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Abstract
The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition
of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted
metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon.
Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological
events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story.
The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5
billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in
extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However,
billions of years of environmental transition, for example, in the progressive oxygenation of the Earth’s atmosphere, would
be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in
RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from
those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these
expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight
the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We
propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes
that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for
integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life
on Earth.

Introduction

Life on Earth has generated two main repositories of
information with which to reconstruct its past states: first,
the genetic diversity of extant organisms, and second, the
physical remnants of past life preserved in the geologic
record, or biosignatures [1]. By far the most extensive

biosignature record—providing the earliest potential evi-
dence of life >3 billion years old [2–5]—is constructed from
13C/12C isotopic compositions of preserved carbonaceous
material, expressed as a normalized value, δ13C, typically in
units of per mil (‰) [6, 7] (Fig. 1; Box 1).

This carbon isotope record is interpreted to have pri-
marily been shaped by the biological isotopic discrimination
of enzymatically driven carbon metabolism. Thus, con-
certed efforts have been dedicated toward disentangling this
record and identifying signals potentially attributable to the
metabolic innovations, ecosystem turnover, and global
environmental changes that have characterized the history
of life [6–10]. Such changes would be expected to manifest
in variations to the carbon isotopic record over geologic
time. However, deviations in inorganic and organic δ13C
over the last ~3.5 billion years consistently average ~25‰,
creating a largely static trend across the entirety of the
record [6, 7]. Only two isolated negative excursions in
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organic δ13C have been resolved, one centered at ~2.7 bil-
lion years and the other at ~2 billion years. These excur-
sions have been interpreted to reflect increased
methanotrophic and/or methanogenic activity [7, 9, 11, 12].
Why are similar variations not known for other time
intervals?

This curious consistency of carbon isotope biosignatures
presents an ongoing challenge for interpretation of the most
extensive record of life. It is an enormously complex pro-
blem, as several factors are known to affect the magnitude
of biological isotope discrimination, including diversity in
metabolic pathways (Table 1) as well as environmental
parameters and host organism physiologies (Table 2). The
overlaying of these factors serves to obfuscate individual
contributions to preserved carbon biosignatures that might
be of interest in understanding the early evolution of life.
Further, one must consider the fidelity of the record itself, as
the isotopic compositions of poorly preserved geologic
samples may be affected by post-depositional abiotic pro-
cesses that erase primary biogenic signatures [6, 10].

Here, in addition to surveying several biological and
environmental factors that quantitatively affect carbon bio-
signatures, we contend with an important aspect that is not
typically considered—the potential role of subcellular
evolution in shaping the carbon isotope record. We discuss
in particular the evolution of the CO2-fixing enzyme
RuBisCO (ribulose 1,5-bisphosphate carboxylase/

Fig. 1 The geologic record of δ13C values has remained essentially
constant over ~3.5 billion years. Geologic carbonate and organic
δ13C record (left) and modern δ13C values of inorganic carbon and
biomass from diverse taxa (right). Light gray fields represent the range
of geologic δ13C measurements from Schidlowski [6]. Dark gray fields
represent 95% confidence intervals for smoothing analyses of geologic
δ13C data from Krissansen-Totton et al. [7] and references therein.
Modern δ13C values from Schidlowski [6]. Bars are colored as fol-
lows: black, geologic reservoirs; dark green, land plants; light green,
green algae; teal, cyanobacteria; other taxa, yellow. Phases of atmo-
spheric oxygen are labeled at the bottom, from Lyons et al. [24] (“~ no
O2” indicates <10−5 present atmospheric level (PAL), “low O2”

indicates ~10−1 to 10−4 PAL, and “modern O2” indicates PAL).
Qualitative O2 levels are indicated by shades of blue, with lighter
shades indicating lower O2 levels and darker shades indicating higher
O2 levels (also noted by the scale). The Great Oxidation Event (GOE)
and Neoproterozoic Oxidation Event (NOE) are indicated by darker
blue bars. The earliest potential appearance of cyanobacteria is inter-
preted from the oldest known oxidized sediments [24, 59, 60]; of
eukaryotic algae, from oldest interpreted algal fossils [139] and
molecular clock dating [140, 141]; of land plants, from the oldest
interpreted pollen fossils [142] and molecular clock dating [143]. PDB
Pee Dee Belemnite δ13C standard, Phan. Phanerozoic (color figure
online).

Box 1. Mechanism and measurement of biological carbon isotope
discrimination

Measurements of carbon isotope compositions are relative,
normalized to an international standard (Vienna Pee Dee
Belemnite), and expressed as:

δ13C ¼ 13Csample=
12Csample

� �
= 13Cstandard=

12Cstandard
� �� 1

� �

Materials enriched in 13C relative to the standard (defined as δ13C
= 0‰) are thus expressed as positive δ13C values, whereas those
depleted in 13C, like biogenic carbon compounds, are expressed as
negative δ13C values.
In autotrophic organisms, CO2 fixing enzymes typically discrimi-
nate against the heavier 13C isotope as a result of an enzymatic
kinetic isotope effect that leaves the resulting product fractionated,
or depleted, in 13C relative to the CO2 source. The heavier 13C
isotope requires greater activation energy to reach the transitional
state, resulting in a slower reaction rate. The degree to which a
given carboxylase discriminates is measured as a ratio of the
reaction rate constants for each isotope (k12:k13), which is
converted to an epsilon value, ε= 1000 [(kl2/k13)− 1]. For
example, for RubisCO, this is directly proportional to the
discrimination by the enzyme against 13C that occurs between
the substrate pool (CO2) and the product (phosphoglycerate;
[144]).
Enzyme fractionation has been approximated in whole cells in
laboratory experiments where the δ13C of the source CO2 in the
growth media is known (Table 1). This is calculated as Δδ13C=
δ13Cbiomass− δ13CCO2. Since Δδ13C values encompass other
physiological factors also influencing carbon isotope ratios of
samples (see Table 2), ε as defined above is restricted here for
carbon fractionation measured for purified enzymes.

2184 A. K. Garcia et al.



oxygenase, EC 4.1.1.39) [13, 14], which produces com-
parable isotope effects in extant oxygenic phototrophs (ε
~20 to 30‰; see Box 1 for a discussion of isotope effects)
to the ~25‰ mean isotopic difference between preserved
inorganic and organic carbon [15–19]. RuBisCO is the
catalytic bottleneck of the Calvin–Benson–Bassham (CBB)
cycle used primarily by oxygenic phototrophs, though also
by certain Proteobacteria, Gram-positive bacteria, and

Chloroflexi [20–22] (Table 1). The CBB cycle facilitated by
oxygenic phototrophs evolved early in Earth history, at least
by 2.4 billion years as evidenced by broadly accepted
geochemical signatures of atmospheric oxygen [23, 24].
This, in addition to the predominance of oxygenic photo-
trophy in modern primary production, suggests that
RuBisCO has been the most important driver of carbon
fixation for much of Earth history [6, 25].

Table 1 Isotopic discrimination, productivity, and O2 sensitivity of extant carbon fixation pathways.

Pathway Associated taxaa Modern productivity
(Pg C/yr)b

13C/12C isotope discrimination
Δδ13C (‰)

Isotope discrimination
references

Pathway O2
sensitive?b

CBB Cyanobacteria [97]
Eukaryota [98, 99]

photoautotrophs
Proteobacteria [100]

autotrophic Alpha-, Beta-,
Gammaproteobacteria
Chloroflexi [101]

Oscillochloridaceae
Firmicutes [102]

Sulfobacillus spp.

~100 ~10 to 35 [26, 44, 45, 103–105] Yes

rTCA Aquificae [106]
Aquificales

Chlorobi [107]
Chlorobiales

Nitrospirae [108]
autotrophs

Proteobacteria
Magnetococcus sp. MC-1
Desulfobacter hydrogenophilus

~1 ~2 to 23 [44, 45, 103–105] Yes

roTCA Aquificae
Thermosulfidibacter takaii

Proteobacteria
sulfur-reducing Deltaproteobacteria

Unknown Unknown N/A Unknown

HP/HB Crenarchaeota [109]
Sulfolobales
Marine group I [110]

Thaumarchaeota [111]

~0.7 ~0 to 4 [44] No

Wood–Ljungdahl Euryarchaeota [112]
Archaeoglobales
methanogens

Firmicutes
acetogens

Planctomycetes [113]
anaerobic ammonium-oxidizers

Proteobacteria
autotrophic Deltaproteobacteria
Spirochaetes [113]

Treponema primitia

~0.1 ~5 to 80 [45, 46, 50, 51, 53, 114] Yes

DC/HB Crenarchaeota
Thermoproteales
Desulfurococcales

<0.1 ~0 to 4 [44, 45] Yes

3HP Chloroflexi
Chloroflexaceae

<0.1 ~0 to 14 [20, 44, 115] No

Reductive
glycinec

Proteobacteria
Candidatus Phosphitivorax
anaerolimi

<0.1 Unknown N/A Unknown

Isotopic discrimination reported from literature, calculated as Δδ13C= δ13Cproduct− δ13Creactant, where product is biomass (or acetate/methane for
acetogens/methanogens, respectively, utilizing the Wood–Ljungdahl pathway) and reactant is source carbon in growth media.

CBB Calvin–Benson–Bassham cycle, DC/HB dicarboxylate–4-hydroxybutyrate cycle, HP/HB 3-Hydroxyproprionate/4-hydroxybutyrate cycle,
roTCA reverse oxidative tricarboxylic acid cycle, rTCA reductive citric acid cycle, 3HP 3-hydroxyproprionate bicycle.
aAssociated taxa from Berg et al. [37], Hugler and Sievert [116], Ward and Shih [25], and references therein. References for definitions of informal
taxonomic groups are listed within the table at first instance. Listed taxa are not necessarily diagnostic of each pathway, but rather describe major
groups of organisms where pathway can be found.
bModern productivity values from [38, 117–121], and O2 sensitivity data from Berg [122].
cRecently proposed pathway for the Deltaproteobacterium Candidatus Phosphitivorax anaerolimi [36].

The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution 2185



There are several reasons to expect that molecular-level
changes to RuBisCO enzymes over geologic history may
have been imprinted upon the carbon isotope record. The
range of isotope effects for differing forms of RuBisCO can
extend outside that associated with well-studied oxygenic
phototrophs (i.e., ε ~< 20‰; Table 3). Furthermore, extant
RuBisCO carbon uptake efficiency varies as a function of
external CO2 levels and protein sequence variation, which
subsequently affects the degree of carbon isotope fractio-
nation [16, 19, 26–28]. Because atmospheric CO2 levels
have changed markedly over Earth history [29], one would
expect molecular adaptations in RuBisCO CO2 specificity
to thus be expressed in carbon biosignatures.

An advantage of this molecular perspective is that the
expectations for ancient variation in RuBisCO isotopic
fractionation can be experimentally tested. Recently,
molecular paleobiology has been recruited to reconcile
independent biological and geological records of life by the
laboratory reconstruction of ancestral enzymes and meta-
bolic systems responsible for producing preserved bio-
signatures [30–32]. A fundamental issue with the
interpretation of carbon isotope biosignatures is that it is not
known to what extent the isotope discrimination behavior or
modern biology can serve as a proxy for past life. These

paleogenetic tools instead leverage modern genomic infor-
mation and phylogenetic models to infer the molecular
sequences of ancestral enzymes prior to their experimental
synthesis and characterization [32, 33]. By this approach,
the isotopic effects of inferred ancestral enzymes can be
compared directly with preserved carbon isotope bio-
signatures, thereby reconciling biological and geological
records of life [30]. Such an approach is not itself meant to
be a complete solution to understanding the consistency of
the carbon isotope record. Rather, these strategies can help
constrain the set of contributing factors and complement
further characterization of extant biological fractionation
processes and the geological samples themselves. Together,
these efforts provide an empirical strategy to interrogate the
oldest physical remnants of ancient life.

The production and preservation of carbon
isotopic biosignatures

Several biotic and abiotic factors are known to influence the
magnitude of isotopic fractionation as carbon is assimilated
into biomass. At the heart of carbon fixation pathways,
enzyme fractionation associated with the production of

Table 2 Examples of
environmental and physiological
factors that affect autotrophic
carbon fractionation.

Variable Taxa 13C/12C isotope discrimination
change (↑ or ↓) with increase in
variable

Reference

Temperature Land plants (varied) ↓ (≤ ~4‰) [123]

Diatoms (varied) ↓ (≤~7‰; less change at high
[CO2])

[124]

Marine plankton (varied) ↑ or ↓, dependent on taxa (≤
~4‰)

[125]

pH Spinacea oleracea (land plant) ↓ (≤ ~3‰) [15]

Skeletonema costatum (diatom),
Emiliania huxleyi (coccolithophore)

↑ or ↓, dependent on pH range
(≤ ~9‰)

[47]

CO2 concentration Land plants (varied) ↑ (≤ ~7‰) [126]

Skeletonema costatum (diatom),
Emiliania huxleyi (coccolithophore)

↑ (≤ ~7‰) [47]

Emiliania huxleyi (coccolithophore) ↑ (≤ ~7‰) [127]

Emiliania huxleyi (coccolithophore) ↑ (≤ ~7‰) [128]

Growth rate Phaeodactylum tricornutum (diatom) ↓ (≤ ~20‰) [129]

Emiliania huxleyi (coccolithophore) ↓ (≤ ~7‰) [128]

Marine plankton (field samples) ↓ (≤ ~9‰) [130]

Marine plankton (field samples) ↓ (≤ ~8‰) [131]

Cell surface area:
volume

Marine plankton (varied) ↑ (≤ ~20‰) [132]

H2 concentration Methanothermobacter marburgensis
(methanogen)

↓ (≤ ~30‰) [133]

Methanocaldococcus jannaschii
(methanogen)

↓ (≤ ~16‰) [134]

Pressure Methanopyrus kandleri (methanogen) ↓ (≤ ~22‰) [135]
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biological carbon is the result of an enzymatic kinetic iso-
tope effect that produces differences in the δ13C composi-
tions of substrates versus products (see Box 1 for a
discussion on fractionation mechanism as well as a
description of notation used here). These effects arise from
the isotope mass difference between 13C and 12C [34, 35],
and result in a slight preference for the conversion of 12C-
containing compounds to organic biomass. In addition to
this enzymatic effect, environmental and physiological
factors can additionally modulate the isotopic composition
of fixed carbon.

There are seven known pathways of carbon fixation uti-
lized by autotrophs, including the aforementioned CBB cycle
and the recently proposed reductive glycine pathway [36]
(reviewed in [25, 37]) (Table 1). These different autotrophic
pathways vary in their taxonomic distributions, oxygen
sensitivities, and contributions to total modern primary pro-
ductivity. Though the CBB pathway is today responsible for
the bulk of total fixed carbon [38–40], it is not considered to
be the oldest carbon fixation mechanism. Instead, it has been
suggested that the Wood–Ljungdahl pathway, today utilized
by acetogenic and anaerobic ammonium oxidizing bacteria as
well as methanogenic archaea, is the oldest mechanism and is
proposed to be associated with the last universal common
ancestor [25, 41–43].

The Δδ13C values associated with different carbon fixa-
tion pathways are calculated as the difference between δ13C
of biomass and source dissolved inorganic carbon or CO2

(and thus reflect a combination of enzymatic, physiological,
and environmental effects). Δδ13C measured for the rTCA,
HP/HB, DC/HB, and 3HP pathways indicate smaller

isotopic discriminations (Δδ13C= 0–15‰) relative to those
produced by the CBB pathway (Δδ13C= 10–30‰)
(Table 1). The Wood–Ljungdahl pathway can produce
discrimination in excess of that of the CBB pathway (i.e.,
Δδ13C= 30–40‰) [44, 45], with the greatest discrimina-
tion (Δδ13C= 65‰) measured from acetogens [46]. Δδ13C
values have not yet been determined for the roTCA and
recently described reductive glycine pathways.

Environmental and physiological components of Δδ13C
values have themselves also been investigated (Table 2).
Changes in physical environmental factors, including tem-
perature, pH, and CO2 and H2 concentrations (the latter in
methanogenic organisms) all have significant effects, typi-
cally imparting between a 5 and 30‰ change in isotope
discrimination. Decreased external CO2 concentrations in
particular appear to reliably result in decreased isotopic
fractionations. This is likely due to a Rayleigh distillation
effect in which, at low CO2 concentrations, organisms will
use intracellular CO2 faster than can be diffusively
exchanged with external source CO2, thereby minimizing
isotopic discrimination as well [47]. This relationship has
been leveraged in an effort to use carbon isotopic compo-
sitions of preserved organic matter as a proxy for ancient
atmospheric CO2 levels [8, 48, 49]. For variables that have
been tested using methanogen cultures, including H2 con-
centration and pressure, fractionation can vary up to 30‰.
Physiological factors, including growth rate and cell shape,
can result in up to ~20‰ variability in isotope discrimina-
tion. In sum, these environmental and physiological factors
can produce variability in fractionation that can meet or
exceed variability attributed to differences in autotrophic

Table 3 Available
measurements of 13C/12C
isotope effects (ε) from diverse
forms of purified RuBisCO
enzyme, measured under
saturating CO2 levels.

Group Species RuBisCO form 13C/12C isotope
effect, ε (‰)

Isotope effect
reference

Proteobacteria Solemya velum bivalve
symbiont

IA 24.4 [19]

Cyanobacteriaa Prochlorococcus marinus
MIT9313

IA 24.0 [16]

Cyanobacteriaa Synechococcus elongatus
PCC6301

IB 22.0 [17]

Land plant Flaveria bidentis IB 27.8 [18]

Land plant Flaveria floridana IB 28.6 [18]

Land plant Nicotiana tabacum IB 29 [18]

Land plant Spinacia oleracea IB 28.2–30.3 [15, 17, 19]

Proteobacteria Ralstonia eutropha IC 19.0 [136]

Proteobacteria Rhodobacter sphaeroides IC 22.4 [136]

Coccolithophore Emiliana huxleyi ID 11.1 [137]

Diatom Skeletonema costatum ID 18.5 [27]

Proteobacteria Rhodospirillum rubrum II 17.8–23.8 [17, 18, 26, 73]

Proteobacteria Riftia pachyptila
symbiont

II 19.5 [74]

aHorizontal transfer of RuBisCO Form I genes likely occurred within cyanobacteria [72, 138].
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metabolic pathways. However, the majority of these studies
have been conducted on organisms such as eukaryotes that
likely only evolved after the first 1–2 billion years of Earth
history (Table 2). The autotrophic organisms more likely to
have contributed to the first half of the geologic carbon
isotope record are significantly underrepresented in studies
of carbon isotopic fractionation.

The fate of fixed carbon is further biological recycling
and/or burial. The former can result in significant carbon
isotopic fractionation effects that can overprint autotrophic
signatures. For example, methylotrophic methanogens (i.e.,
utilizing single carbon substrates other than CO2) can pro-
duce Δδ13C values as great as ~80‰ between product CH4

and source inorganic carbon [50, 51]. Further, methano-
trophy, itself isotopically discriminating by ~30‰ [52], can
result in an even greater depletion of 13C in biomass given
an initially 13C-depleted CH4 substrate (δ13C= ~60‰)
produced by methanogens. Abiotic, post-depositional pro-
cesses can further alter primary biogenic isotope signatures.
Thermal alteration associated with metamorphism, for
example, results in preferential loss of 12C from preserved
organic material [10]. Thus, care must be taken in inter-
preting carbon biosignatures from potentially altered sam-
ples. Independent methods for assessing thermal alteration,
such as H/C content, can be used to quantify the degree of
thermal maturation in filtering the carbon biosignature
dataset [10].

In sum, the variability between isotope fractionation
among different carbon metabolisms permits isotope com-
positions to not only be used broadly as a biosignature of
life but can generally be used to fingerprint particular
metabolic processes and the taxa associated with them. The
portion of carbon that is subsequently preserved in the
geologic record thus forms a remnant signature of these
ancient carbon cycling processes.

Features of the carbon isotope record

The isotopic compositions of organic and inorganic carbon
preserved in the geologic record, spanning >3.8 billion
years, together provide the oldest forms of preserved
ancient biosignatures [6, 7] (Fig. 1). Scales of isotopic
measurement can range from bulk rock characterizations to
those of individual, microscopic, organic fossils (e.g.
[5, 53–55],). The absolute difference between inorganic and
organic δ13C values in the geologic record is interpreted to
reflect contemporaneous, biological isotopic fractionating
processes including carbon fixation [6, 7, 10].

To date, the purportedly oldest biogenic carbon isotope
measurements have been obtained from submicron graphitic
inclusions in a ~4.1-billion-year-old zircon. These mea-
surements yield a δ13C value of −24 ± 5‰, falling within

the range of biological fractionation (Fig. 1) providing the
earliest potential evidence of life [2]. The biogenicity of
such ancient measurements is subject to controversy, owing
primarily to the potential for more recent alteration of these
isotopic signatures and the influence of comparable abiotic
fractionation processes on the early Earth. Unambiguous
assignment of these isotopic values to any particular
metabolic process has not yet been achieved. For the more
recent <3.5 billion years of the carbon isotope record, bio-
genicity of such signatures is less contentious due to a
nearly coincident morphological fossil record [56, 57].
Furthermore, organic matter in more recent sediments is
typically found as amorphous kerogen rather than graphite,
the latter of which is more likely to have been produced
abiotically and/or potentially indicative of high thermal
alteration [10, 58].

Efforts have been made by geochemists and paleobiol-
ogists to filter the carbon isotope dataset to minimize
representation of samples more likely to have been affected
by post-depositional alteration, as well as statistically
evaluate trends in the record [7]. After such treatments, a
largely static isotopic trend remains but is punctuated by a
significant negative excursion in organic δ13C coinciding
with the late Archean to Proterozoic transition, previously
noted by Hayes [9]. This excursion has been interpreted to
represent the increased activity of oxygen-requiring
methanotrophy. Methanotrophic recycling of buried
organic material may have accompanied the initial accu-
mulation of free oxygen following the evolution of oxy-
genic phototrophs. Since methanotrophy can result in
exceedingly 13C-depleted carbon as described above [52],
the influence of this metabolic process is a reasonable
explanation for the identified excursion. Another negative
isotopic anomaly, though not identified by Krissansen-
Totton et al. [7], has been noted at ~2 billion years [12].
This excursion may have similarly resulted from the con-
tributions of methanotrophs or methanogens that both pro-
duce large isotopic discriminations in excess of that
typically observed for oxygenic phototrophs. On more
recent geologic timescales, finer trends in the last 100
million years have been attributed to changes in atmo-
spheric CO2 concentrations due to the empirical relationship
between CO2 concentration and isotopic discrimination, as
described above [8, 48, 49].

A molecular perspective on the role of
rubisco evolution in shaping the carbon
isotope record

Though compelling, the few identifiable signals serve to
heighten the curious consistency in the remainder of the
carbon isotope record, particularly considering the dynamic,
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early Earth biogeochemical environment. One of the most
fundamental shifts in the biosphere over Earth’s 4.5-billion-
year history has been the progressive oxygenation of the
surface environment, mediated by the origin of oxygenic
photosynthesis [24]. This process may have begun with
early “whiffs” of oxygen by ~3 to 2.5 billion years ago
[59, 60], but unambiguous signatures of atmospheric oxy-
gen are not known before 2.4 billion years ago [23]. The
isotopic excursion in the late Archean-early Proterozoic is
likely related to these changes in environmental oxygen.
However, it is still unclear why other deviations are not
present due to the expected breadth of biological con-
sequences from such a significant shift in atmospheric
composition [57, 61, 62]. Furthermore, oxygen levels likely
remained exceedingly low through the Proterozoic until
~0.5 billion years ago [24], yet biological isotopic trends
associated with later shifts in atmospheric composition are
not readily identifiable.

The first 3 billion years—the vast majority—of the
carbon isotope record, produced primarily by the ancient
microbial organisms that dominated the Precambrian Era
(~0.54 to 4.5 billion years ago), likely requires a different
level of analysis than that of the more recent geologic past.
In the absence of the later-evolved, multicellular eukar-
yotes that typify the Phanerozoic Era (present to ~0.54
billion years ago), the early evolution of life and the major
biological innovations that occurred through the Pre-
cambrian have frequently been considered rather at the
subcellular level. For example, focus has been drawn to
the molecular machines, enzymes, that catalyze crucial
biogeochemical transformations and shaped primary
productivity for billions of years [30, 39, 63, 64]. Com-
paratively, little attention has been given to how the
molecular evolution of carbon fixation enzymes may have
impacted and/or constrained features of the carbon isotope
record.

This perspective can be illustrated in the evolution of the
early-evolved RuBisCO enzyme, which plays a critical role
in the modern biosphere and is proposed to be one of the
most abundant proteins on Earth [65–67]. This enzyme is
thought to have evolved more than 3 billion years ago in the
anoxic environment preceding the Great Oxidation Event
[13, 14, 68, 69]. Today, three forms (I–III) of RuBisCO
catalyze carbon uptake in the CBB cycle; a fourth form
(IV), a “RuBisCO-like” enzyme, is homologous but does
not perform a carboxylase function [21, 70]. Cyanobacteria,
green algae, and land plants utilize Form IA and IB
RuBisCO, suggesting that the evolution of these forms are
linked to that of Earth’s dominant phototrophs [71]. How-
ever, previous phylogenetic analyses indicate that other
forms of RuBisCO diverged earlier than Form IA and IB
homologs [13, 72]. It is then possible that ancestral enzymes
preceding the evolution of oxygenic phototrophy shared

greater similarity to the catalytic properties, and thus, iso-
topic effects, of earlier diverged forms.

However, isotopic fractionation measurements of pur-
ified RuBisCO enzymes are few, even for the better-
characterized Form IA and IB enzymes. Isotope effects have
been measured for certain Form IC and ID enzymes asso-
ciated with coccolithophores, diatoms, and proteobacteria
(ε ~11 to 22‰), which are generally distinguishable from
effects for Form IA and IB (ε ~20 to 30‰) (Table 3).
Isotope effects from only two organisms have been mea-
sured for Form II RuBisCO [17, 18, 26, 73, 74], and no
fractionation values have been measured from Form III,
which phylogenetic analysis indicates diverged earlier than
Form I and II RuBisCO homologs [72]. Thus, character-
ization of Form III, as well as other underrepresented forms
(e.g., Form IC, ID, and II), are necessary to evaluate their
potential impact on the early carbon isotope record.

An anaerobic origin of RuBisCO is also of interest in the
context of its substrate specificity. In addition to CO2

assimilation, RuBisCO catalyzes a competing oxygenation
reaction in which RuBP is combined with O2, which in turn
reduces the overall metabolic efficiency of carbon fixation.
RuBisCO specificity inversely correlates with enzyme
activity [75–78]. It has been argued that the balance
between specificity and enzyme activity is achieved by the
RuBisCO transition state, which accentuates the structural
differences between otherwise similar CO2 and O2 mole-
cules at the cost of slowed catalysis [77]. For an organism
that makes its living by RuBisCO-catalyzed CO2 fixation,
an atmosphere with significant amounts of O2—as well as
cellular O2 produced by oxygenic photosynthesis—presents
a serious hindrance [79, 80]. Extant organisms compensate
for this inefficiency by various strategies, including active
CO2-concentration mechanisms [81, 82]. However, such
strategies would have been unnecessary during the early
evolution of RuBisCO, prior to the evolution of oxygenic
phototrophs when atmospheric CO2 concentrations may
have been up to 2500 times higher than today
[24, 28, 29, 83]. This suggests that the O2/CO2-specificity
problem may only be significant in the O2-rich atmosphere
that has characterized the latter half of Earth’s history [24].

Analyses of extant RuBisCO isotope effects show that
changes in O2/CO2-specificity and catalytic efficiency
manifest in changes to isotope effects [16, 19, 26, 27, 77]. A
study of more than 100 diverse Form II and III RuBisCOs
only recently found that the range of carboxylation rates
extends to more than twofold that of plant RuBisCOs [84].
This may suggest that the true diversity of RuBisCO frac-
tionation behavior is similarly not captured by existing
measurements. If the specificity of RuBisCO adapted
because of secular trends in environmental O2/CO2 levels,
these changes would be expected to manifest in the carbon
isotope record.
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Future directions—paleogenetic
reconstruction of ancestral carbon fixation
pathways

There are several reasons why molecular-level adaptations
to RuBisCO (as well as other carbon fixation enzymes) to
the changing early Earth environment would leave dis-
cernible features in the carbon isotope record, as described
above. These expectations warrant empirical testing. How-
ever, the use of extant biology as a proxy for ancient life is
fundamentally limited. It is not known to what degree iso-
topic fractionation of modern organisms and their sub-
cellular components resemble that for the enzymes,
metabolic networks, and organisms that existed billions of
years ago. For instance, the landscape of early carbon
metabolic networks, which would have manifested from
predecessor prebiotic chemical networks [85], may have
been fundamentally different during and immediately after
the origin of life [86, 87]. Thus, isotopic fractionation
expectations derived from features of modern biology may
be inherently limited in their scope.

We propose that this challenge can be met by combining
the complementary strengths of geological and biological
datasets. This can be accomplished through the integration
of molecular paleobiology and synthetic biology tools to
reconcile ancestral enzyme behaviors with the geochemical
record of biological activity. This strategy applies phylo-
genetic models to extant genomic data to reconstruct the
molecular sequences of ancestral enzymes [32, 33]. These
sequences can then be synthesized in the laboratory and
experimentally characterized for properties of interest.
Though inferred sequences are probabilistic, they can serve
to constrain the molecular sequence space that results in a
particular phenotype. In vitro assessments of enzymatic
properties can be conducted in addition to in vivo studies
that consider the impact of ancestral enzymes on the phy-
siology of the host organism [30, 88]. Such an approach has
had prior success in elucidating fundamental features of
molecular evolution. These include the evolution of enzy-
matic specificity [89], origins of novel functions [90, 91],
and ancient enzyme promiscuity [92, 93]. However, its
application to biogeochemical questions, in particular those
related to the generation of ancient biosignatures, is in its
infancy [30].

This strategy, for example, could be leveraged to
experimentally test the relationship between CO2 specifi-
cities and isotopic effect in ancestral RuBisCO. This work
could confirm expectations for deviations in carbon isotope
biosignatures due to observed fractionation effects that do
not conform to that observed in the geologic record. Thus,
the consistency of the record would then require explana-
tion by other factors that would balance this deviation.
Alternatively, ancestral RuBisCOs might fractionate carbon

much like their extant counterparts. This result would sup-
port the possibility that the molecular evolution of
RuBisCO has been fundamentally constrained with regard
to isotopic fractionation behavior despite long-term adap-
tations to the Earth’s atmosphere. In vivo experiments as
described above can help determine to what extent phy-
siological properties can overprint enzyme-level isotopic
effects.

A comprehensive approach to molecular paleobiology
could in the future be expanded to other carbon fixation
enzymes in, for example, anaerobic taxa that might have
been predominant prior to the origin of oxygenic photo-
trophy. Other analyses might incorporate compound-
specific or site-specific isotopic investigations to work in
concert with their increased use as geochemical proxies
[94, 95]. These strategies would thus bridge molecular,
organism, and environmental factors in disentangling the
contributions to carbon isotope biosignatures. At an even
broader level, molecular paleobiology techniques may also
be applied to reconcile other enzyme-implicated signals in
sulfur or nitrogen isotopic systems [96] or to investigate a
more expansive array of ancient organic molecular bio-
signatures that changed over macroevolutionary timescales.

The appeal of developing new paleogenetic techniques is
found in the integration of biological and geological records
of life, and the recruitment of molecular biology commu-
nities toward longstanding challenges in ancient microbial
ecology and biogeochemistry. We propose that this strat-
egy, molecular paleobiology approaches used in concert
with expanding microbiological and geochemical toolsets to
characterize extant taxa and refine the carbon isotope
dataset, will rapidly advance resolving the long-term con-
undrum of carbon biosignatures observed in the fossil
record. What is at stake is the fundamental notion of the
pervasiveness and universality of carbon isotope bio-
signatures, particularly as such analyses extend beyond
Earth. Future work will expose the extent to which paleo-
biologists, microbiologists, geochemists, and planetary sci-
entists understand the carbon isotope record, one of the
foundational interpretive tools to reconstruct past biological
activity.
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