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A B S T R A C T

There is currently no effective antiviral therapy or immune-based treatment for coronavirus disease
(COVID-19). The urgent challenge is to prevent the transition of COVID-19 from mild to severe infection.
This paper discussed nocturnal oxygen therapy as a new option for people with COVID-19 under home
quarantine. It suggested that nocturnal oxygen therapy in the early stages may be helpful in preventing
disease progression by inhibiting the rapid replication of the virus and improving the body's antiviral
ability.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

The coronavirus (COVID-19) has rapidly spread and swept
across most countries worldwide since the first case was detected.
There is currently no effective antiviral therapy or immune-based
treatment for COVID-19, especially for asymptomatic or mild
patients who are recommended to self-care under home quaran-
tine. However, severe cases rapidly increase in their progression
from mild cases one week after onset and can develop into
respiratory failure and acute respiratory distress syndrome (ARDS)
on the basis of pneumonia (Wang et al., 2020a). Therefore, there is
an urgent challenge to prevent the transition of COVID-19 from
mild to severe. Oxygen (O2) therapy has been widely used and
strongly recommended for patients in hospitals and cabin
hospitals in China; however, asymptomatic or mild COVID-19
has not been given sufficient consideration in the present
therapeutic guidelines. Through reviewing the relevant literature
and combining the characteristics of COVID-19, this study
proposed that nocturnal O2 therapy could be administrated for
patients diagnosed with COVID-19 regardless of hypoxia, and may
be helpful in preventing disease progression by inhibiting rapid
replication of the virus and improving the body's antiviral ability.
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An oxygen-rich environment may disrupt virus replication

Viruses rely on the host cell’s infrastructure and metabolism to
complete their life cycle. Many viruses can re-programme host
cellular metabolism for their replication. For instance, it has been
shown that adenoviral, cytomegalovirus, vaccinia virus, and
Kaposi’s sarcoma-associated herpesvirus decrease oxidative phos-
phorylation and induce glycolysis, which provide a large carbon
source for the synthesis of nucleotides and amino acids needed to
replicate the virus (Thai et al., 2014; Yu et al., 2014; Mazzon et al.,
2014; Cullen et al., 2014). The mechanisms of viral activation of
glycolysis are sophisticated. Some investigations have found that
hepatitis B virus, H1N1 virus, vaccinia virus, and human
papillomavirus can stabilise hypoxia-inducible factor 1α (HIF-1α)
from degradation under normoxic conditions (Mazzon et al., 2014;
Ren et al., 2019; Guo et al., 2014; Moon et al., 2004). It is well-
known that HIF-1α is a transcriptional activator of cellular
metabolic state by hypoxia, and stabilising HIF-1α induces
metabolic transformation from mitochondrial biogenesis to
glycolysis. Furthermore, evidence has also revealed that hypoxia
could enhance human B19 erythrovirus gene expression and
hepatitis C virus replication (Pillet et al., 2004; Vassilaki et al.,
2012). These results indicate that HIF-1α may play a pivotal role in
promoting virus replication. From the analysis of clinical data, the
development of COVID-19 is a process of gradual hypoxia, which is
more conducive to virus replication. However, HIF-1α activity is
suppressed by hydroxylate two proline residues within HIF-1α
under sufficient O2 conditions (Bracken et al., 2003). Although
there is no direct evidence that O2 supplementation could reduce
HIF-1α expression in virus-infected cells, researchers have
reported that HIF-1α expression in the kidney significantly
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decreased after exposure to high O2 concentrations in vivo
(Popescu et al., 2013). A recent study also showed that hyperoxic
breathing of 60% O2 markedly down-regulated HIF-1α expression
in tumour cells and inhibited tumour growth compared with
breathing 20% O2 (Wang et al., 2019).

Thus, this study speculated that early and appropriate O2

therapy for COVID-19 patients could disrupt virus replication by
decreasing HIF-1α.

Oxygen supplementation can improve antiviral immune
response

The median time from the initial symptoms to dyspnoea is 5.0 days
(Wang et al., 2020b), which may be associated with cytokine storm
and result in multiorgan damage or failure. Early robust virus
replication disrupts the immune response and contributes to the
subsequent inflammatory storm; however, the mechanism has not
been fully elucidated. For virus infection, host factors initiate an
immune response against the virus. A major component of innate
immunity is the type I interferon (IFN-I) response. IFN-I can activate
transcription factors and induce expression of IFN-stimulated genes
(Kindler and Thiel, 2016), thus promoting host cells to fight against the
virus infection. However, SARS-CoV, which is similar to SARS-CoV-2,
has been proven to inhibit the production of IFN-I in cell and animal
models (Roberts et al., 2007). Therefore, it is imperative to understand
themechanismof thevirustoovercometheinterferonresponseandin
order to take appropriate measures. Researchers recently demon-
strated that lactate derived from glycolysis is the first metabolite
directly combined with mitochondrial antiviral-signalling, and the
lactate aggregation due to glycolysis or by increased lactate
dehydrogenase (LDH) may be a potential mechanism for the virus
to inhibit IFN-I production (Zhang et al., 2019). It is worth noting that
clinical studies have shown that elevated LDH or lactate levels have
been detected in some patients with viral infection, especially those
with poor prognosis (Hunt et al., 2015; Chen et al., 2013). According to
clinical data from patients infected with SARS-CoV-2 in Wuhan, China,
LDH increased in 29 of 40 participants (73%), of which 12 of 13 (92%)
were in ICU and 17 of 27 (63%) were not in ICU (Huang et al., 2020).
Thus, inhibiting glycolysis and reducing lactate production are
expected to activate antiviral immunity in the early stages of virus
infection. As previously mentioned, O2can affect the activation of HIF-
1α and reduce glycolysis. In addition, O2 could reduce the accumula-
tion of lactate by accelerating its degradation. Therefore, early and
appropriate O2 therapy for COVID-19 patients could be beneficial to
release interferons and activate the antiviral immune response.

Immune cells such as CD8+effector T cells and natural killer
cells (NK) are believed to play a crucial role in antiviral immunity.
However, the proportion of immune cells in the blood of most
patients infected with SARS-CoV-2 is decreased. Recently,
researchers detected the peripheral blood lymphocyte subsets in
patients with COVID-19 and found that the reduction in rates of
CD4 + T, CD8 + T and NK cells were 60.16%, 68.3% and 36.59%,
respectively (Wan et al., 2020), which greatly weaken the body’s
resistance to the virus.

Until now, no specific strategy has been recommended to improve
the body’s immunity to deal with early COVID-19. Concurrently, the
therapeutic effect of O2 therapy in severe cases has prompted
investigation into the impact of O2on the immune system. Functional
T-cell exhaustion has been demonstrated in patients with COVID-19,
especially in severe cases, which is associated with higher levels of
PD-1 (Diao et al., 2020). PD-1 is considered as a marker of T-cell
exhaustion and previous studies have confirmed that blocking PD-1 /
PD-L1 can restore T-cell function and accelerate virus clearance
(Schönrich and Raftery, 2019). Recently, researchers have found that
PD-L1expressioncanbecontrolled by HIF-1α both inmousemyeloid-
derived suppressorcells and in the sepsis model. Silencing HIF-1a has
been shown to reduce the expression of PD-L1 in monocytes and
restore T-cell proliferation (Avendaño-Ortiz et al., 2018; Noman et al.,
2014). It is noteworthy that a previous analysis suggested that
sufficient O2 could reduce HIF-1α expression, and respiratory
hyperoxia was also proven to reverse immunosuppression by
decreasing PD-L1 expression levels in a cancer mouse model (Qian
et al., 2019). Moreover, Atkuri et al. reported that T-cell proliferation
was significantly higheratatmosphericO2levels (20%oxygen)thanat
physiological O2 levels (5% or 10% oxygen) when lymphocytes were
cultured in vitro in response to external stimuli (Atkuri et al., 2005a).
A recent study revealed that breathing 60% O2 increased activities of T
and NK cells, and decreased immunosuppressive molecules in a
murine lung cancer model (Hatfield et al., 2015). Some researchers
have also demonstrated that lymphocytes have higher proliferation
efficiency in conditions of rich O2 compared with hypoxia
(Waskowska et al., 2017; Atkuri et al., 2005b). Accordingly, it is
tempting to speculate that sufficient O2 may improve the antiviral
ability of patients with early COVID-19 by increasing the abundance
and activities of immune cells.

Early oxygen intervention may reduce the up-regulated
expression of ACE2 caused by hypoxia

ACE2 is a cell membrane-associated enzyme belonging to the
renin-angiotensin system and is expressed more in the kidneys and
heart than that in the lungs (https://www.ncbi.nlm.nih.gov/gene/
59272). It has been confirmed that SARS-CoV-2 uses ACE2, the
same cell entry receptor of SARS-CoV, to enter the target cell (Zhou
et al., 2020). Thus, previous research on SARS-CoV may be helpful
to understand COVID-19. One study showed that the SARS-CoV
genome was found in the heart of 35% of the patients (7 of 20),
demonstrating that a heart attack was associated with earlier
death (Oudit et al., 2009). A study on renal function of patients
with SARS-CoV also indicated that acute renal impairment caused
by SARS-CoV was related to high mortality (Reddy et al., 2019).
Moreover, according to the recent clinical data, the rate of renal
impairment is remarkably higher in patients with COVID-19
compared with SARS-CoV (Li et al., 2020). These multiple lines of
evidence indicate that COVID-19 can infect the heart and renal
system by ACE2 and cause serious damage in patients. Therefore,
reducing the expression of ACE2 in organs in the early stages of
COVID-19 infection could inhibit virus invasion. Research shows
that hypoxia could increase the transcription of ACE2 by increasing
SIRT1 expression on Huh7 cells (Clarke et al., 2014) and up-
regulate the expression of ACE2 in an HIF-1α-dependent manner
on CD 34+ cells (Joshi et al., 2019). In pulmonary vascular smooth
muscle cells, hypoxia has also been shown to up-regulate ACE2
expression (Zhang et al., 2009). Researchers (Hu et al., 2012) have
also found that the SARS-CoV infection significantly enhanced the
expression of hypoxia upregulated 1gene as early as 6 hours, and
patients with novel coronavirus pneumonia have already appeared
anoxia in the early stages. However, the symptoms of dyspnoea do
not appear until late in the disease course, which is probably due to
hypoxia with accompanying hypocapnia (Ottestad et al., 2020).
Thus, management of hypoxia in the early stages should delay the
progression of COVID-19. Oxygen supplementation could increase
the partial pressure of O2 in arterial blood by driving pressure for
O2 and improve tissue oxygenation (Manning, 2002), which has
been proven to improve function in the ischaemic myocardium
(Kelly et al., 1995). Oxygen therapy has also been reported to
reduce renal vascular resistance and increase blood flow in
patients with hypoxaemia (Baudouin et al., 1992). Therefore, early
appropriate O2 therapy for COVID-19 patients may reduce the
invasion of virus by increasing O2 content of blood against the up-
regulated expression of ACE2 in tissues and organs caused by
hypoxia.
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Since cytokine storm is currently considered to be the
primary cause of acute exacerbation of COVID-19, early
intervention should be taken to inhibit or reduce the excessive
production of inflammatory cytokines. The production of
cytokines in human whole blood shows diurnal rhythmicity.
The production of pro-inflammatory cytokines – including IFN-
g, TNF-a, IL-1 and IL-12 – peaks at night and early morning when
plasma cortisol is lowest (Petrovsky and Harrison, 1998).
Evidence has shown that whole blood stimulation with
lipopolysaccharide (LPS) in vitro at night and early in the
morning displayed increased cytokine and chemokine levels in
samples from healthy volunteers compared with during daylight
(Petrovsky et al., 1998); a subsequent study in humans in vivo
has also confirmed this (Alamili et al., 2014). Furthermore, in a
vesicular stomatitis virus murine encephalitis model where
mice infection occurring at the start of the rest period showed
higher mortality than infection at the start of the active period
was associated with increased numbers of inflammatory cells
(Gagnidze et al., 2016). Therefore, a reduction of nocturnal
pathogen exposure or replication is expected to inhibit the
production of inflammatory factors. However, the rate of virus
replication in the host may accelerate in the resting phase,
according to Edgar et al., who showed that mice infected with
murid herpesvirus at the start of the rest phase exhibited 10-fold
higher viral loads than mice infected just before their active
phase (Edgar et al., 2016). However, most studies have focused
on the time of primary encounter with the antigen. It still needs
to be investigated whether virus replication is related to time of
day, especially after a virus infects the host. Moreover, a recent
study reported that SARS-CoV-2 from the nasal cavity is likely to
be aspirated into the deep lung via gastro-oesophageal reflex-
associated aspiration, which may be an important route to lung
infection and usually occurs at night (Hou et al., 2020).
Therefore, limiting virus replication at night would be a valid
therapeutic strategy. Combined with a previous analysis, it is
speculated that nocturnal O2 therapy could delay the progres-
sion of COVID-19 by inhibiting nocturnal virus replication.

Conclusion

The number of severe COVID-19 patients continues to increase,
leading to an extremely increased demand on medical resources
and requiring comprehensive treatment. Therefore, effective and
safe interventions are urgently needed to prevent COVID-19 from
developing from mild to severe. Based on the clinical data and
literature analysis, it was proposed that O2 therapy could inhibit
virus replication, regulate autoimmunity and decrease ACE2
expression in tissues. Since the virus may speed up invasion at
night and increase over-production of inflammatory cytokines,
combined with the fact that patients with lung diseases are prone
to have hypoxia during sleep (Trask and Cree, 1962), it is
recommend that nocturnal O2 therapy be given as a therapeutic
option for patients under home quarantine. Since nocturnal O2

therapy is not a new concept and has been widely used in COPD
patients, it is safe and easy to use in clinical practice (a home O2

concentrator is enough for a patient).
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