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Abstract 
Wearable technologies represent a strong development axis for various medical applica-

tions and these devices are increasingly used in daily life as illustrated by smart watches’ 

popularisation. Combined with new data processing methods, it constitutes a promising 

opportunity for telemonitoring, triage in mass casualty situations, or early diagnosis after 

a traffic or sport accident. An approach to processing the physiological data is to develop 

severity scoring systems to quantify the critical level of an individual’s health status. How-

ever, the existing severity scores require a human evaluation. A first version of a severity 

scoring system adapted to continuous and real-time wearable monitoring is proposed in 

this article. The focus is made on three physiological parameters straightforwardly mea-

surable with wrist-wearables: heart rate, respiratory rate, and SpO2, which may be enough 

to characterise continuously hemodynamic and respiratory status. Intermediate score 

functions corresponding to each physiological parameter have been established using a 

sigmoid model. The boundary conditions have been defined based on a survey conducted 

among 54 health professionals. An adapted function has also been developed to merge 

the three intermediate scores into a global score. The scores are associated with a triage 

tricolour code: green for a low-priority casualty, orange for a delayable one, red for an 

urgent one. Preliminary confrontation of the new severity scoring system with real data 

has been carried out using a database of 84 subjects admitted to the intensive care unit. 

Colour classification by the new scoring system was compared with independent physi-

cians’ direct evaluation as a reference. The prediction success rate values 74% over the 

entire database. Two examples of continuous monitoring over time are also given. The new 

score has turned out to be consistent, and may be easily upgraded with the integration of 

additional vital signs monitoring or medical information.
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Introduction
The assessment of severity levels in illnesses or injuries is crucial for determining appropri-
ate pre-hospital and in-hospital care. Numerous scoring systems have been developed to aid 
health professionals in this evaluation [1–11]. These severity scores are also instrumental in 
mortality prediction, serving as valuable epidemiological tools. For example, they are rele-
vant in comparing care structures or systems. Moreover, in mass casualty incident (MCI) 
situations such as pandemics, large-scale accidents, natural disasters, and terrorist or military 
crises, scoring systems are vital. In such scenarios, where medical resources are stretched thin, 
efficient triage becomes imperative to optimise care management by prioritizing casualties. 
Recent years have witnessed a paradigm shift in emergency medicine, particularly in the con-
text of MCIs. Traditional severity scoring systems, while effective, often fall short in dynamic 
and rapidly evolving mass casualty scenarios for which the ability to continuously monitor 
and assess the severity of injuries in real-time becomes crucial. This is where wearable tech-
nology steps in, bridging the gap with its capability for real-time, continuous data collection 
and transmission. Wearable devices, equipped with advanced sensors, offer a promising 
solution to the limitations of static severity scoring methods, enabling a more responsive 
and adaptive approach for emergency care. Indeed, the deployment of wearable technology 
can be transformative in MCI situations. Imagine a scenario where each injured individual 
is equipped with a wearable device that not only assesses its medical condition in real-time, 
but also provides its exact location. This would not only streamline the triage process but 
also enhance the coordination of pre-hospital and in-hospital care. Such technology could be 
instrumental in prioritizing care for the most severely injured, managing resources effectively, 
and ultimately saving lives. The real-time data provided by these wearables could also assist in 
creating a dynamic map of the incident, aiding in efficient resource allocation and response 
planning.

Among already-existing physiological severity scores, the Glasgow Coma Scale (GCS) mea-
sures a person’s consciousness level and is particularly useful in head injury cases [4,12,13]. It 
is computed by summing scores across three criteria: eye opening, motor response, and verbal 
response. The Early Warning Score (EWS) and its more recent variant, the Modified Early 
Warning Score (MEWS), have been developed to identify patients needing more intensive 
care. Similar to the GCS, they are calculated by aggregating scores from five criteria: systolic 
blood pressure (SPS), heart rate, respiratory rate, temperature, and the “Alert, Verbal, Pain, 
Unresponsive” (AVPU) score, akin to the GCS [14–17]. The Revised Trauma Score (RTS) is 
designed for prehospital evaluation and is a continuous function of GCS, SPS, and respira-
tion rate [3]. In addition to physiological scores, anatomical score have also been developed, 
mainly based on the Abbreviated Injury Score (AIS) [18]. Combined systems like the Trauma 
and Injury Severity Score (TRISS) [19] and A Severity Characterization of Trauma (ASCOT) 
[11,20] integrate both anatomical and physiological aspects. However, these scoring systems 
require at least one step of human evaluation, preventing automatic calculation. This can be 
time-consuming, especially when assessing numerous individuals. Additionally, these scores 
are typically calculated at a single time point, which is not suitable for monitoring health 
status deterioration.

In the era of the Internet of Things, wearables present an opportunity for easy, fast, non-
invasive, and continuous monitoring of vital signs. Utilizing electronic, optical, mechanical, 
or biochemical technologies, these sensors can measure environmental, motion, position, 
or physiological parameters [21–24]. They may include miniaturized sensors embedded in 
implants, accessories, garments, or skin-adherent systems like patches or tattoos. Wristbands 
and smartwatches, in particular, are becoming more widespread [25,26]. Wearable devices 
often employ wireless communication protocols to transmit data to smartphones or remote 
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servers for online or offline processing [27–29]. The applications of these devices range from 
entertainment to well-being (gaming, sport tracking, activity or emotion recognition…), as 
well as in health such as biomedical research, remote telemonitoring of vulnerable individuals, 
mass casualty triage, or early diagnosis in traffic or sports accidents if the device is worn in 
advance. Indeed, wearable technologies offer a promising tool for health professionals to mon-
itor an individual’s medical condition straightforwardly and continuously, for instance based 
on scoring methods or track and trigger systems [30]. They are valuable in care management 
optimisation, which can help shorten medical response times, reduce the severity of sequelae, 
and decrease mortality. Wearables represent a fast-growing sector, thanks to breakthroughs in 
miniaturised sensors, communication protocols, data processing and storing, power supplies, 
ergonomics, and integration. Taken together, these advances should enhance devices’ reli-
ability and data quality, and lead to the emergence of more and more medical-grade devices 
[31,32].

Heart rate (HR), respiratory rate (RR), and peripheral oxygen saturation (SpO2) are often 
sufficient to reflect an individual’s hemodynamic and respiratory status. HR can be measured 
through electrocardiography (cardiac electrical activity measurement) [33,34], or pho-
toplethysmography (PPG) (pulse wave measurement) [35,36]. PPG is an optical technique 
that detects blood circulation’s volumetric variations using light sources and photodetectors. 
Oximetry, used for SpO2 measurement, operates on a similar principle but requires two light 
sources of different wavelengths [37]. RR can be deduced from pulse wave modulation [38,39] 
or using motion sensors [40,41]. Therefore, a severity score system based on these three 
parameters appears relevant. Examples of a lab-built prototype and an already commercialised 
wearable device are given in S1 Fig.

This paper introduces a new trauma severity score, SHRO, tailored for wearable monitoring 
and calculated from three intermediate score functions: SH, SR, and SO, respectively corre-
sponding to heart rate, respiratory rate, and SpO2. These functions are developed using a 
sigmoid model, and boundary conditions are defined through a survey among expert health 
professionals. The intermediate scores are then combined using a specially designed logical 
function, allowing for the consideration of more than three parameters. Thus, the new scoring 
system has been designed based on theoretical considerations and expert input, rather than 
through a data-driven approach, such as one based on machine learning. It has been tested on 
a database of subjects admitted to the intensive care unit by comparing the classification made 
with the new score and the independent evaluation by physicians and medical staff consid-
ered as a reference. In addition, two examples of continuous monitoring over time are given. 
The paper also discusses several options for improving this initial version of the new scoring 
system.

Materials and methods

A new severity scoring system calculated from heart rate, respiration rate, 
and SpO2

General score conception.  The physiological parameters HR, RR, and SpO2 are 
respectively denoted as xH, xR, and xO serving as function antecedents. The comprehensive 
score SHRO(xH, xR, xO) is derived from three intermediate scores corresponding to each vital 
sign: the heart rate score SH(xH), the respiratory rate score SR(xR), and the SpO2 score SO(xO). 
These scores, ranging from 0 to 100, adhere to the principle that a higher score indicates 
a more severe medical condition. Additionally, the scores are colour-coded similarly to 
the Simple Triage And Rapid Treatment (START) protocol algorithm: green for low-
priority casualties, orange for delayable ones, red for urgent cases, and black for deceased 
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or unexpectant individuals [42–44]. Consequently, the score intervals [0,33], [33,67], and 
[67,100] correspond respectively to the colours green, orange, and red.

For heart and respiratory rates, normal values fall within a specific range, with deviations 
from this range indicating increasing criticality. Therefore, the functions SH(xH) and SR(xR) 
exhibit two segments: one decreasing and the other increasing. In contrast, a normal SpO2 
value is close to the maximum (100%), making the SO(xO) score function a monotonically 
decreasing one. These intermediate scores SH, SR, and SO are modelled using sigmoid func-
tions. A survey was conducted to establish normal, abnormal, and critical values for the three 
physiological parameters, each associated with the above-mentioned colour codes green, 
orange, and red. Furthermore, a specialized function fmerge has been devised to amalgamate 
the three intermediate scores into the overarching score SHRO, which aims to reflect the overall 
health status. In the realm of health scoring, the merging function adheres to specific logical 
rules: if any intermediate score is red, the global score is red; if none are red but at least one is 
orange, the global score is orange; and the global score is green only if all intermediate scores 
are green. These logical rules are illustrated in Fig 1. The development processes of the inter-
mediate scores and of the merging function are described in the following paragraphs.

Intermediate scores’ boundary values.  Normal, abnormal, and critical values for the 
three physiological parameters are respectively represented by scores within the intervals 
[0,33] (green), [33,67] (orange), and [67,100] (red). For each vital sign, the boundary values 
xP,b correspond to the points at which the score colour changes. These are the values whose 
images, as determined by the intermediate score functions SP(xP) where P ∈  {H, R, O}, equal 
33 or 67 (as shown in Equation 1).

	 x x S xP b P P, , , , ,= ( ) { }{ } { }    P  H R Oε ε33 67 	 (1)

where, SP represents the score function for the physiological parameter xP. The Modified Early 
Warning Score coding system provides a basis for understanding the normal, abnormal, and 
critical values of heart rate, respiratory rate, and SpO2 [45]. However, MEWS employs four 
levels of severity, whereas our approach requires only three. Due to the absence of suitable 
boundary values in existing literature, a survey was conducted among expert health profes-
sionals to establish these values. The survey participants, drawn from the French Society of 
Anesthesia and Intensive Care (Société Française d’Anesthésie et de Réanimation), were asked 
to identify boundary values for an adult subject for each of the three physiological parameters. 
These values are illustrated in Fig 2. Details can be found in S1 File.

Fig 1.  Logical tree representing the rules used for determining the global score SHRO’s range. The latter depends on 
the ranges of the heart score SH, the respiratory score SR, and the SpO2 score SO.

https://doi.org/10.1371/journal.pone.0318290.g001

https://doi.org/10.1371/journal.pone.0318290.g001
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Sigmoid model’s parameters of the intermediate score functions.  The intermediate 
score functions SH(xH), SR(xR), and SO(xO) are modelled using sigmoid functions. Since SO(xO) 
is monotonic, a single sigmoid term suffices (Equation 2).

	 S x
eO a x b( )=
+ +

100
1 1 1

	 (2)

SH(xH) and SR(xR) functions display two segments with differing directional variations. Conse-
quently, they are modelled by a superposition of two sigmoid functions (Equation 3).

	 S x
e eP a x b a x b( )=
+

+
+

{ }+ +

100
1

100
11 1 2 2

   for P  H Rε , 	 (3)

where a1, a2, b1, b2 correspond to the sigmoid functions’ parameters.
For each vital sign, the parameters a1, a2, b1, b2 must be determined. Based on the survey 

conducted among expert health professionals, boundary values delimiting normal, abnormal, 
and critical ranges have been established. These values serve as boundary conditions, as speci-
fied in Equation 4.
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	 (4)

The system was resolved using curve-fitting techniques. The resulting parameters a and b are 
presented in Table 1. For each physiological parameter, the coefficient of determination R2 
equals 1, indicating a successful resolution of the system through curve-fitting. The resulting 
intermediate score functions SH(xH), SR(xR), and SO(xO) are illustrated in Fig 3.

Fig 2.  Boundaries of normal, abnormal, and critical value ranges for heart rate (HR), respiratory rate (RR), and 
blood oxygenation (SpO2).

https://doi.org/10.1371/journal.pone.0318290.g002

https://doi.org/10.1371/journal.pone.0318290.g002
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Fig 3.  Intermediate score functions of heart rate SH(xH), respiratory rate SR(xR), and SpO2 SO(xO) obtained using 
a sigmoid model. The boundary conditions have been defined thanks to the survey conducted among expert health 
professionals.

https://doi.org/10.1371/journal.pone.0318290.g003

https://doi.org/10.1371/journal.pone.0318290.g003


PLOS ONE | https://doi.org/10.1371/journal.pone.0318290  March 4, 2025 7 / 21

PLOS ONE A new trauma severity scoring system adapted to wearable monitoring

Merging function.  The global score SHRO(xH,xR,xO) is computed using a merging function 
fmerge based on the three intermediate scores SH, SR, and SO, derived from the previously 
developed functions (Equation 5).

	 S f S x S x S xHRO merge H H R R O O= ( ) ( ) ( )( ), , 	 (5)

The function fmerge is presumed to be symmetric and must satisfy two conditions: (i) adherence 
to the logical tree depicted in Fig 1, and (ii) evolutionary behaviour. Condition (ii) implies that 
fmerge should reflect the cumulative effect of the intermediate scores: if S1 < S2, then fmerge(S1, SX, 
SY) < fmerge(S2, SX, SY). For instance, a subject with an orange SH value and green SR and SO values 
should have a SHRO score lower than a subject with three orange intermediate scores. Without 
fulfilling these conditions the maximum max (SH, SR, SO) and average mean (SH, SR, SO) could have 
been used as the merging function; however, they respectively do not meet conditions (i) and (ii).

A code array is introduced, containing an element for each physiological parameter. Each 
code element is assigned a value of 0, 1, or 2, corresponding to the score intervals [0;33] 
(green), [33;67] (orange), or [67;100] (red), as defined in Equation 6.

	 C C C with
C if S
C if S
C if

H R O

P P

P P

P

, ,[ ]
= ≤ ≤
= < <
=

   
  

  
  

0 0 33
1 33 67
2 67≤≤ ≤

=
S

P H R O

P 100
       , , 	 (6)

Given the symmetry of fmerge, the code array can be viewed as a 3-combination with repetition 
{CH, CR, CO} from a set {0, 1, 2}. If n vital signs were to be used in the global score calculation 
instead of 3, this could be generalized to an n-combination with repetition {C1, C2, … Cn} 
from the set {0, 1, 2}.

The output range of the merging function is determined by the maximum element in the 
code array, in accordance with condition (i): it is red if the maximum is 2, orange if it is 1, and 
green if it is 0 (refer to Table 2, column “Maximum”). Additionally, the sum of the code array 
elements helps to determine the appropriate subinterval, in line with condition (ii). This sum 
represents a weighted count of the green, orange, and red intermediate scores. The range of 
this sum is specified in Table 3 (columns “sumMIN” and “sumMAX”) for each interval, leading to 

Table 1.  Parameters a and b computed following a sigmoid model for the intermediate score functions of heart 
rate SH(xH), respiratory rate SR(xR), and SpO2 SO(xO).

Function a1 b1 a2 b2 R2 SSE

SH(xH) 0.07701 -3.738 -0.06142 6.936 1 6.058e-28

SR(xR) 0.4431 -3.903 0.1403 3.545 1 1.998e-21

SO(xO) 0.177 -15.76 1 3.175e-18

The coefficients of determination (R2) and the sums of square error (SSE) are also given.

https://doi.org/10.1371/journal.pone.0318290.t001

Table 2.  Relationship between the merging function’s output interval and the input code array’s maximum, sum 
range (sumMIN and sumMAX), and the number of possible subintervals NSI for n physiological parameters.

Interval Colour Maximum sumMIN sumMAX NSI

[0;33] Green 0 0 1
[33;67] Orange 1 1 n n
[67;100] Red 2 2 2n 2n-1

https://doi.org/10.1371/journal.pone.0318290.t002

https://doi.org/10.1371/journal.pone.0318290.t001
https://doi.org/10.1371/journal.pone.0318290.t002
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the calculation of the number of possible subintervals NSI as per Equation 7 (Table 3, column 
“NSI”). S2 File provides mathematical details on the number of combinations that result in 
green, orange, or red outputs, in relation to Fig 1.

	 N sum sumSI MAX MIN= − +1	 (7)

The intervals are then evenly divided into the calculated number of subintervals. The lower 
and upper bounds of these subintervals are determined as outlined in Equation 8.

	 subInt int
int int

N
sum codeArray sumLOW LOW

UPP LOW

SI
MIN= +

− ( )−( )∗ 	

	 subInt int
int int

N
sum codeArray sumUPP LOW

UPP LOW

SI
MIN= +

− ( )− +(∗ 1)) 	 (8)

For instance, with n = 3 physiological parameters, Table 3 indicates that there is 1 possible 
green subinterval (NSI = 1), 3 possible orange subintervals (NSI = n = 3), and 5 possible red 
subintervals (NSI = 2n-1 = 5). The lower and upper bounds of these subintervals, as calculated 
using Equation 8, are detailed in Table 3.

The merging function has been defined with Equation 9:

	 f S subIntmerge i i n LOW{ }( )=≤ ≤1
	

	 +
{ }( )− { }( )
{ }( )−

≤ ≤ ≤ ≤

≤ ≤

mean S mean min

mean max mean mi

i i n i i n

i i n

1 1

1
nni i n{ }( )≤ ≤1

	

	 ∗ subInt subIntUPP LOW−( ) 	
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i i

i i
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0 0 33
33 33 67

67 67

  
  
  1100

and 	
max if S
max if S
max if S

i i

i i

i i

= ≤ ≤
= < <
= ≤ ≤

33 0 33
67 33 67

100 67 100

  
  
  

	 (9)

Fig 4 presents a 3D plot of fmerge in the scenario of two input physiological parameters (n = 2).
In summary, this new trauma severity scoring system, tailored for wearable monitoring, 

operates in two stages. Initially, intermediate scores for heart rate, respiratory rate, and SpO2 are 

Table 3.  Merging function’s subintervals lower and upper bounds in the case of three physiological parameters 
(n = 3).

Combination Max Sum subInt_Low subInt_up
{0,0,0} 0 0 0 33
{0,0,1} 1 1 33 44,3
{0,1,1} 2 44,3 55,7
{1,1,1} 3 55,7 67
{0,0,2} 2 2 67 73,6
{0,1,2} 3 73,6 80,2
{0,2,2}, {1,1,2} 4 80,2 86,8
{1,2,2} 5 86,8 93,4
{2,2,2} 6 93,4 100

https://doi.org/10.1371/journal.pone.0318290.t003

https://doi.org/10.1371/journal.pone.0318290.t003
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calculated using the functions SH(xH), SR(xR), and SO(xO). Subsequently, the global score SHRO is 
computed using the merging function fmerge(SH, SR, SO), as elaborated above. This global score can 
be continuously computed from the three physiological parameters measured by a wearable device, 
eliminating the need for manual evaluation by a health professional for the score calculation.

Database’s constitution.  To evaluate the effectiveness of the newly developed scoring 
system, it was tested with real-life data. We used data from major patients admitted for trauma 
to the Intensive Care Unit (ICU) of La Timone Teaching Hospital in Marseille and included 
in the project PHYSIOS (RO-2015/17, reference 2015-33). This project was approved by the 
Personal Protection Committee 1 South Mediterranean (Comité de Protection des Personnes 
Sud Méditerranée I). According to French regulations, the patients were informed in writing 
that their anonymous data would be used for research purposes and that they could opt-
out anytime. (As this was an observational study and data were anonymously analysed, 
written consent was not required.) The assessment period spanned from 1 May 2022 to 30 
June 2023. The database included the heart rate (HR), respiratory rate (RR), and peripheral 
oxygen saturation (SpO2) of patients admitted to the trauma room. The measurements were 
carried out with the hospital’s scope devices, and the variables consisted of arrays of these 
physiological measures over time.

Using the intermediate score functions, the intermediate scores SH, SR, and SO were respec-
tively calculated from the HR, RR, and SpO2 arrays. To synchronize the time arrays of these 
three scores, an interpolation process was applied. Subsequently, a global score array for each 
subject was computed using the fmerge function. Additionally, physicians conducted separately 
a colour code evaluation (green, orange, or red) for each subject, providing a clinical perspec-
tive on the severity of their condition. They were completely blinded to all the information 
provided by the model.

This assessment aims to validate the scoring system’s utility in a real-world clinical setting, 
particularly its potential for continuous patient monitoring and its accuracy in reflecting 
patient conditions as evaluated by medical professionals.

Fig 4.  3D plot of fmerge in the case of two input physiological parameters S1 and S2 (n = 2).

https://doi.org/10.1371/journal.pone.0318290.g004

https://doi.org/10.1371/journal.pone.0318290.g004
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Results

Classification
Database description.  The dataset was found to be complete for 84 subjects, categorized 

as 19 green, 37 orange, and 28 red (or black) based on the independent physicians’ evaluations. 
Notably, 22 subjects had also neurological lesions. Both intermediate and global scores were 
averaged over time for analysis. For 17 subjects, only initial time points (prior to any care or 
sedation) were considered to accurately represent the subject’s health status at admission.

The distribution of the constituted database subjects’ physiological parameters is displayed 
in Fig 5, on the left column. It appears that the subjects exhibit various values of heart rate, 
respiratory rate, and SpO2. The database’s diversity ensures that the prediction success rates 
calculated in this part are significant. The equivalent display is given on the right column 
using the intermediate scores. No distinct clusters of green, orange, and red subjects appear 
clearly, even if it can be noticed that the subjects with high intermediate scores are mostly red. 
Correlations between the intermediate scores have been checked. Heart and respiratory rates 
seem to be slightly correlated (0.49), while SpO2 is decorrelated from both HR and RR (respec-
tively 0.24 and 0.28).

Boxplots of the intermediate scores SH, SR, and SO, the scores calculated with two of the 
three physiological parameters SHR, SHO, and SRO, and the global score SHRO are given in Fig 6. 
For all scores, the median values tend to increase as the colour goes from green to red (even 
if for SR, the median scores are equivalent between orange and red subjects; as well as for SO 
between green and orange subjects). Therefore, the gravity scores that have been developed 
seem to be consistent. It also appears on all graphs that the score range is limited for green 
subjects, is higher for orange ones, and even more for the reds. Moreover, one can note that 
the median values seem to differ more between the three colour groups when increasing the 
number of physiological parameters considered in the score.

Assessment of the scoring system’s prediction success.  In order to assess the new scoring 
system, the colour classification made with the scores (green for [0,33], orange for [33,67], 
red for [67,100]) has been compared with the independent colour evaluation carried out by 
physicians. The prediction success rates (PSR) have been calculated as the ratio of correctly 
predicted subjects Nscorrect over the total number of subjects Nstot. The prediction success rates 
for the different scores using 1, 2, or 3 physiological parameters are given in Table 4.

	 PSR
Ns
Ns

correct

tot

= ∗100 	 (10)

The prediction success rates have been calculated considering only the non-neurological 
subjects, only the neurological ones, and on the entire database.

The prediction success rate of the global score over the entire database is 74%: 62 of 84 
subjects have been correctly predicted by the new scoring system. The confusion matrix is 
given in Fig 7A. Among the 22 incorrectly predicted subjects, 8 are neurological subjects, two 
of them are alcohol-intoxicated, and 6 exhibit a global score value close to the value range it 
should have belonged to (among which 2 are also either neurological or alcohol-intoxicated). 
Without considering the neurological subjects, a prediction success rate of 77% is even 
achieved. The corresponding confusion matrix is given in Fig 7B.

Model calibration has also been checked; the calibration curve is presented in Fig 8. The 
Expected Calibration Error (ECE) has been calculated using a uniform binning with 5 bins: 
it equals 0.28. While the threshold values 33 and 67 have been used to classify the subjects 
according to the colour code, optimised thresholds have been defined in the S3 File. However, 
it has not led to better prediction success rate.



PLOS ONE | https://doi.org/10.1371/journal.pone.0318290  March 4, 2025 11 / 21

PLOS ONE A new trauma severity scoring system adapted to wearable monitoring

Continuous monitoring.  The advantage of the new trauma severity score is to enable 
health professionals to continuously monitor patients, even outside the ICU or the hospitals. 
Two examples are given in Fig 9. Heart rate, respiratory rate, and SpO2 are plotted over 
a few minutes on the right axis of the three upper graphs (blue dots). The intermediate 
scores associated with the three physiological parameters are also displayed on the left axis 
(continuous black lines). Finally, on the lower graph, the evolution of the global score over 
time is given.

Fig 5.  Repartition of the constituted database subjects’ heart rate (HR), respiratory rate (RR) and SpO2, as well as 
intermediate scores SH, SR and SO respectively associated to the physiological parameters.

https://doi.org/10.1371/journal.pone.0318290.g005

https://doi.org/10.1371/journal.pone.0318290.g005
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In Fig 9A, the heart rate decreases quickly (in less than 30 seconds), while the respiratory 
rate decreases over a longer period of 2.5 minutes. Therefore, the intermediate scores SH and 
SR decrease as well (respectively from 63% to around 20% and from 96% to around 25%). SpO2 

Fig 6.  Boxplots of score computed with 1,2 or 3 physiological parameters (among HR, RR and SpO2) represented 
for each group of subjects evaluated as green, orange or red by physicians.

https://doi.org/10.1371/journal.pone.0318290.g006

https://doi.org/10.1371/journal.pone.0318290.g006
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is consistently very close to 100%; SO is consequently more or less constant and low (15%). 
Consistent with SH and SR, the global score decreases from 78% (red) to around 33% (orange/
green). This decrease reflects an improvement in the medical status of subject A, which is 
related to the care received when managed in the ICU.

Table 4.  Prediction success rates using 1, 2, or 3 physiological parameters (among heart rate, respiratory rate and 
SpO2) across the 62 non-neurological subjects, the 22 neurological subjects, and the entire database.

Considered parameters Prediction success rate
HR RR SpO2 Non-neurological 

(62)
Neurological (22) All (84)

x 47% 14% 38%
x 57% 41% 52%

x 39% 27% 36%
x x 57% 59% 57%

x x 58% 36% 52%
x x 68% 50% 63%

x x x 77% 64% 74%

https://doi.org/10.1371/journal.pone.0318290.t004

Fig 7.  Confusion matrix of colour code prediction using the new scoring system compared to the colour evalua-
tion carried out by physicians as the true class for all subject (A) and for non-neurological subjects (B). 0: green, 1: 
orange, 2: red.

https://doi.org/10.1371/journal.pone.0318290.g007

https://doi.org/10.1371/journal.pone.0318290.t004
https://doi.org/10.1371/journal.pone.0318290.g007
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In Fig 9B, the heart rate intermediate score increases from 27% (green) to 68% (red), as the 
heart rate increases from 95 bpm to 125 bpm during the 13 minutes of monitoring. The SpO2 
value is above 90% during the first 5 minutes and then decreases to reach a critical value of 
81% (at around 350 seconds) after the beginning of the monitoring. Thus, the SpO2 score SO 
varies from around 33% (green/orange) to 81% (red). At the same moment, the respiratory 
rate accelerates, which could be related to this SpO2 decrease. From 4.5 minutes, the respi-
ratory rate and SpO2 stabilize: SR remains in orange, while SO returns to green values. These 
different elements result in a global score fluctuating between orange and red values.

These two examples illustrate how the new scores can be interpreted and used as a tool by 
health professionals to follow patients’ health status evolution over time. Peterson describes 
a recommendation of monitoring frequency depending on the EWS value [15]. With the 
new severity scoring system, this question no longer arises since the score calculation is made 
directly from HR, RR, and SpO2, without requiring a professional evaluation. The frequency 
of score computation should therefore be determined based on the system’s processing capac-
ity and data management to avoid latency issues and to ensure an optimal balance of collected 
data. This tool can be especially useful in the case of patient monitoring to detect in real-time 
deterioration or to quantify stability.

Discussion
The obtained prediction success rates when comparing the colour classification made with 
the scores and the independent colour evaluation conducted by physicians (Table 4), for 
instance 74% over the entire database when considering HR, RR and SpO2, show that the new 
trauma scoring system is relevant. Notably, the system’s efficacy is particularly pronounced in 
cases involving non-neurological or non-alcohol-intoxicated subjects, where the PSR rises to 
77% upon excluding these individuals compared to 64% when considering only them. Even 
though a prediction success rate of 74% is statistically significant, it does not meet the rigorous 
demands of clinical practice, where the stakes involve human lives. Nevertheless, it must be 
noted that the four subjects of the database that died presented a global score higher than 74%. 

Fig 8.  Calibration curve: predicted scores using SHRO as a function of the scores evaluated by physicians.

https://doi.org/10.1371/journal.pone.0318290.g008

https://doi.org/10.1371/journal.pone.0318290.g008
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It suggests a potential correlation between higher scores and more severe outcomes, which 
requires further investigation.

Since it can be noted in Table 4 that the prediction success rate is improved when 
increasing the number of physiological parameters, the scoring system may be upgraded 
by introducing other physiological parameters allowing the evaluation of neurological 
aspects, what is easily possible given the way the merging function of the intermediate 
score has been designed. In the case of non-hospitalized individuals, motion is an easily 
measurable parameter with accelerometers and gyroscopes. Typically, an injured individual 
who is immobile is immediately considered to be in a severe condition. Besides the motion 

Fig 9.  Evolution over time of two subjects A and B’s heart rate, respiratory rate, SpO2 and the associated intermediate scores SH(HR), SR(RR), SO(SpO2), as well as 
of the global score SHRO(HR, RR, SpO2). The physiological parameters P and the scores SP(xP) are represented respectively with blue dots and continuous black line. The 
scores SH, SR, SO and SHRO have been smoothed over the equivalent of respectively 30, 60, 30 and 30 seconds.

https://doi.org/10.1371/journal.pone.0318290.g009

https://doi.org/10.1371/journal.pone.0318290.g009
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level, data processing can include walk and fall detection. If the wearable included a user 
interface (screen, or microphone and speakers), a consciousness level test evaluation could 
also be conceived, as a substitute for the AVPU and GSC scores. Moreover, Electrodermal 
Activity (EDA) and Heart Rate Variability (HRV) can be used to quantify the sympathetic/
parasympathetic balance of the autonomous nervous system in relation to stress and pain 
[24,46–49]. These development paths should especially be effective for neurological sub-
jects. Depending on the application, a haemorrhagic risk function could also be developed 
from pulse wave amplitude and heart rate [50,51]. The intermediate score functions may 
additionally be integrated in a more complex algorithm considering a broader array of 
information. Depending on the application scenario, the available inputs, such as age, body 
composition, medical history, or ongoing treatment (medication administration, oxygen 
assistance, etc.), may vary. Furthermore, the new scoring systems seem to rather underes-
timate the colour class according to Fig 7, while it is rather desirable to overestimate the 
gravity to avoid medical mistakes in the case of mass casualty situations. However, the 
results presented here only represent a first attempt and several optimisations to improve 
the predictive capability have been given above.

It is also interesting to analyse which physiological parameters seem to have the best 
predictive capability. Among the three intermediate scores, e.g., when considering either HR, 
RR, or SpO2 (Table 5), the prediction success rate is higher for respiratory rate (57% versus 
47% for HR and 39% for SpO2). This is also reflected in the scores using two physiological 
parameters since SHR and SRO‘s prediction success rates are higher than SHO’s one. It can be 
even noticed that the predictive success rate when using only RR is equivalent to the one 
when using both HR and SpO2. Nevertheless, when considering the scores computed with 
optimised thresholds in S3 File, the PSRs are equivalent to each other when considering one 
vital sign (between 49 and 54%). Thus, HR, RR and SpO2 seem to exhibit a similar predictive 
weight if the colour limit thresholds are optimised, even though it can be noticed on the ROC 
curves on S3 File that the areas under curves are slightly higher for HR (above 0.72) than for 
RR (0.65; 0.69) and for SpO2 (0.64; 0.66). The thresholds without optimisation were some-
how more or less adapted for respiration rate. An additional study should also be carried out 
to identify which of the neurological physiological parameters mentioned above are the most 
efficient.

In this study, the new trauma severity scoring system has been assessed using a database 
only including patients admitted to the intensive care unit, what may affect the mobility 
of the patients and the natural progression of their conditions. All patients had under-
gone some form of medical intervention before and during their assessment, which could 
influence the model’s predictive accuracy. Therefore, this pilot study should be completed 
by testing the new trauma score test on additional multi-centric datasets including both 
individuals with compromised health and healthy subjects. Moreover, the measurements 
have been carried out using hospital’s scope devices, whereas the scoring system aims to 
be combined with wearable technologies. Further investigation should consequently be 
carried out to identify suitable medical-grade monitoring wearables, check their measure-
ment reliability in real prehospital conditions and its influence on the computed scores, 
and integrate intermediate functions into a more complex algorithm taking account of 
additional inputs.

Conclusions
A novel trauma scoring system tailored for wearable monitoring has been developed, 
deriving calculations from three key physiological parameters: heart rate (HR), respira-
tory rate (RR), and peripheral oxygen saturation (SpO2). Medical-grade devices enabling 
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precise measurement of these physiological parameters should become increasingly 
available as challenges related to wearables technologies (such as ergonomics, data 
consistency, etc.) are addressed. Intermediate scores SH, SR, and SO are initially computed 
from these vital signs using a sigmoid model, with boundary conditions established 
through a survey among French health professionals (54 responses). Additionally, a 
merging function fmerge has been introduced to amalgamate these intermediate scores, 
offering flexibility for incorporating more than three parameters in future enhancements 
of the system.

The efficacy of the system was tested using a database of 84 subjects from an intensive care 
unit. The scoring system’s colour codes were validated against physicians’ independent assess-
ments, achieving a prediction success rate of 74% across the entire database and the Expected 
Calibration Error equals 0.28. This underscores the relevance of the chosen physiological 
parameters and incorporating additional parameters could further refine the prediction accu-
racy. Two case studies demonstrated the utility of this new monitoring score for continuous 
health status tracking. As the score is automatically calculated from wearable measurements, 
bypassing the need for human evaluation, monitoring frequency is no longer a constraint, 
provided sufficient computational resources are available. This score serves as the initial 
development phase of a real-time multi-patient monitoring tool that enable the detection of 
sudden deterioration in a patient’s condition. This tool’s capability to detect sudden patient 
condition deteriorations could be invaluable in MCIs, assisting in the optimal allocation of 
medical resources and enhancing patient care.

While HR, RR, and SpO2 effectively represent an individual’s hemodynamic and respi-
ratory status, the current version of the scoring system lacks a neurological dimension. To 
address this, integrating additional physiological parameters such as motion, electrodermal 
activity, or heart rate variability is proposed, potentially enhancing the accuracy, particularly 
for neurological cases. An additional study including all available physiological parameters 
could explore which ones are the most relevant and identify the redundant ones, for instance 
by carrying out a principal component analysis. Optimising intermediate scores also rep-
resents an improvement target. This study is set against the backdrop of ongoing advance-
ments in hardware technologies and data processing, suggesting that the proposed severity 
scoring system is poised for continuous evolution.

Despite its potential for real-time health monitoring, the current system does not account 
for historical health data. Introducing thresholds that prevent the score from dropping below 
certain levels after exceeding set limits could be beneficial. Additionally, the quality of vital 
sign measurements by the wearable device warrants consideration. Exploring fuzzy logic as an 
alternative to the fmerge function could offer a more nuanced approach to integrating interme-
diate scores [16]. Expanding the database and employing machine learning algorithms could 
further refine the system. For everyday wearables, personalizing intermediate score functions 
based on user-specific factors like age could significantly enhance the system’s precision. In 
such scenario, detecting abnormal vital signs, falls, or accidents could automatically trigger 
communication with emergency services.

In conclusion, this initial version of the wearable monitoring-adapted scoring system 
is shows promise for integration in a more complex algorithm including additional inputs 
and accounts for the measurement quality of the wearable devices (sensitivity, reliability, 
selectivity, etc.). Further validation is required with a broader range of data, encompass-
ing both individuals with compromised health and healthy subjects. Moreover, this score 
is aimed to be continuously updated in line with technological advancements and inte-
grating additional physiological parameters as they become clinically validated for use in 
wearables.
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(TIF)
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(DOCX)

S2 File.  Merging function: class’ number of combinations. 
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