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Abstract

Antimicrobial peptides may be alternatives to traditional antibiotics with reduced bacterial

resistance. The antimicrobial peptide GL13K was derived from the salivary protein BPIFA2.

This study determined the relative activity of the L-and D-enantiomers of GL13K to wild-type

and drug-resistant strains of three gram-negative species and against Pseudomonas aeru-

ginosa biofilms. DGL13K displayed in vitro activity against extended-spectrum beta-lacta-

mase (ESBL)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing

Klebsiella pneumoniae (MICs 16–32 μg/ml), MDR and XDR P. aeruginosa, and XDR Acine-

tobacter baumannii carrying metallo-beta-lactamases (MICs 8–32 μg/ml). P. aeruginosa

showed low inherent resistance to DGL13K and the increased metabolic activity and growth

caused by sub-MIC concentrations of GL13K peptides did not result in acquired bacterial

resistance. Daily treatment for approximately two weeks did not increase the MIC of

DGL13K or cause cross-resistance between LGL13K and DGL13K. These data suggest

that DGL13K is a promising antimicrobial peptide candidate for further development.

Introduction

Antimicrobial peptides (AMPs) have been considered as an alternative to traditional antibiot-

ics and may represent a different therapeutic modality with reduced opportunity for bacterial

resistance [1, 2]. The possibility of bacterial resistance to AMPs has been extensively debated.

On the one hand, it has been proposed that their mode of action at the cell membrane makes

resistance unlikely [1, 3, 4] and peptides such as polymyxin B and nisin have been used for

decades with no significant resistance [5]. On the other hand, resistance can be generated

under laboratory conditions [6, 7] causing concerns that bacteria that become resistant to a

therapeutic AMP would also be resistant to endogenous human host-defense peptides (“arm-

ing the enemy”) [8–10], as shown for pexiganan and HNP-1 [6]. A recent study suggests that
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AMPs are more likely to show collateral sensitivity rather than cross-resistance to traditional

antibiotics [2]. In addition, we have recently reported that closely related peptide enantiomers

can show significant differences in their interactions with bacterial defense mechanisms [11,

12].

We previously described the design of anti-inflammatory and bacterial agglutinating pep-

tides based on the sequence of the human salivary protein BPIFA2 [13–16]. A modified pep-

tide, GL13K, was developed by substituting three polar or charged amino acids with lysine

residues [17]. The resulting peptide is a more cationic and highly bactericidal peptide, which

retains anti-inflammatory activity in vitro and in vivo [17]. A second generation, D-enantio-

mer of GL13K (DGL13K) resists bacterial proteases [12, 18] and is bactericidal against gram-

negative and gram-positive bacteria, including vancomycin-resistant Enterococcus faecalis and

methicillin-resistant Staphylococcus aureus [12, 19]. Interestingly, a similar D-enantiomer

selectivity of gram-positive bacteria was reported for the AMP M33-D [20]. The goal of this

study was to determine the relative activity of the L-and D-enantiomers of GL13K to wild-type

and drug-resistant strains of gram-negative bacteria and bacterial biofilms. In addition, we

show that Pseudomonas aeruginosa exhibit hormesis in response to subinhibitory concentra-

tions of the GL13K peptides but this does not result in acquired resistance to DGL13K or

cross-resistance between the L- and D-enantiomers of GL13K.

Materials and methods

Bacterial isolate collection

The laboratory strains, P. aeruginosa Xen41, a bioluminescent derivate of PA01 (Xenogen, Ala-

meda, CA; now Perkin-Elmer, Waltham, MA), P. aeruginosa ATCC 27853, and Klebsiella
pneumoniae ATCC 13883 were used as quality control strains and analyzed in parallel with

each minimal inhibitory concentration (MIC) experiment. Four clinical P. aeruginosa strains

(55, 147, 220, 237) collected from Boston, MA, and 2 clinical strains (507, 508) from Philadel-

phia, PA were tested [21]. Six clinical isolates of K. pneumoniae were tested including three

from Boston, MA (19, 127, 132) and three from Philadelphia, PA (556, 584, 596). Finally, six

Acinetobacter baumannii isolates acquired from the Gram Negative Carbapenemase Detection

and A. baumannii panels of the CDC & FDA Antibiotic Resistance Isolate Bank (Atlanta, GA)

(http://www.cdc.gov/arisolatebank) were tested: AR Bank #33, #52, #102, #280, #290, and

#294. The resistance phenotype for each strain is listed in Table 1. Isolates were characterized

as multidrug-resistant (MDR) if non-susceptible to�1 agent in� 3 antimicrobial categories,

and extensively-drug resistant (XDR) if non-susceptible to� 1 agent in� 6 antimicrobial cate-

gories [22].

Peptides

Polymyxin B was purchased from MilliporeSigma (St. Louis, MO). LGL13K (GKIIKLK-

ASLKLL-NH2) [17] and an all-D-amino acid version of this peptide (DGL13K) [12, 18] were

purchased from Bachem AG (Bubendorf, Switzerland). The non-bactericidal control peptide

GL13NH2 (GQIINLKASLDLL-NH2) [16, 17] was purchased from Aapptec (Louisville, KY).

GL13K peptides were synthesized by Fmoc chemistry and the TCA form isolated at>95%

purity by reverse-phase HPLC. The purity and identity of each peptide were verified by the

suppliers by reverse-phase HPLC and mass spectrometry, respectively. The lyophilized pep-

tides were re-suspended in 0.01% sterile acetic acid at 10 mg/ml and stored at 4˚C. All peptide

batches were validated by MIC testing prior to use, using the modified Hancock protocol

described below.
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MIC determinations

MICs were determined via two different methods: the broth microdilution reference method

used for traditional antibiotic susceptibility testing as recommended by the Clinical and Labo-

ratory Standards Institute [23] and the Modified Hancock protocol, a broth microdilution

method for cationic AMPs [24].

CLSI broth microdilution protocol. MICs were determined in at least duplicate on sepa-

rate days. P. aeruginosa ATCC 27853 was used as a control strain and analyzed in parallel with

each experiment. Briefly, all test isolates and ATCC reference strains were subcultured twice

consecutively onto blood agar plates from storage at -80˚C and incubated overnight at 35˚C.

Single isolated colonies were used to inoculate cation-adjusted Mueller-Hinton broth (BBL,

Becton Dickinson and Company, Sparks, MD) to a final density of approximately 5 × 105 col-

ony-forming units (CFU)/ml in each well of a 96-well plate. Bacterial inocula were verified via

enumeration following plating of ten-fold dilutions of the inoculum suspension.

Modified Hancock protocol. Broth microdilution assay for cationic antimicrobial pep-

tides [24] was performed as previously described [19]. Briefly, a 20 μl solution (1 mg/ml) of

Table 1. LGL13K and DGL13K MIC values determined against wild-type and drug-resistant strains of gram-negative bacteria.

Species Strain Clinical isolate

reference

Resistance phenotype Resistance mechanisms MIC: LGL13K

(μg/ml)

MIC: DGL13K

(μg/ml)

P. aeruginosa PA01 N/A Reference 128 32

ATCC27853 N/A Reference ATCC 128 32

55 [21] XDR phenotype ND 128 64

147 [21] MDR phenotype ND 128 64

220 [21] Wild-type ND 128 64

237 [21] MDR phenotype ND 64 32

507 Present study MDR phenotype ND >128 128

508 Present study MDR phenotype ND 128 64

A.

baumannii
AR Bank #33 N/A XDR phenotype NDM-1, OXA-94, sul2 64 16

AR Bank #52 N/A XDR phenotype OXA-100, OXA-58, sul2 64 8

AR Bank

#102

N/A XDR phenotype ADC-25, armA, catB8, mph(E), msr(E), OXA-66, strA,

strB, sul1

128 32

AR Bank

#280

N/A XDR phenotype aac(3)-Ia, ADC-25, aph(3’)-Ic, OXA-66, strA, strB,

sul1, TEM-1D

64 32

AR Bank

#290

N/A XDR phenotype ADC-25, aph(3’)-Ic, aph(3’)-VIa, armA, catB8, mph

(E), msr(E), OXA-23, OXA-66, strA, strB, sul1, TEM-

1D

64 32

AR Bank

#294

N/A XDR phenotype aac(3)-IIa, aph(3’)-VIa, OXA-23, OXA-65, strA, strB,

sul2, TEM-1B

64 32

K.

pneumoniae
ATCC 13883 N/A Reference ATCC 64 8

19 [21] Wild-type ND 64 16

127 [21] Wild-type ND 64 16

132 [21] ESBL phenotype ND 64 32

556 [25] Carbapenem-resistant

MDR phenotype

KPC-2 64 16

584 [25] Carbapenem-resistant

MDR phenotype

KPC-3 64 16

596 Present study ESBL phenotype ND 64 16

ESBL: extended-spectrum beta-lactamase; KPC: Klebsiella pneumoniae carbapenemase; MDR: multidrug-resistant; N/A: not applicable; ND: not determined; XDR:

extensively drug-resistant

https://doi.org/10.1371/journal.pone.0273504.t001
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each peptide was serially diluted 2-fold in a 1:10 dilution of phosphate-buffered saline (PBS)

(Hyclone; GE Healthcare, Pittsburgh, PA) in dH2O (10%PBS), and then mixed with 100 μl of

P. aeruginosa Xen 41 (105 CFU/ml) in Mueller-Hinton Broth. Final volume in each well was

120 μl and the peptide concentration range tested was 167 μg/ml– 0 μg/ml. Samples were incu-

bated in polypropylene plates at 37˚C overnight with gentle shaking. The optical density at 630

nm (OD630) and luminescence were read in a Synergy HT plate reader (BioTek, Winooski,

VT) and plotted against peptide concentration. The MIC was read as the lowest peptide con-

centration that prevented bacterial growth.

Biofilm assay

P. aeruginosa Xen 41 (5 x 105 CFU/well, 100 μl Luria-Bertani (LB) broth) were incubated with

shaking overnight in 96-well microtiter plates at 37˚C. The wells were aspirated and the

attached biofilms washed with 200 μl PBS. To each well was added 150 μl Mueller-Hinton

Broth or PBS containing a 2-fold serial dilution of peptide (concentration range 1 mg/ml–

1.95 μg/ml). The plates were incubated 60 min at 37˚C and luminescence determined in a Bio-

Tek plate reader to quantify live cells.

To determine total cells (live+dead) in the attached biofilm, the wells were aspirated and

washed with 2 x 200 μl PBS. The plates were incubated with 150 μl/well of 0.03% crystal violet

for 30 min at room temperature. The wells were aspirated and washed with 2 x 300 μl PBS fol-

lowed by 2 x 300 μl dH2O. To each well was added 200 μl 95% ethanol, incubated for 30 min

at 37˚C, and the OD630 determined. The readings for each peptide were normalized by divid-

ing with the luminescence or OD of the samples with the lowest peptide concentration.

Hormesis

To determine the effect of subinhibitory concentrations of GL13K peptides on bacterial

growth and metabolic activity, MIC values (modified Hancock protocol) were read spectro-

photometrically and the OD630 (growth) and luminescence (metabolic activity) were deter-

mined at each peptide concentration. The peptide concentrations were converted to fold-MIC

for each peptide and plotted to allow direct comparison of peptides with different MICs.

Frequency of resistance

LE agarose (BioExpress, Kaysville, UT) was dissolved at 1% in Mueller-Hinton Broth at 95˚C.

The agarose broth was cooled to 60˚C, 100 μg/ml DGL13K was added and the DGL13K-aga-

rose poured in 10 cm petri dishes. Overnight cultures of P. aeruginosa Xen41 were pelleted

and suspended in sterile 0.9% saline at 5 x 108 CFU/ml (an aliquot was diluted and cultured on

agar to validate the concentration of the culture). One ml bacterial culture was plated on each

of duplicate DGL13K-agarose plates and incubated overnight at 37˚C. Surviving colonies were

enumerated as a fraction of 109 plated CFU.

Serial MIC assay

This assay was performed to determine potential development of resistance, as described pre-

viously [12]. Briefly, an initial MIC assay was prepared using the modified Hancock protocol.

The MIC was recorded the following day and the bacteria in the wells containing 0.5xMIC of

each peptide (i.e. the highest peptide concentration that allowed growth) were diluted

1000-fold in Mueller-Hinton Broth and 100 μl/well used to inoculate a new MIC plate. The

MIC assay was repeated daily for 16 days. On day 15, bacteria that had been exposed to

LGL13K were treated with DGL13K to determine cross-resistance.
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Results

Activity against drug-resistant bacteria

Drug-resistant bacteria are an increasing problem and novel antibiotics are urgently needed.

The second generation AMP DGL13K has been found to be highly effective against vancomy-

cin-resistant E. faecalis and methicillin-resistant S. aureus [12, 19]. In this study, we tested the

L- and D-enantiomers of GL13K against drug-resistant strains of the gram-negative bacteria

K. pneumoniae, A. baumannii and P. aeruginosa (Table 1).

The MIC for each peptide was relatively consistent between strains of each bacterial species

(Table 1). Comparison of the MICs recorded for DGL13K and LGL13K showed that the MICs

for DGL13K were generally 2-fold lower than those recorded for LGL13K (Fig 1), in agree-

ment with our previous results [19]. Against the three gram-negative species tested, DGL13K

was most active against K. pneumoniae and A. baumannii, with MICs ranging from 8–32 μg/

ml (Table 1). Against K. pneumoniae isolates, MICs for ESBL- and KPC-producing strains did

not significantly differ when compared to the ATCC reference strain. Against P. aeruginosa,

MICs were within 2 doubling dilutions for MDR and XDR isolates (32–128 μg/ml) when com-

pared to the reference strains (32 μg/ml). The latter results are about 6-fold higher than those

previously reported for P. aeruginosa [19].

Activity against biofilms of P. aeruginosa
LGL13K and DGL13K kill biofilms of P. aeruginosa [18]. To compare the dose needed to kill

biofilms with the MIC, biofilms were incubated with increasing doses of LGL13K, DGL13K,

GL13NH2 and the control antimicrobial peptide polymyxin B. Fig 2A shows that 99% reduced

viability (LD99) of wild-type P. aeruginosa was achieved at a concentration of 32 μg/ml,

whereas 128 μg/ml of LGL13K or polymyxin B were required to reach a comparable reduction

of viability. Thus, the LD99 for biofilms is similar to the MIC achieved for both GL13K enan-

tiomers (Table 1). Biofilm viability was not affected by the control peptide GL13NH2, which is

not bactericidal [17]. The biomass of the biofilms was not reduced by the peptide treatments,

as evidenced by crystal violet staining of attached bacteria (Fig 2B). It has previously been dem-

onstrated that killed biofilm can remain attached on DGL13K-coated surfaces [26].

Fig 1. Comparison of MIC values for different strains of P. aeruginosa, A. baumannii and K. pneumoniae treated with LGL13K or DGL13K. For each

species listed in Table 1, the MIC of the two peptide enantiomers were compared by paired student’s t-test. P-values are indicated. Lines represent the median

MIC of each group.

https://doi.org/10.1371/journal.pone.0273504.g001
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Effect of sub-inhibitory peptide concentrations on bacterial growth

In dose response experiments with P. aeruginosa, we noted that the OD630 of the cultures

increased with increasing peptide concentration, up to 0.5 x MIC. A similar effect of subinhibi-

tory concentrations has been reported for many toxic substances (hormesis), including tradi-

tional antibiotics [27]. To further evaluate this effect, the growth of P. aeruginosa was

determined by culture density (OD630) and bacterial metabolic activity was determined by cel-

lular luminescence [28]. Increasing peptide concentration up to 0.5 x MIC increased the

OD630 by about 50% (Fig 3A) while metabolic activity increased 2-4-fold (Fig 3B).

Bacterial resistance to L- and D-GL13K

The frequency of resistance of P. aeruginosa was less than 10−9 when the bacteria were plated

on agar containing 100 μg/ml DGL13K, i.e. 3xMIC determined in Table 1. Thus, these bacteria

show very low inherent resistance to DGL13K.

The increased metabolic activity caused by culturing P. aeruginosa in the presence of

0.5xMIC of the GL13K peptides raised the question if the bacteria acquire resistance to the

GL13K enantiomers when they are cultured under sub-inhibitory peptide concentrations.

Repeated exposure of P. aeruginosa to 0.5xMIC of DGL13K did not increase the MIC of this

peptide after 16 rounds (days) of selection (Fig 4). The MIC for LGL13K trended towards a

2-fold increase but this did not reach statistical significance (P<0.06). Importantly, bacteria

that had reached the higher MIC for LGL13K did not show an increased MIC for DGL13K

(Fig 4, closed square). The lack of cross-resistance between these two closely related AMP

enantiomers is promising for future clinical use [10].

Discussion

The antimicrobial peptide enantiomers LGL13K and DGL13K have shown promising activity

against gram-negative (LGL13K and DGL13K) [17, 18] and gram-positive bacteria (DGL13K)

[12, 19]. In this report, we determined the antibacterial activity against additional bacterial spe-

cies as well as several drug-resistant strains of clinically important gram-negative bacteria. The

second-generation antimicrobial peptide DGL13K shows activity against the tested drug-resis-

tant strains that is similar to that of the corresponding wild-type strains. Importantly, DGL13K

displayed activity against isolates of multiple species of resistant gram-negative pathogens

including ESBL and KPC-producing K. pneumoniae (MICs 16–32 μg/ml), MDR and XDR P.

aeruginosa, and XDR A. baumannii carrying metallo-beta-lactamases (MICs 8–32 μg/ml).

Treatment options for infections caused by these resistant pathogens are limited and often

result in treatment with more toxic agents such as the polymyxins or aminoglycosides [29, 30].

The MICs for DGL13K were consistently about 2-fold lower than the corresponding value

for LGL13K (Fig 1). This is consistent with our earlier finding that LGL13K, but not DGL13K,

is inactivated by conditioned bacterial medium while the activity is preserved in the presence

of EDTA [18]. These results suggested that a bacterial metalloprotease is involved in the degra-

dation of LGL13K in P. aeruginosa [18]. Similarly, we have reported that Enterococcus faecalis
protease can degrade LGL13K, but not DGL13K [12]. Thus, in an overnight MIC assay there is

increasing bacterial growth and release of proteases that would increase the apparent MIC for

the susceptible LGL13K peptide.

Fig 2. Bactericidal activity of peptides against P. aeruginosa biofilms. Biofilms were incubated for 1h with peptides, at the concentrations shown. A. live

cells were quantitated by luminescence. Dotted line indicates 99% killing of biofilm. B. Biofilm biomass was quantitated by crystal violet staining.

PMX = polymyxin B. Data from two independent experiments performed in duplicate were normalized to the mean of the lowest peptide concentration in

each experiment. Data shown as mean ± SEM (N = 4).

https://doi.org/10.1371/journal.pone.0273504.g002
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The circular dichroism and NMR structures of LGL13K have been resolved in phospholipid

environments that mimicked those of bacterial membranes [31, 32]. Once the peptide reaches

the cell membrane, it transitions from random coil, through α-helix, to a ß-sheet structure that

presumably represents the active conformation. The ß-sheet structure aligns with model mem-

branes and has a high capacity to disrupt membrane order [31]. Analysis of DGL13K second-

ary structure suggests that its interaction with LPS-rich (Gram negative-like) membranes is

similar to that of LGL13K [32]. In this context the negative charge of the target membrane

attracts the higher concentrations of the cationic peptide needed for ß-sheet formation and

membrane perturbation [31].

DGL13K did not exhibit collateral sensitivity [2] in drug-resistant strains of gram-negative

bacteria. Similarly, we have recently reported that the MIC for drug-resistant Staphylococcus
aureus and Enterococcus faecalis are not lower than the MIC for wild-type strains [12, 19].

Indeed, bactericidal activity is similar to the growth inhibiting activity in most cases and the

peptide is highly active against established bacterial biofilms. Thus, DGL13K is a promising

candidate for further development.

The data in Table 1 were generated using the CLSI protocol for broth microdilution [23]

while our previous results [17–19] were obtained with a modified version of the protocol

developed for cationic antimicrobial peptides by Hancock [24]. Similarly, it has been reported

that the ‘Hancock protocol’ results in lower MICs for cationic peptides than the protocol

described by CLSI [33]. The exact cause of the higher MIC values for the CLSI protocol is not

clear. However, the CLSI protocol is not optimized for antimicrobial peptides and the different

Fig 3. P. aeruginosa culture response to increasing peptide concentrations. P. aeruginosa Xen 41 were incubated with

increasing concentrations of LGL13K (open circles), DGL13K (closed circles) or polymyxin B (PMX, open squares). OD at 630

nm (A) and luminescence (RLU) (B) were recorded at peptide concentrations corresponding to 0.007 to 128x MIC for each

peptide. The data from 2–3 independent experiments are shown as mean ± SEM, N = 4–8.

https://doi.org/10.1371/journal.pone.0273504.g003

Fig 4. Development of resistance in P. aeruginosa by repeated treatment with LGL13K (closed circles) or DGL13K (open circles). The MIC

determinations were plotted for each day (mean ± SEM, N = 3) and analyzed by linear regression. Samples treated with LGL13K for 15 days were then treated

with DGL13K and the MIC determined (square. Mean ± SEM, N = 3).

https://doi.org/10.1371/journal.pone.0273504.g004
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results compared to the Hancock protocol likely result from a combination of factors embed-

ded in the two protocols.

In the course of antibacterial activity studies, we noted that subinhibitory (sub-MIC) con-

centrations of the antimicrobial peptides caused increased growth and metabolic activity of P.

aeruginosa, which was most notable at 0.5xMIC. A similar phenomenon (hormesis) has been

described for several toxins in multiple species and taxa [34, 35]. Interestingly, the effect in

bacteria has been linked to “medium-richness”. Thus, the growth promoting effect of the anti-

biotics sulfamethazine and erythromycin were more pronounced in dilute Mueller-Hinton

Broth than in full strength Mueller-Hinton Broth and the effect was absent in Luria-Bertani

medium [27]. The effect of GL13K peptides was stronger on metabolic activity than overall

growth, suggesting that P. aeruginosa were selectively stimulated in metabolic pathways. Con-

sistent with this observation, hormesis has been suggested to constitute a defensive adaptation

to low concentrations of stressors that affects the transcriptional activity of bacteria [36]. Thus,

it is likely that low concentrations of antibiotics cause an adaptive response that increases sur-

vival upon further increases in antibiotic concentration.

Re-analysis of peptide dose-response curves (MIC assays) for the gram-positive bacteria Strep-
tococcus gordonii, Enterococcus faecalis [12] and Staphylococcus aureus [19] revealed that some

strains exhibited a similar growth stimulatory effect at subinhibitory concentrations of GL13K

peptides (Gorr, unpublished). DGL13K, but not LGL13K, circumvents cell wall defense mecha-

nisms that include D-alanylation of teichoic acids. Interestingly, the hormesis effect was observed

in D-alanylation mutants that had lost resistance to LGL13K, suggesting that the effect is not asso-

ciated with the initial point of attack at the cell surface. A better understanding of the cellular tar-

gets for GL13K peptides in gram-negative and gram-positive bacteria will be needed to determine

the different mechanisms that allow peptide-induced bacterial hormesis.

P. aeruginosa show very low inherent resistance to DGL13K and the increased metabolic

activity and growth at sub-MIC concentrations of GL13K peptides did not result in acquired

bacterial resistance. Daily treatment for about two weeks had no effect on the MIC of DGL13K

towards P. aeruginosa. Similar results were recently reported for the gram-positive bacteria S.

gordonii and E. faecalis treated with DGL13K [12]. A likely explanation is that upregulation of

bacterial proteases is an effective defense against the L-enantiomer of antimicrobial peptides.

This readily explains the increased MIC observed for LGL13K (Fig 1) and the lack of resistance

to DGL13K (Fig 4). The proposed translational response to sub-inhibitory doses of peptide

(hormesis) [36] further supports that a simple upregulation of bacterial proteases can increase

cellular resistance. As a further resistance mechanism, surface modification has also been sug-

gested to block the attack by antimicrobial peptides, although membrane disruption may be

costly to combat through bacterial mutation [4, 11].

It has been proposed that host antimicrobial peptides have remained effective against invading

pathogen through a process of co-evolution [37]. The lack of inherent or acquired resistance of

gram-negative (this study) and gram-positive bacteria [12] and the ability of DGL13K to over-

come bacterial defense mechanisms (proteolysis) that affect LGL13K give hope that antimicrobial

peptides can be designed to address bacterial resistance without “arming the enemy”.
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