example, the LOD plot for the gene Sfi1 reveals a clear expres-
sion QTL (eQTL) on chromosome 13 at 65 Mb (Fig. 3a), which is
considered a distal eQTL because Sfi1 is located on chromosome
11. Information about each LOD score may be accessed by hover-
ing. The Plots select box will switch between additive and factor-
interactive QTL models. Clicking on a locus of interest (i.e. the
peak LOD score) is used to drive additional analyses on the locus,
which are visualized as plots in the lower panel. These analyses
include estimation of founder allele effects, mediation of the lo-
cus effect through -omic traits, and SNP association mapping in
the locus region.

Step 5: Generating founder allele effects plot
The estimation of founder allele effects is used to obtain the con-
tributions of each founder haplotype to the QTL. To perform this
analysis, users should click on a specific peak on the genome-
wide LOD plot for a trait and, by default, the allele effects estima-
tion will be the first analysis to be performed (Fig. 3b). The allele
effects plot shows the estimated founder allele effects across the
chromosome that contains the selected peak. The allele effects
can be reported as fixed effects coefficients (default) or as con-
strained BLUPs by checking the bar on top of the effect plot. BLUP
estimates are generally preferable because they shrink extreme
effects from rarely observed alleles, but they are computationally
more intensive to calculate. These effects can be used to distin-
guish which founder strains likely possess the causal genetic var-
iants. They also highlight QTL that is multiallelic (Crouse et al.
2020)—a unique feature of MPPs. The allele effects of the distal
eQTL on chromosome 13 for the gene Sfi1 show a biallelic pattern
driven by lower expression from the CAST/EiJ and C57BL/6J
alleles compared to higher expression from the other alleles
(Fig. 3b).

Step 6: Performing mediation of QTLs
through -omic traits
Mediation analysis can be used to identify candidate mediators
of a QTL and thus reveals relationships between coregulated
traits. For example, genetic variation local to a gene encoding a
transcription factor can alter its expression levels, which then
mediate changes in expression on its downstream targets.
Another example of coregulated traits is a gene that possesses
comapping eQTL for its transcript and pQTL for its protein, sug-
gesting that its protein levels are transcriptionally regulated.
Support for these relationships in the data can be assessed
through mediation analysis. To generate mediation plots users
should click on the Mediation tab adjacent to the Effect tab, and
then click back on the locus of interest on the LOD plot
(Fig. 4a). Doing so runs a mediation analysis which involves
retesting a QTL effect at the locus of interest, iteratively condi-
tioning on candidate mediators. Promising candidates will sig-
nificantly reduce or drop the initial QTL LOD score and be
encoded on the genome near the QTL. When performing a
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mediation analysis of the gene Sfi1 against the transcriptome

heart data, we see an LOD drop on chromosome 13 (where the

distal eQTL is located; Fig. 4a). The gene with the lowest LOD

score on chromosome 13 is Rsl1, the candidate mediator.

We also see an LOD drop on chromosome 11 at the position of

the Sfi1 gene (which corresponds to a local eQTL; Fig. 4a). This

“LOD-drop” method of mediation is a powerful tool to identify

candidate mediators, but it is also susceptible to false-positive

detection of linked independent effects (Chick et al. 2016;

Crouse et al. 2020). Mediation can be performed against

different datasets by changing the selection in the Mediate

Against box.

Fig. 2. Navigating datasets in the QTLViewer. The QTLViewer page for a project provides access to multiple datasets which can be explored by changing
the option on “Current Data Set.” In the screenshot, the aging DO heart transcriptomics data is selected (a). Within this specific dataset, it is possible to
search for specific traits. For example, in the transcriptome dataset, the genes Ace and Ace2 are available, but not Ace3 (b). Switching to the “Lod Peaks”
mode, visualizes a genome-wide transcriptome map with marker IDs on the x-axis and gene position on the y-axis, which is a common plot type to
summarize all the eQTLs in the data according to a specified LOD threshold (c).
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Step 7: Performing SNP association scans
SNP (or variant) association mapping is useful to identify ge-
netic variants of interest in the QTL region. To perform this
analysis, users should click the SNP Association tab adjacent to
the Mediation tab, and then click on a locus of interest on the
genome-wide LOD plot (Fig. 4b). This will generate an SNP as-
sociation plot, which shows LOD scores against the genomic
position for all variants overlaid with annotated genes by their
corresponding genomic positions on the bottom. The plot of
the chromosome 13 shows multiple variants in strong linkage
disequilibrium (LD) with each other (haplotype) and with high
LOD scores at the position of the candidate mediator Rsl1
(Fig. 4b). Users can pan and zoom in the SNP association plots.
Hovering over a variant will display additional information
such as variant consequences, and the allele distribution

pattern among the founder strains, which shows the magni-

tude and direction of the effect of each founder’s haplotypes

on the trait.

Step 8: Exploring the relationships among traits
and covariates
In addition to QTL mapping results, the QTLViewer can be used

to explore the relationship between a trait and a covariate of

interests (e.g. sex). If users are interested in this type of analysis,

they should scroll down to the bottom left corner of the screen,

under the Profile Plot tab (Fig. 5a). The profile plot is generated au-

tomatically after searching or clicking in a trait of interest. If

users wish to modify the plots based upon the covariates ob-

served in the experiment, they should click on the Select your fac-

tors selection box, which will turn factors on or off. In addition,

Fig. 3. Genome-wide LOD and founder allele effects plots. Searching for specific traits or clicking on interesting QTLs on the transcriptome map reveals
the genome-wide LOD plot with genome position across chromosomes on the x-axis and LOD scores on the y-axis (a). This plot reveals a strong eQTL on
chromosome 13 at 65 Mb for the gene Sfi1, which is a distal eQTL because Sfi1 is encoded on chromosome 11. By clicking on the “Effect” function and
then clicking back on the locus of interest produces a founder allele effects plot at the locus (b). The allele effects plot has genomic position in Mb on
the x-axis and the estimated allele effects (top) and LOD scores (bottom) on the y-axis. The peak on chromosome 13 for the gene Sfi1 is driven by lower
expression from the CAST/EiJ and C57BL/6J alleles compared to higher expression from the other 6 alleles.
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users can assess the relationships among traits based on correla-
tion. This analysis can be useful when, for example, checking the
correlation between the trait of interest and its genetic mediator
identified in the mediation analysis (Step 6). Correlation tab adja-
cent to the Profile Plot tab will show the correlation of the element
of interest with any other element in the data (Fig. 5b). The tool

will display a scatter plot of the focus trait with another selected
trait. To do that, users should choose a dataset in the Select
Correlation Dataset box, and then select the element of interest
from the table (Fig. 5c). The values of the elements can be ad-
justed by the covariates specified on the Covariate Adjustment
box, and points can be colored by specific covariates determined

Fig. 4. Mediation and SNP association plots. a) Mediation analysis can be performed on QTL of interest to identify candidate mediators as long as the
QTL’s trait and the mediators are observed for the same mice (for the DO specifically) or for the same strains. The mediation plot shows genomic
position across chromosomes on the x-axis and conditional LOD scores on the y-axis. By mediating the distant eQTL of Sfi1 on chromosome 13 through
the DO heart transcriptomics data, the gene Rsl1 on chromosome 13 at 67 Mb is identified as a candidate mediator, which matches the eQTL position.
We also see candidate mediators on chromosome 11. The one with the lowest LOD score is the gene Sfi1 itself and the other is a gene model (Gm11400)
that is likely on LD with Sfi1. b) An SNP association scan can be performed in the QTL region by clicking on the “SNP Association” button. The SNP
association plot shows genomic position in bp on the x-axis and LOD scores on the y-axis. Annotated genes are overlayed below the x-axis. Variant
association in the CC and DO reveals haplotypes shelves of variants in strong LD with each other. Additional information on variants or genes can be
accessed by hovering the cursor over the dot or gene track.
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on Select a series to color. We can see that Sfi1 has a strong posi-

tive correlation with the gene Gm114400 located on chromo-

some 11, which is likely in LD with Sfi1 (Fig. 5c). The gene Sfi1

also has a negative correlation with the candidate mediator Rsl1

(Fig. 5c). The negative correlation between Sfi1 and Rsl1 makes

sense given that Rsl1 encodes a zinc-finger protein that func-

tions as a negative regulator of gene expression (Krebs et al.

2003, 2014).

Step 9: Downloading QTLViewer data objects
The QTLViewer contains multiple R data objects that supply all
the necessary inputs for the analyses, including traits, covariates,
and genotype probabilities. In addition to exploring the data in-
teractively on the QTLViewer webpage, users can download the
corresponding R data objects by clicking on Download Data on the
top of the page (Fig. 6a). All plots and analyses generated above
can be downloaded as figures or data tables by clicking on the top

Fig. 5. Plots for relating traits and covariates. After searching for a specific trait or selecting one based on its QTL, QTLViewer can visualize the trait’s
profile according to covariates in the data with “Profile Plot.” After clicking on the point corresponding to the gene Sfi1 on the LOD peaks plots,
QTLViewer outputs the normalized expression of the Sfi1 (y-axis) categorized by sex (x-axis) as boxplots (a). Additionally, QTLViewer can display the
correlation of a trait of interest with all the other elements of the data using the “Correlation” tab (b). The correlation data can also be downloaded
locally by the user. All the elements on the correlation table are clickable. Clicking on “Rsl1” will generate a scatter plot between this gene and Sfi1,
which illustrates the negative correlation between these 2 genes (c). Sfi1 is negatively correlated with its mediator Rsl1, suggesting that Rsl1 expression
inhibits Sfi1 expression.
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right corner button on each plot (Fig. 6a). When clicking on
Download Data, users will be redirected to a new page displaying
all the downloadable RData files (Fig. 6b). There, users will find a

“core” RData file containing all the input needed for mapping,
such as genotype probabilities and marker information. Users
can also download the “dataset” remote desktop services (RDS)

Fig. 6. Figures and data download from QTLViewer. All plots generated by QTLViewer can be downloaded by clicking on the top right button in the
application window (a). In addition to the figures, the processed data used as input to all analyses can be downloaded as R data files by clicking on
“Download Data” (a). When using this option, users will be directed to a different webpage listing different components of the data for download (b).
This includes a core RData object containing all information necessary for mapping, such as genotype probabilities, kinship matrix, and genomic map,
and RDS files containing trait information, such as transcriptome (“dataset.mrna”) and proteome (“dataset.protein”) data. These RDS files are nested
lists containing phenotype annotations, a matrix of covariates used for the QTL mapping (“covar.matrix”), information about the covariates
(“covar.info”), trait data matrices, QTL mapping results (“lod.peaks”), and sample annotations (“annot.samples”) (c). With gene expression data,
“dataset.mrna” is a list with different forms of data as matrices, including the raw counts (raw) the normalized data (norm), and inverse normal
transformed data (rz) (c). The QTL mapping results “lod.peaks” is a list with QTL result tables from standard additive scans and potentially factor-
interactive QTL scans (c).
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files that contain the trait data, sample and assay metadata
annotations, and a summary of the QTL mapping results (Fig. 6c).
This functionality enables users to quickly gain access to proc-
essed data files to run further analyses.

Building your own QTLViewer
The main goal of the QTLViewer is to allow users to interactively
perform QTL mapping on publicly available data and to graphi-
cally explore results independent of their computational skills.
However, if users wish to analyze their own data it is also possible
to build a new QTLViewer object, which will require some coding
experience. Instructions on how to set up a new QTLViewer can
be found in the Supplementary File.

Future directions
The R/qtl2 software at the core of QTLViewer is very general and
can accommodate a wide range of cross designs and data from
model organisms other than the mouse. We plan to extend the
QTLViewer to include mouse backcrosses, intercrosses, and 2-
way recombinant inbred panels. Adapting QTLViewer to MPPs
from species other than the mouse will require modification of
settings in the configuration files and the gene-search features
for -omics data, and creation of a variant database.

We are in the process of adding a new method for mediation
analysis based on Bayesian model selection (Crouse et al. 2022)
that can provide richer inference for mediators of interest. We
continue to expand the QTLViewer for new types of genomic
data, such as chromatin profiling data, which will be incorpo-
rated and layered onto the genome browser tracks.

We continue to add new datasets to the QTLViewer website,
which already represents a powerful resource for the community.
We welcome contributions from outside investigators and will
assist in the process of preparing their data for the QTLViewer.

Web resources
Users can access the QTLViewer webpage at https://qtlviewer.
jax.org/ (last accessed 06/13/2022). The QTLViewer software is
version controlled and available from GitHub (https://github.
com/churchill-lab; last accessed 06/13/2022).

The supporting tools Ensimpl and SNPDB are available online
at https://churchilllab.jax.org/ensimpl (last accessed 06/13/2022)
and https://churchilllab.jax.org/foundersnps (last accessed 06/
13/2022), respectively. The Docker containers code can be found
at https://github.com/churchill-lab/qtl2web (last accessed 06/13/
2022), https://github.com/churchill-lab/qtl2rest (last accessed 06/
13/2022), and https://github.com/churchill-lab/ensimpl (last
accessed 06/13/2022). The Docker images are available at https://
hub.docker.com/r/churchilllab/qtl2web/tags (last accessed 06/
13/2022), https://hub.docker.com/r/churchilllab/qtl2rest/tags
(last accessed 06/13/2022), and https://hub.docker.com/r/church
illlab/ensimpl/tags (last accessed 06/13/2022). The source code
for QTL mapping analysis through R/qtl2 package can be found
at https://github.com/rqtl/qtl2 (last accessed 06/13/2022).

Data availability
The aging heart data analyzed here to demonstrate the
QTLViewer functions can be found online at https://churchilllab.
jax.org/qtlviewer/JAC/DOHeart (last accessed 06/13/2022) and at
figshare under accession number https://doi.org/10.6084/m9.fig
share.12378077.

Supplemental material is available at G3 online.
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