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ABSTRACT Cancer cells of primary effusion lymphoma (PEL) often contain both Kaposi
sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We measured the
interplay of human, KSHV, and EBV transcription in a cell culture model of PEL using
single-cell RNA sequencing. The data detect widespread trace expression of lytic KSHV
genes.

Immortalized cell lines derived from primary effusion lymphoma (PEL) positive for
both Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) serve

as tractable systems for studying transcriptional host-pathogen interactions. We grew
BC-1 cells (1) in culture (2) and processed log-phase samples for single-cell RNA deep
sequencing (scRNA-seq) with Gel beads in EMulsion microfluidic (GEM) technology (3)
using a Chromium Single Cell 39 Library & Gel Bead Kit v2 (10X Genomics, Pleasanton,
CA). The experiment was repeated twice with two independent biological replicates
that each yielded;400 to 700 million paired-end reads of 28 to 101 nucleotides.

We built a bioinformatics pipeline to simultaneously measure human and viral tran-
scription. Reads were demultiplexed and aligned using Cell Ranger (10X Genomics). A
custom genome reference was created by appending the viral genomes of EBV (4)
(GenBank accession number NC_007605.1) and KSHV (5) (GenBank accession number
U75698.1) to the human genome GRCh38. Reads aligning to viral genomes were
assigned to features using a heuristic algorithm implemented in Python (https://github
.com/jjmirandalab/scrnaseq). Feature definitions were obtained from a published
EBV annotation (6) (https://github.com/flemingtonlab/public/blob/master/annotation/
chrEBV_B95_8_Raji.ann) and downloaded from the KSHV reference (5) (GenBank acces-
sion number U75698.1). First, each virus-mapping read was assigned the union of all
RNA genome features its alignment overlapped with. Second, each molecule was
assigned the intersection of all feature assignments from reads with its correspond-
ing unique molecular identifier (UMI). If any molecule mapped to multiple genomes,
it was excluded. Finally, for each unique set of features assigned to a molecule,
counts were recorded for each cell. Cells were filtered using R scripts (https://github
.com/jjmirandalab/scrnaseq). Distributions of cell quality metrics were modeled as
log-normal for the total UMI count, log-normal for the proportion of expression from
mitochondrial genes, and normal for the number of genes detected. Cells with
extreme metric values were then identified according to the fit distributions. Data
between samples were normalized with sctransform (7). “Sample” was included as
the “batch_var” parameter.

Earlier RNA-seq methods only measured expression of exon regions that did not
overlap another transcript (8, 9); our approach discards less data. Approximately 20%
of the feature sets we count correspond to potentially overlapping transcripts that
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would have previously been ignored. Comprehensive profiling instills more confidence
in our interpretations.

Preliminary analysis of our scRNA-seq data reveals an unexpected plethora of lytic
KSHV transcripts. Herpesviruses switch between a transcriptionally quiescent latent
state and a reactivated lytic state. Genes were classified as latent or lytic based on
expression timing (10, 11). For EBV, we detected only latent genes. For KSHV, we
detected both latent and lytic genes (Table 1). Transcription of the lytic Open Reading
Frames 16, K9, K4, 54, 45, and 75, as well as the lytic polyadenylated nuclear RNA PAN
gene, can each be found in ;5 to 50% of cells. While we usually detected more than 1
count in each cell for the latent genes LANA and vIL6, lytic genes appear with only 1
count most of the time. Greater than 50% of cells contain these trace levels of lytic
RNA. In contrast, ;98% of BC-1 cells are thought to harbor latent KSHV because lytic
protein is not detected (12). Although more detailed analysis is required, our observa-
tions prompt a thoughtful redefinition of a “latent” transcriptome.

Data availability. Our data have been deposited in the NCBI Gene Expression
Omnibus (13, 14) under accession number GSE154900.
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TABLE 1 Detection of KSHV and EBV transcripts in BC-1 PEL cells with scRNA-seq

Transcript

Positive cells (% of total)a
Cells with 1 count (% of
positive)

Replicate 1 Replicate 2 Replicate 1 Replicate 2
EBV latent
A73, BARF0, RPMS1b 29.8 30.4 69.7 71.7
EBER-2 4.4 6.6 95.3 97.4
EBNA-1 Qp 1.1 0.4 97.0 100.0

KSHV latent
ORF K2 vIL6 98.7 91.0 2.9 14.8
ORF 72 vCyclin 2.1 1.9 98.4 94.6
ORF 73 LANA 99.9 99.7 0.2 0.4

KSHV lytic
ORF 11 1.1 0.3 80.6 70.0
ORF K3 1.1 0.8 83.9 87.0
ORF K4 16.4 9.9 76.7 85.5
ORF K5 5.2 2.7 83.3 87.2
ORF K6 3.3 0.8 87.2 82.6
ORF 16 45.6 31.2 70.4 80.5
ORF 45 10.4 5.0 87.7 94.5
ORF 47 1.5 0.2 88.1 100.0
ORF 54 11.0 6.8 71.6 75.5
ORF K9 38.2 19.7 63.1 81.1
ORF K10 5.8 2.8 90.4 97.6
ORF K11 1.2 0.3 88.2 100.0
ORF 75 9.7 5.7 90.0 93.5
PAN 16.3 6.8 87.2 92.9

KSHV unclassified
ORF K2 vIL6, ORF 2c 2.3 1.1 95.5 87.5
ORF 2d 6.2 2.4 90.4 98.6

aOnly transcripts present in at least 1% of cells in at least one replicate are shown.
b The union of transcripts could be assigned to multiple genes, but all components are latent.
c The union of transcripts contains one component of unknown expression timing.
d The expression timing of this transcript is not known.
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