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Abstract

The mammalian ste20 kinase (MST) signaling pathway plays an important role in the regulation of apoptosis and cell cycle
control. We sought to understand the role of MST2 kinase and Salvador homolog 1 (SAV1), a scaffolding protein that
functions in the MST pathway, in adipocyte differentiation. MST2 and MST1 stimulated the binding of SAV1 to peroxisome
proliferator-activated receptor c (PPARc), a transcription factor that plays a key role in adipogenesis. The interaction of
endogenous SAV1 and PPARc was detected in differentiating 3T3-L1 adipocytes. This binding required the kinase activity of
MST2 and was mediated by the WW domains of SAV1 and the PPYY motif of PPARc. Overexpression of MST2 and SAV1
increased PPARc levels by stabilizing the protein, and the knockdown of SAV1 resulted in a decrease of endogenous PPARc
protein in 3T3-L1 adipocytes. During the differentiation of 3T3-L1 cells into adipocytes, MST2 and SAV1 expression began to
increase at 2 days when PPARc expression also begins to increase. MST2 and SAV1 significantly increased PPARc
transactivation, and SAV1 was shown to be required for the activation of PPARc by rosiglitazone. Finally, differentiation of
3T3-L1 cells was augmented by MST2 and SAV1 expression and inhibited by knockdown of MST1/2 or SAV1. These results
suggest that PPARc activation by the MST signaling pathway may be a novel regulatory mechanism of adipogenesis.
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Introduction

The mammalian ste20 kinase (MST) pathway, also known as

the Hippo pathway in Drosophila, is a potent regulator of organ

size, and deregulation of this pathway leads to tumorigenesis [1].

The MST pathway negatively regulates proliferation and

promotes cell death [1]. The MST pathway is composed of a

serine/threonine (S/T) protein kinase MST1/2, a scaffolding

protein Salvador homolog 1 (SAV1 or WW45), and a S/T protein

kinase Large Tumor Suppressor (LATS), which are all homologs

of the Drosophila proteins Hippo, Salvador and Warts, respec-

tively.

There are two mammalian MST genes, MST1 and 2; the genes

are almost identical in their kinase domains and exhibit a high

degree of homology [2]. While MST1 is known to activate

apoptosis in cell culture [3,4], MST1 knockout mice showed only a

mild phenotype in T cell physiology [5,6]. The double knockout of

MST1/2, however, results in embryonic lethality, suggesting a

functional redundancy of MST1 and 2 [7]. Studies in Drosophila

and mammalian systems have reported that SAV1 recruits LATS

to MST to promote the phosphorylation of LATS by MST [8,9]

and that SAV1 is required for the correct cellular localization and

function of MST [10]. Disruption of SAV1 in mice results in

embryonic lethality with epithelial hyperplasia accompanied by

defects in the terminal differentiation of various organs [10].

Recent studies have uncovered several downstream effectors of

the MST signaling pathway [2]. Yes-associated protein 1 (YAP1),

a transcriptional co-activator that is responsible for expression of

multiple apoptosis-related genes, is phosphorylated and regulated

by LATS, which in turn is phosphorylated and activated by MST

[11,12,13]. MST1 activated by oxidative stress phosphorylates

FOXO1/3a and inhibits the Akt-induced nuclear exit of

FOXO1/3a [5,14,15]. Additionally, the phosphorylation of

histone H2B by MST1 functions in chromatin compaction during

apoptosis [16,17]. The downstream effectors of the MST signaling

pathway identified thus far are mainly regulators of cell

proliferation and apoptosis and are involved in tumorigenesis.

Those involved in cell differentiation have yet to be identified.

Peroxisome proliferator-activated receptor c (PPARc) is a

member of the ligand-dependent nuclear hormone receptor family

[18] and is a transcription factor that is activated by the insulin-

sensitizing drugs, thiazolidinediones [19]. PPARc is mainly

expressed in adipose tissue [20] and stimulates adipogenesis of

fibroblasts, such as 3T3-L1 preadipocytes [21,22], through the

activation of adipocyte gene expression [23,24,25].

PPARc is phosphorylated and inhibited by extracellular-signal-

regulated protein kinase 1 and 2 (ERK1/2), c-Jun N-terminal

kinase and p38MAPK [26]. Additionally, PPARc is reported to be

regulated by direct binding of some protein kinases independent of

phosphorylation; it is activated by direct binding of 3-phospho-
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inositide-dependent protein kinase-1 (PDK-1) [27] and inhibited

by direct binding of MEK1 [28]. Despite these findings, the

regulatory mechanisms controlling PPARc activation during

adipocyte differentiation are not fully understood.

In the course of identifying novel targets of the MST pathway,

we identified a physical interaction between SAV1 and PPARc
that is stimulated by MST2. Here, we show that the association of

MST2, SAV1 and PPARc stimulates the transactivation of

PPARc and the differentiation of 3T3-L1 cells into adipocytes.

Results

MST2 and SAV1 interact with PPARc
To identify novel SAV1-interacting proteins, we purified the

SAV1 complex by immunoprecipitation from 293 cells overex-

pressing human SAV1 and/or human MST2. We chose MST2

because it has greater homology to Drosophila Hippo than MST1.

From the mass spectrometric analysis of the SAV1 complexes, we

obtained a list of proteins that included PPARc2, a master

regulator of adipogenesis [21] as well as PPARc coactivator

(PGC)-1b and Mediator complex subunit 1 (MED1), all of which

are transcriptional coactivators for nuclear receptors, including

PPARc [29,30]. SAV1, a scaffolding protein that functions in the

MST signaling pathway, contains two type I WW domains that

provide binding sites for other proteins that contain PPXY motifs

[31]. We examined the amino acid sequence of PPARc and found

that it contains a PPYY motif spanning amino acids 113 to 116.

Because of these findings, we decided to determine whether

PPARc is a novel target of the MST signaling pathway.

We first examined the association between SAV1 and PPARc in

293 cells by performing co-immunoprecipitation experiments. As

shown in Figure 1A, the interaction between SAV1 and PPARc
was very weak and almost undetectable when these two proteins

were expressed together but was dramatically augmented by co-

expression of MST2. Interestingly, the kinase-dead mutant of

MST2 only slightly increased the interaction, suggesting that the

catalytic activity of MST2 is required for full stimulation of the

interaction between SAV1 and PPARc. Interaction of MST2 and

PPARc was very weak unless SAV1 was co-expressed (Figure 1A),

suggesting that SAV1 is playing a scaffolding role between MST2

and downstream targets like PPARc. To determine whether

interaction of PPARc and SAV1 is direct, we carried out an in

vitro pull-down assay. Recombinant hexahistidine-tagged SAV1

proteins was expressed in E. coli and purified with Ni-NTA bead.

The recombinant SAV1 proteins immobilized on beads were

incubated with 293 cell lysates over-expressing PPARc and/or

Figure 1. MST2 kinase stimulates the interaction of SAV1 and PPARc. (A) The interaction between SAV1 and PPARc was enhanced by MST2.
293 cells were transfected with HA-tagged wild-type (WT) or inactive (KD) MST2, Myc-SAV1 and/or Flag-PPARc, and the interaction between PPARc
and SAV1 or MST2 was detected by immunoprecipitation with an anti-Flag antibody followed by immunoblotting with an anti-Myc or an anti-HA
antibody. (B) Direct binding of PPARc and SAV1 was confirmed by in vitro pull-down assay using recombinant hexahistidine-tagged SAV1 protein and
PPARc and MST2 proteins that were overexpressed in 293 cells. (C) MST1 also enhanced the interaction between SAV1 and PPARc. The experiment
was performed as described in (A). (D) The interaction between endogenous SAV1 and PPARc was detected in 3T3-L1 adipocytes by
immunoprecipitation with an anti-PPARc antibody followed by immunoblotting with an anti-SAV1 antibody or inversely, immunoprecipitation with
an anti-SAV1 antibody followed by immunoblotting with an anti-PPARc antibody.
doi:10.1371/journal.pone.0030983.g001

Activation of PPARc by the MST Signaling Pathway
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MST2, and the bound proteins were analyzed by immunoblotting.

Direct binding of PPARc and SAV1 was detected and it was

increased by the presence of MST2 (Figure 1B). The interaction

between SAV1 and PPARc was also stimulated by co-expression

of MST1 (Figure 1C). This result indicates that MST1 and MST2

have similar roles in adipogenesis.

We investigated the behavior of endogenous proteins. Co-

immunoprecipitation experiments showed that the physical

interaction of endogenous SAV1 and PPARc was significantly

increased 2 d after the initiation of differentiation in 3T3-L1 cells

(Figure 1D). This increase in the interaction may result from a

significant up-regulation of SAV1 and PPARc protein expression

in 3T3-L1 cells stimulated with differentiation media for 2 d.

The WW domains of SAV1 and the PPYY motif of PPARc
are required for their interaction

To map the regions of SAV1 and PPARc that are responsible

for the interaction between these two proteins, we performed co-

immunoprecipitation experiments using the deletion mutants of

SAV1 or PPARc. Full-length SAV1 and a SAV1 deletion mutant

(1–267) containing the two WW domains bound to PPARc, but a

SAV1 deletion mutant (1–201) without the WW domains did not

(Figure 2A). SAV1 was able to interact with PPARc unless the

PPYY motif of PPARc was deleted (Figure 2B). Additionally,

disruption of the PPYY motif in PPARc2 by a point mutation

(Y116A) significantly reduced the interaction with SAV1

(Figure 2C). These results clearly show that the WW domains of

SAV1 and the PPYY motif of PPARc are responsible for their

physical interaction (Figure 2D).

MST2 and SAV1 increase the levels of PPARc by
increasing its protein stability

Because we noticed that PPARc protein levels were always

elevated upon the co-expression of SAV1 and MST2, we

examined PPARc protein expression more carefully. PPARc
protein levels were increased by SAV1 in a dose-dependent

manner and were further augmented by MST2 (Figure 3A). To

determine the half-life of PPARc, 293 cells were transfected with

combinations of PPARc with SAV1 and/or MST2, and PPARc
protein levels were examined at various times after blocking

protein translation with cycloheximide. PPARc expressed alone

degraded rapidly with a half-life of 4 h, but co-expression of SAV1

and/or MST2 significantly inhibited the degradation rate of

PPARc, extending the half-life up to 5.5-fold (Figure 3B). MST-

KD, a kinase-inactive mutant did not enhance the PPARc protein

stability as efficient as wild-type MST (MST-WT). This is

consistent with the result that MST2-KD is not as efficient as

MST-WT in stimulating the physical interaction of SAV1 and

PPARc (Figure 1A).

A SAV1 deletion mutant (1–201) that is not capable of binding

to PPARc (Figure 2A) did not induce the stabilization of PPARc as

efficient as did wild-type SAV1. A PPARc deletion mutant (128–

505) that did not bind to SAV1 (Figure 2B) was not stabilized by

co-expression of MST2 and SAV1. These data clearly indicate

Figure 2. The WW domains of SAV1 and the PPYY motif of PPARc are required for their interaction. (A) Myc-tagged SAV-1 deletion
mutants were co-expressed with Flag-tagged PPARc and HA-tagged MST2 in 293 cells. After 48 h, cell lysates were immunoprecipitated with an anti-
Flag antibody and then immunoblotted with an anti-Myc antibody (upper panel). As a control, whole cell lysates were immunoblotted with the
indicated antibodies (lower panels). (B) As above, the interactions of Flag-tagged PPARc deletion mutants with Myc-tagged SAV-1 were analyzed. (C)
Mutation of PPYY to PPYA in PPARc decreases its interaction with SAV1. D. Schematic of the domain structure of SAV1 and PPARc2.
doi:10.1371/journal.pone.0030983.g002
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that the stabilization of PPARc by MST2 and SAV1 requires a

physical interaction between these proteins.

The expression of PPARc protein is dependent on MST2
and SAV1

We then investigated the expression of endogenous MST2 and

SAV1 proteins in differentiating 3T3-L1 adipocytes, in which

PPARc is of great importance. Pre-adipocytes showed low levels of

MST2 and SAV1, but the expression of these two proteins

increased at 2 d and stayed high as long as 6 d after the initiation

of adipogenesis in 3T3-L1 cells (Figure 4A). The increase of

MST1/2 kinase activity, as detected by a phospho-MST1(T183)/

MST2(T180) antibody, similarly followed protein expression

levels. A time-course of protein expression of MST2 and SAV1

matched well with that of PPARc, supporting the idea that PPARc
expression may partially be dependent on MST2 and SAV1.

To confirm this, we increased or down-regulated the expression

of MST2 and SAV1 and observed the expression of PPARc.

Overexpression of MST2 and SAV1 resulted in a significant

increase of endogenous PPARc protein in 293 cells and 3T3-L1

adipocytes (Figure 4B and C). Knockdown of SAV1 expression

with shRNA inhibited the expression of endogenous PPARc
proteins in 3T3-L1 adipocytes (Figure 4D). Treatment of a

proteasome inhibitor, lactacystin, reversed the down-regulation of

PPARc protein induced by knockdown of SAV1. This result shows

that the degradation of PPARc is proteasome-dependent

(Figure 4E).

These results strongly indicate that an increase in PPARc
expression may be dependent on MST2 and SAV1 during the

initial period of differentiation in 3T3-L1 adipocytes.

MST2 kinase and SAV1 increase the transactivation
activity of PPARc

To determine the effect of MST2 and SAV1 on the transactiva-

tion activity of PPARc, we performed a reporter assay using an aP2

promoter-dependent luciferase reporter in the presence of a

Figure 3. MST2 and SAV1 increase the levels of PPARc by increasing its protein stability. (A) Increasing amounts (0.5, 1, 3 mg) of Myc-
SAV1 were co-expressed with Flag-PPARc and/or HA-MST2 in 293 cells. At 48 h after transfection, cell lysates were immunoblotted with the indicated
antibodies. (B) Flag-tagged PPARc or PPARc(128–505) was co-expressed with HA-MST2, HA-MST2-KD (inactive mutant), Myc-SAV1, and/or Myc-
SAV1(1–201) in 293 cells as indicated. Cell lysates were prepared at various times after treatment with 40 mg/mL cycloheximide and then
immunoblotted with an anti-Flag antibody. The PPARc protein expression was quantified and the half-life of PPARc protein was calculated.
Expression of GAPDH was detected as a loading control.
doi:10.1371/journal.pone.0030983.g003
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selective PPARc ligand, rosiglitazone (Figure 5A). Co-expression of

SAV1, but not MST2, with PPARc resulted in a 2-fold stimulation

of the luciferase reporter activity compared with PPARc alone in

the presence or absence of rosiglitazone (Figure 5A). Consistent with

the binding results, co-expression of both SAV1 and MST2 with

PPARc resulted in a dramatic 10-fold increase in the reporter

activity compared with PPARc alone in the presence or absence of

rosiglitazone (Figure 5A). Expression of the kinase-dead mutant of

MST2, along with SAV1 and PPARc, showed a similar increase in

the reporter activity in the absence of rosiglitazone as compared to

wild-type MST2, but no further significant stimulation was seen in

the presence of rosiglitazone (Figure 5A), suggesting that the kinase

activity of MST may be required for the activation of PPARc by its

ligand. Immunoblotting of PPARc shows that increase in PPARc
protein levels induced by SAV1 and/or MST2 was partly required

but insufficient for full stimulation of PPARc activity by co-

expression of MST2 and SAV1 (Figure 5A, lower panel). This result

suggests that stimulation of PPARc transactivation activity by

MST2 and SAV1 requires other mechanism, such as recruitment of

co-activators or phosphorylation.

PPARc was activated by a SAV deletion mutant, SAV1(1–267)

that was shown to interact with PPARc as efficiently as the full

length SAV1 (Figure 5B). However, a SAV deletion mutant,

SAV1(1–201) that is not capable of binding to PPARc did not

stimulate PPARc activation (Figure 5B). These data clearly show

that the activation of PPARc by MST2 and SAV1 requires an

interaction between these proteins.

We measured the effect of MST2 and SAV1 on mRNA level of

adiponectin, one of the PPARc target genes, by quantitative real-

time PCR. Adiponectin mRNA expression was synergistically

increased by MST2 and SAV1 (Figure 5C).

When we inhibit SAV1 expression with shRNA, the rosiglita-

zone-induced activation of PPARc was significantly inhibited

(Figure 5D). These data indicate that rosiglitazone may stimulate

PPARc activity by the MST signaling pathway.

MST2 and SAV1 stimulate the differentiation of 3T3-L1
cells into adipocytes

To assess a functional role for the MST signaling pathway in

adipocyte differentiation, 3T3-L1 preadipocytes were transfected

with various constructs and primed with insulin and a suboptimal

concentration of rosiglitazone (Figure 6A). Cells transfected with

SAV1, MST2 or PPARc alone exhibited very low levels of

adipocyte differentiation. However, expression of combinations of

Figure 4. The expression of PPARc protein is dependent on MST2 and SAV1. (A) The expression of SAV1 and MST2 increased during the
differentiation of 3T3-L1 cells. Expression of the indicated proteins and phosphorylation of MST2 were analyzed with antibodies in the lysates of 3T3-
L1 cells prepared at various times after induction of differentiation. (B) The levels of endogenous PPARc proteins were increased by overexpression of
MST2 and/or SAV1 in 293 cells. (C) The levels of endogenous PPARc proteins were increased by lentivirus-mediated overexpression of MST2 or SAV1
in 3T3-L1 adipocytes. (D) The levels of endogenous PPARc proteins were decreased by shRNA-mediated knockdown of SAV1 expression in 3T3-L1
adipocytes. (E) The degradation of PPARc protein was proteasome-dependent. The decrease of PPARc protein induced by knock-down of SAV1
expression was inhibited by 5 mM lactacystin, a proteasome inhibitor.
doi:10.1371/journal.pone.0030983.g004
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2 proteins produced modest differentiation and expression of all 3

proteins showed a synergistic effect on adipocyte differentiation

(Figure 6A and C). Differentiation was not stimulated by MST-

KD as strongly as wild-type MST (Figure 6B and C), indicating a

requirement for the kinase activity of MST2.

Additionally, to determine if MST2 or SAV1 is required for

adipocyte differentiation, 3T3-L1 preadipocytes were transfected

with SAV1 shRNA plasmid or MST1/2 siRNA and then

stimulated with a full differentiation cocktail containing dexa-

methasone, IBMX and insulin. Down-regulation of SAV1

expression in 3T3-L1 cells resulted in a significant inhibition of

adipocyte differentiation in a dose-dependent manner (Figure 6D

and E). Knockdown of MST1 or MST2 inhibited adipocyte

differentiation, and knockdown of both MST1 and MST2 showed

a stronger inhibition of adipocyte differentiation (Figure 6F and

G). These results show that the MST signaling pathway plays a

major role in adipocyte differentiation of 3T3-L1 cells.

Discussion

The MST signaling pathway is known to be an important player

in the regulation of apoptosis and cell cycle control in Drosophila

and mammalian systems and is believed to be a novel tumor

suppressor pathway [1]. Many studies have focused on its role in

tumorigenesis and cell proliferation. Our results show, for the first

time, that PPARc is an effector protein of the MST signaling

pathway and provide evidence for a novel function of the MST

signaling pathway in the terminal differentiation of adipocytes.

We showed that SAV1 functions as a scaffolding protein for the

interaction of MST2 and PPARc. Through mass spectrometric

analysis of SAV1-interacting proteins, we found that SAV1 also

binds to several transcriptional co-activators, such as PGC-1b and

MED1, which are required for the activation of nuclear receptors,

including PPARc [29,30]. Therefore, SAV1 may work as a

scaffold to bring PPARc close to important co-activators as well as

MST2. Overexpression of MST2 and SAV1 induced a dramatic

activation of PPARc even in the absence of the ligand (Figure 5A

and C), rosiglitazone, and this may result from the recruitment of

coactivators to PPARc by MST2 and SAV1. Inhibition of

rosiglitazone-induced PPARc activation by knockdown of SAV1

suggests that MST signaling may be activated by rosiglitazone and

required for the process of PPARc activation (Figure 5D).

The kinase activity of MST2 is partially required for stimulation

of the SAV1-PPARc interaction and stabilization and activation of

PPARc (Figure 1A, 3B, 5A, 6B). Several reports have shown that

the catalytic activity of some protein kinases, such as PDK1 and

Figure 5. MST2 kinase and SAV1 increase the transactivation activity of PPARc. (A) The transactivation activity of PPARc increased upon
co-expression of MST2 and SAV1. U2OS cells were transfected with a reporter gene, aP2-Luc, and pRL-TK along with PPARc, SAV1 and/or MST2.
Luciferase activity was assayed for the cells treated with (black bar) or without (white bar) 20 mM rosiglitazone. The lower panel shows expression of
PPARc and expression of GAPDH was detected as a loading control. (B) Full-length (FL) and deletion mutants of SAV1, SAV1(1–201) and SAV1(1–267)
were transfected together with MST2 and PPARc, and luciferase activity was assayed. (C) The mRNA level of adiponectin, a PPARc target gene, was
increased significantly by co-expression of MST2 and SAV1. Quantitative real-time PCR was performed with cDNA prepared from 3T3-L1 adipocytes
transfected with MST2 and SAV1 as indicated. (D) The rosiglitazone-induced activation of PPARc was inhibited by knockdown of SAV1 expression
with siRNA against SAV1. All values are expressed as the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0030983.g005
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MEK, is not required for the regulation of PPARc activity by these

kinases [28,32]. MST2 as a protein kinase may work through two

mechanisms: direct binding to PPARc and phosphorylating

PPARc or its interacting co-activators or ubiquitin ligases.

However, our preliminary attempts have not identified direct

phosphorylation of PPARc by MST2. Therefore, the catalytic

activity of MST may be required to phosphorylate and regulate

ubiquitin ligases or transcriptional co-activators. In addition, direct

interaction of MST and SAV1 with PPARc may be important in

recruiting some regulatory proteins to PPARc.

We showed that PPARc protein levels were increased by co-

expression of MST2 and SAV1, resulting from an increase in the

stability of PPARc (Figure 3, 4). This increase in protein stability

may result from the down-regulation of ubiquitylation and

proteasomal degradation of PPARc (Figure 4E), and it partially

explains the mechanism of PPARc activation by MST2. It is of

note that knockdown of SAV1 expression inhibited the expression

and activation of PPARc and the subsequent differentiation of

3T3-L1 adipocytes (Figure 4D, 5D, 6D). These results strongly

support the idea that MST2 and SAV1 play important roles in

adipogenesis.

It was reported that TAZ inhibits PPARc and thereby blocks

the differentiation of mesenchymal stem cells into adipocytes [33].

MST pathway was previously shown to inhibit epithelial-

mesenchymal transition of some cancer cells stimulated by TAZ,

which is phosphorylated and inhibited by LATS, a downstream

kinase of MST [34]. Although we showed in this report that

MST2 directly interacts with and activates PPARc, it is possible

that LATS and TAZ may have some role in the regulation of

adipogenesis by MST.

It is possible that MST signaling performs different functions in

the initial and the later phases of adipocyte differentiation. When

confluent 3T3-L1 cells are exposed to differentiation stimuli, they

undergo several rounds of cell division, called mitotic clonal

expansion, followed by cell cycle exit to enter the terminal

differentiation phase [35,36]. The MST signaling pathway may be

required to stop these initial cell divisions, as the protein levels of

MST2 and SAV1 increased after 2 d of differentiation when cells

are likely starting to exit the cell cycle. One study with SAV1

knockout mice suggested that MST and SAV1 are required for cell

cycle exit and terminal differentiation of epithelial cells [10].

During this initial phase, MST signaling may not require PPARc;

rather, other cell cycle inhibitors, such as FOXO and YAP1,

which have been previously shown to be effectors of the MST

pathway, may be important [2]. In the later phase, MST2 and

SAV1 may bind to and activate PPARc to stimulate the expression

of adipogenesis-related genes.

In conclusion, we have shown that MST2 interacts with and

activates PPARc through SAV1 and that MST2 and SAV1

together augment PPARc-induced adipocyte differentiation. We

propose that PPARc activation by the MST signaling pathway

may be a novel regulatory mechanism of adipogenesis.

Materials and Methods

Plasmids
Full length cDNAs for mouse PPARc2, human SAV1 and

human MST2 were obtained from the 21C Human Gene Bank

(KRIBB, Korea) and subcloned into pCS4-3XMyc, -3XFlag or

-3XHA mammalian expression vectors. The inactive MST2-

K56R (MST2-KD) mutant was generated by site-directed

mutagenesis and deletion mutants of PPARc2, SAV1 and

MST2 were made by PCR and confirmed by sequencing. A

reporter plasmid, aP2-Luc, was kindly provided by Dr. J. H. Hong

(Korea University, Korea). A SAV1 shRNA expression plasmid

was obtained from Open Biosystems (RHS1764-9218744, USA).

siRNAs for mouse MST1 and mouse MST2 were obtained from

Bioneer (Daejeon, Korea). Human cDNAs of SAV1 or MST2 was

subcloned into the lentiviral shuttle vector, and lentivirus was

prepared and confirmed by Macrogen (Seoul, Korea).

Antibodies
Antibodies against Myc (9E10; Santa Cruz Biotech), HA (12CA5;

Roche Applied Science, Germany), Flag (M2; Sigma, USA),

PPARc (SC-7273; Santa Cruz Biotech, USA), MST2 (3952; Cell

signaling, USA), phospho-MST1(Thr183)/MST2(Thr180) (#3681;

Cell Signaling, USA), SAV1 (Abnova, USA), GAPDH (SC-166545;

Santa Cruz Biotech, USA) and b-actin (LF-PA0209; AbFrontier,

Korea) were used. Our antibody against SAV1 raised in rabbit with

bacterially expressed human SAV1 protein (AbFrontier, Korea) was

also used. Specific proteins were detected by incubating with

horseradish peroxidase-conjugated anti-mouse (Pierce, USA) or

anti-rabbit (Anaspec, USA) secondary antibodies.

Cell culture and transfection
HEK 293 cells (CRL-1573; ATCC, USA) and HeLa cells (CCL-

2; ATCC, USA) were maintained in Dulbecco’s modified Eagle’s

medium (DMEM; Welgene, Korea) supplemented with 10% fetal

bovine serum (FBS; Invitrogen, USA). U2OS cells (HTB-96;

ATCC, USA) were maintained in McCoy’s 5A medium (Welgene,

Korea) containing 15% FBS. 3T3-L1 preadipocytes (CL-173;

ATCC, USA) were maintained in DMEM containing 10% bovine

calf serum (BCS; Invitrogen, USA). All media were supplemented

with 100 units/mL penicillin-streptomycin (Sigma, USA) and all

cells were maintained at 37uC in a humidified atmosphere with 5%

CO2. Transfections were carried out using Lipofectamine Plus

reagent (Invitrogen, USA) or Welfect reagent (Welgene, Korea).

3T3-L1 cells were transfected by Nucleofector II in solution V with

program T-030 (Amaxa, Germany) and transfection efficiencies

were always greater than 80%, as confirmed by GFP expression.

Immunoprecipitation and immunoblotting
Cells were lysed with cold lysis buffer (50 mM Tris-HCl

(pH 7.4), 120 mM NaCl, 1% NP-40, 12 mM b-glycerophosphate,

Figure 6. MST and SAV1 stimulate the differentiation of 3T3-L1 adipocytes. (A) Overexpression of MST2 and SAV1 stimulated
differentiation of 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were transfected with PPARc, SAV1 and/or MST2 expression plasmids and then stimulated
with the minimal differentiation cocktail. After 10 d, cells were stained with Oil Red O and photographed using a microscope (2006magnification).
(B) Kinase activity was required for the stimulation of differentiation of 3T3-L1 adipocytes by MST2. The experiment was performed as described in
(A). (C) For quantification of samples from (A) and (B), Oil Red O stain was extracted and absorbances were measured at 520 nm. The lower panel
confirms the expression of transfected proteins by immunoblotting. (D) Knockdown of SAV1 using shRNA inhibited differentiation of 3T3-L1
adipocytes. 3T3-L1 pre-adipocytes were transfected with a SAV1shRNA plasmid or a control plasmid and then stimulated with the full differentiation
cocktail. After 10 d, cells were stained with Oil Red O and photographed. (E) For quantification of samples from (D), Oil Red O stain was extracted and
absorbances were measured at 520 nm. The lower panel confirms the knockdown of SAV1 by immunoblotting. (F) Knockdown of MST1 or MST2
using siRNA inhibited the differentiation of 3T3-L1 adipocytes. The experiment was performed as described in (D). (G) For quantification of samples
from (F), Oil Red O stain was extracted and absorbances were measured at 520 nm. The lower panel confirms the knockdown of MST1 or MST2
expression. All values are expressed as the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0030983.g006

Activation of PPARc by the MST Signaling Pathway

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e30983



10 mM NaF, 0.5 mM PMSF, 5 mg/mL leupeptin, 5 mg/mL

aprotinin, 1 mg/mL pepstatin, and 100 mM Na3VO4). Cell lysates

were incubated with antibodies at 4uC for 2 h and complexes were

subsequently retrieved with protein G-Sepharose beads (Amer-

sham, UK). The immunoprecipitates were resolved by SDS-

PAGE and transferred to polyvinylidene difluoride membranes

(Millipore, USA). The membranes were immunoblotted with the

indicated primary antibodies and the secondary antibody. The

immunoblots were visualized by ECL kit (Elpis Biotech, Korea)

and detected with LAS3000 system (Fuji, Japan).

In vitro pull-down assay
Recombinant hexahistidine-tagged SAV1 protein was bacteri-

ally expressed and purified using Ni2+-nitrilotriacetic acid (Ni-

NTA) beads (Invitrogen, USA). PPARc and/or MST2 were over-

expressed in 293 cells and the cell lysates were incubated with

6XHis SAV1 immobilized onto Ni-NTA beads at 4uC for 2 h in

the lysis buffer that contained 5 mg/ml bovine serum albumin.

The beads were rinsed with a washing buffer that contained

50 mM Hepes, pH 7.5, 150 mM NaCl, 1 mM EDTA, and 0.1%

Tween 20. Proteins bound on the beads were separated by SDS-

PAGE and analyzed by immunoblotting.

Luciferase reporter assay
U2OS cells were transiently transfected with expression

plasmids for PPARc2, SAV1 or MST2, along with a luciferase

reporter plasmid (aP2-luc) and a Renilla luciferase expression

plasmid pRL-TK as an internal control. After 24 h, cells were

treated with 20 mM of rosiglitazone (Caymann, USA) and cultured

for an additional 24 h. The cells were lysed and measured for

luciferase activity by the Steady Glo luciferase assay system

(Promega, USA) using a luminometer (Berthold, Germany). Each

transfection was performed in triplicate and the values were

normalized to Renilla luciferase values.

Quantitative real-time PCR
Total RNA was isolated from 3T3-L1 adipocytes 6 d after

transfection with MST2 and/or SAV1 with TRIzol reagent

(Invitrogen, USA) and further purified using RNeasy kit (Qiagen,

Germany). cDNA was generated from 2 mg total RNA using

Moloney murine leukemia virus reverse transcriptase (NEB, USA)

and oligo(dT) primers. Quantitative real-time PCR to detect

mouse adiponectin was carried out using QuantiTect SYBR

Green PCR kit (Qiagen, Germany) in a Rotor-Gene RG-

3000 cycler (Corbett Research, Australia). PCR conditions were:

denaturating at 95uC for 10 min followed by 40 cycles of

amplification with 10 s at 95uC, 15 s at 62uC, and 20 s at 72uC.

GAPDH was used for normalizing the expression data. The

primers used were as follows: mouse adiponectin forward primer,

59-catcccaggacatcctggccacaatg-39; reverse primer, 59-ggcccttcag-

ctcctgtcattccaac-39; mouse GAPDH forward primer, 59-gtga-

aggtcggtgtgaacg-39; reverse primer, 59-ggttcacacccatcacaaac 39.

Adipocyte differentiation assay using Oil Red O staining
3T3-L1 cells were maintained in DMEM with 10% BCS. Two

days after reaching confluence, cells were transfected by

Nucleofector and were stimulated 24 h later with the differenti-

ation cocktail for 2 d. Cells expressing the vector control, PPARc,

SAV1 and/or MST2 were treated with a minimal differentiation

cocktail containing 10% FBS, 5 mg/mL insulin and 0.5 mg/mL

rosiglitazone. Under these conditions, differentiation was virtually

absent in vector-transfected cells. The 3T3-L1 preadipocytes were

transfected with shRNA plasmid for SAV1 or siRNA for MST1

and/or MST2. They were stimulated with a full differentiation

cocktail containing 10% FBS, 5 nM insulin (Roche, Swiss),

0.5 mM isobutylmethyxanthine (IBMX; Sigma, USA), and

1 mM dexamethasone (Sigma, USA). After 2 d, the culture media

was changed to media containing 10% FBS and 5 mg/mL of

insulin for 2 d, and then maintained in media containing 10%

FBS for 8 d. At 12 d of induction, cells were fixed with 4%

formaldehyde for 1 h and then stained with 0.35% Oil Red O dye

(Chemicon, USA) overnight at 37uC. The cells were washed twice

with PBS and once with 60% isopropanol and then photographed.

For quantification, Oil Red O stain was extracted with 100%

isopropanol for 20 min and the absorbance at 520 nm was

measured.
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