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Toll-like receptors (TLRs) respond to pathogen constituents, such as microbial lipids and
nucleic acids (NAs). TLRs recognize NAs in endosomal compartments. Structural and
functional studies have shown that recognition of NAs by TLRs depends on NA
processing by RNases and DNases. DNase II-dependent DNA degradation is required
for TLR9 responses to single-stranded DNAs, whereas RNase T2-dependent RNA
degradat ion enab les TLR7 and TLR8 to respond to nucleos ides and
oligoribonucleotides. In contrast, RNases and DNases negatively regulate TLR
responses by degrading their ligands. RNase T2 negatively regulates TLR3 responses
to degrading the TLR3 ligand double-stranded RNAs. Therefore, NA metabolism in the
endosomal compartments affects the endosomal TLR responses. Dysregulation of NA
metabolism in the endosomal compartment drives the TLR-dependent pathologies in
human diseases.
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1 INTRODUCTION

The Toll family of receptors are expressed in innate immune cells, such as macrophages and
dendritic cells (DCs), and respond to pathogen components to activate defense responses during
bacterial and viral infections. Nucleic acids (NAs) are sensed by a subfamily of toll-like receptors
(TLRs) including TLR3, TLR7, TLR8, TLR9, and TLR13. These NA-sensing TLRs are localized in
the endosomal compartment to prevent hazardous autoimmune responses (1). NA degradation in
the endosomal compartment negatively regulates TLR responses to self-derived NAs. However,
evidence for another reason of TLR localization to the endosomal compartment is emerging.
Structural and functional studies have shown that NA-sensing TLRs sense NA-degradation
products, such as oligonucleotides and nucleosides (2–4), demonstrating that NA degradation
generates TLR ligands. NA metabolism in the endosomal compartment is considered a positive and
negative regulator of NA-sensing TLRs.

The endosomal compartment affects downstream signaling as well as NA sensing. TLRs activate
two signaling pathways: proinflammatory signals activating NF-kB transcription factors and type I
interferon signals activating transcription factors called interferon regulatory factors (IRFs) (5, 6).
Both signals are activated in a mutually exclusive manner with the former preceding the latter
org June 2022 | Volume 13 | Article 9419311
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pathway. Delayed activation of IRFs is ascribed to the
requirement of endosomal trafficking for IRF activation by
TLRs. Therefore, endosomal trafficking serves as a switch to
change TLR responses from proinflammatory to type I
interferon (IFN) responses.

Constitutive activation of NA-sensing TLRs causes
inflammatory diseases. Constitutive TLR activation is caused
by alteration in NAmetabolism, the endosomal compartment, or
downstream signaling. These inflammatory diseases reveal
molecular and cellular mechanisms by which endosomal TLRs
are controlled by the endosomal compartment (1, 7).

Here, we provide an overview of recent progress in our
understanding of the mechanisms by which endosomal TLR
responses are controlled and the diseases caused by
dysregulation of these controlling mechanisms.

1.1 Nucleic Acid Recognition by TLRs in
the Endosomal Compartment
1.1.1 TLR3
TLR3 responds to double-stranded RNAs (dsRNAs) longer than
40–50 bp (8); this length is required to interact with a pair of
TLR3 molecules and induce their dimerization. However, it
remains unclear whether longer dsRNAs induce stronger TLR3
responses. TLR3 is expressed not only in the innate immune
cells, such as macrophages and dendritic cells, but also in non-
immune cells, such as neurons and keratinocytes. Broad
expression enables TLR3 to serve as a sentinel protein in non-
immune cells. For example, loss-of-function mutations in the
genes required for TLR3-dependent type I IFN responses
increase susceptibility to herpes encephalitis (9). Because
neurons express only a limited set of pathogen sensors, TLR3
expressed in neurons plays an indispensable role in the control of
herpes virus infection. TLR3 is probably activated by dsRNAs of
virus origin, of which expression increase during viral infection.
TLR3 also responds to self-derived RNAs during tissue damage.
In keratinocytes, TLR3 responds to self-derived U1 RNA
released from UV-irradiated cells to promote tissue repair (10).
In contrast, TLR3 plays a pathologic role in radiation-induced
gastrointestinal syndrome (11). TLR3 expressed in intestinal
crypt cells responds to dsRNAs released p53-dependently from
irradiated cells. Expression of TLR3 in crypt cells causes cell
death and exacerbates radiation-induced gastrointestinal
syndromes. Broad expression and responses to self-derived
dsRNAs allow TLR3 to serve as a sensor not only for viruses
but also for various tissue damage.

1.1.2 TLR7, TLR8, and TLR13
TLR7 and TLR8 are known to respond to single-stranded
RNAs (ssRNAs), but their structural and functional analyses
have shown that these TLRs bind to nucleosides and
oligoribonucleotides (2–4). TLR7 is activated by guanosine or
deoxyguanosine along with oligoribonucleotides, whereas TLR8
responds to uridine and oligoribonucleotides. Nucleosides and
oligonucleotides synergistically activate both TLRs because
oligoribonucleotides enhance TLR7/8 affinity to nucleosides.
TLR7 and TLR8, therefore, respond to RNA degradation
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products generated in the endosomal compartment. This is a
strong reason for the localization of TLR7 and TLR8 in the
endosomal compartment. In mice, TLR8 is not active, but TLR13
serves as a bona fide ssRNA sensor. TLR13 binds directly to
bacterial 23S ribosomal RNA in a sequence-specific manner
(12, 13).

1.1.3 TLR9
TLR9 responds to single-stranded DNAs (ssDNAs). Because
TLR9 has two binding sites, ssDNA fragment binds to a pair
of TLR9 molecules, leading to the formation of a TLR9 dimer
with two ssDNA fragments (14). Because cell surface expression
of TLR9 drives systemic inflammation (15), ssDNA fragments
may be present in the extracellular space as well as in the
endosomal compartment.

1.2 Effect of Nucleic Acid Metabolism on
Endosomal TLR Responses
1.2.1 DNase I and DNase I-Like 3
NAs released from dead cells are internalized into the endosomal
compartment of the macrophages. Extracellular DNA is
degraded by members of the DNASE1 family, such as DNase I
and DNase I-like 3 (Figure 1). Because these enzymes require an
optimal pH of 7.0, they degrade DNA before internalization into
the endosomal compartment. DNase I is expressed in the kidney
and lacrimal gland, whereas DNase I-like 3 is expressed in the
innate immune cells, such as DCs. Despite their restricted
expression, DNases are secreted and can degrade DNA in the
circulation (16). Lupus-like diseases develop in patients
harboring loss-of-function mutations in DNASE1 or
DNASE1L3 genes (17, 18). Consistent with this, Dnse1l3
deficiency in mice causes TLR7 and TLR9-dependent systemic
autoimmune response (19). TLR7 activation in Dnse1l3−/− mice
may be explained by TLR7 response to DNA-derived
deoxyribonucleosides (2). Although DNase I is thought to
negatively regulates TLR responses to self-DNA, TLR-
dependency of lupus nephritis in Dnase1−/− mice has not been
shown yet.

1.2.2 DNase II
DNase II is expressed in various cell types and exhibits optimal
activity at pH 5.0. It plays an indispensable role in DNA degradation
in the endosomal compartment. Loss-of-function mutations in the
DNASE2 gene cause type I interferonopathy characterized by anemia,
thrombocytopenia, hepatosplenomegaly, glomerulonephritis, and
liver fibrosis (20). Consistent with this, Dnase2a−/− mice are
embryonically lethal owing to type I IFN-dependent anemia (21).
Type I IFN production is driven by the cGAS-STING axis, because
Dnase2a−/− Sting−/− mice are born normal (22). Although DNA
accumulates in the endosomal compartment, TLR9 is not involved in
type II IFN-dependent lethality (23) because DNase II is required for
generation of a TLR9 ligand in DCs (24).Dnase2a−/−mice rescued by
type I IFN receptor deficiency suffer from arthritis due to the
constitutive activation of cGAS-STING and another cytoplasmic
dsDNA sensor absent in melanoma 2 (AIM2) (25). The activation
of cytoplasmic dsDNA sensors inDnase2a−/−mice raises the question
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of how lysosomal DNA enters the cytoplasm. dsDNAs are released
from the nucleus to the cytoplasm under various stresses, and
cytoplasmic dsDNAs are degraded by endosomal DNase II (26).
cGAS-STING and AIM2 may be activated by nuclear DNA, which
escapes lysosomal degradation in Dnase2a−/− mice.

1.2.3 RNase T2
RNase T2, the member of the T2 family of RNases with
optimal activity at pH 4–5, is broadly expressed in various
cell types. RNase T2 degrades RNA in the endosomal
compartment, such as ribosomal RNA (27, 28). Loss-of-
function mutations in the RNASET2 gene cause cystic
leukoencephalopathy (29), and RNase T2-deficient mice
show type I interferonopathy; however, the responsible RNA
sensor remains unclear (30). RNase T2 negatively regulates
TLR3 responses by degrading dsRNAs, whereas it is required
for TLR7/8 responses via the generation of ligands (31–33).
The s e RNA- s en s i n g TLRs m i gh t p l a y a r o l e i n
cystic leukoencephalopathy.

1.2.4 Phospholipase D3 and Phospholipase D4
Phospholipase D3 (PLD3) and Phospholipase D4 (PLD4) belong
to the phospholipase D family. Macrophages express both PLD3
and PLD4, whereas B cells and DCs express only PLD4.
Genome-wide association studies have shown that the PLD4
gene is linked to autoimmune diseases, such as systemic
sclerosis, systemic lupus erythematosus (SLE), and rheumatoid
arthritis (34–36). In contrast, the PLD3 gene is linked to
neurodegenerative diseases, such as Alzheimer’s disease and
spinocerebellar ataxia (37, 38). Pld3−/− Pld4−/− mice exhibit
macrophage activation syndrome (39, 40). PLD3 and PLD4
exonucleases degrade both DNA and RNA and negatively
regulate TLR7 and TLR9 responses. The constitutive activation
Frontiers in Immunology | www.frontiersin.org 3
of TLR7 and TLR9 contributes to the pathology in Pld3−/−

Pld4−/− mice (39).

1.3 Endosomal Compartment as the
Platform Controlling Endosomal TLRs
1.3.1 Unc93B1
Unc93B1 is a multi-transmembrane endoplasmic reticulum (ER)
molecule that is directly associated with the endosomal TLRs,
including TLR3, TLR5, TLR7, TLR8, TLR9, and TLR13
(Figure 2). Without Unc93B1, these TLRs remain in the ER
and fail to respond to their cognate ligands (41). In addition to its
FIGURE 2 | Endosomal molecules controlling TLR responses. Endosomal
molecules that control TLR responses are shown. Unc93B1 negatively
regulates TLR9 dimerization. A complex consisting of SLC15A4 and TASL
mediates TLR-dependent type I IFN production.
FIGURE 1 | Processing or degradation of TLR ligands by DNases and RNases. The extracellular and lysosomal enzymes involved in NA metabolism are shown. The
Table summarizes the role of each enzyme in TLR responses. RNase T2 negatively regulates TLR3 responses but is required for TLR7 and TLR8 responses. PLD3,
PLD4, and DNase I-like 3 negatively regulate TLR7, TLR8, and TLR9 responses. DNase 2 is required for TLR9 response.
June 2022 | Volume 13 | Article 941931
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role as a TLR-specific chaperone, Unc93B1 directly affects TLR
response. For example, Unc93B1 dissociates from TLR9 and
TLR3 upon ligand stimulation. If Unc93B1 stays with TLR9 and
TLR3, these TLRs fail to dimerize and activate downstream
signals (42, 43). In TLR7, Unc93B1 remains associated with
ligated TLR7, but the complex is degraded after being
transported into intralumenal vesicles (44). These results
demonstrated the role of Unc93B1 as a negative regulator of
endosomal TLR response by inhibiting dimerization or
degradation. The D34A mutation of Un93B1 in mice causes
systemic inflammation due to constitutive TLR7 activation (45),
suggesting that Unc93B1 serves as a negative regulator of TLR7
at the steady state. However, little is known about the mechanism
by which Unc93B1 dissociates from TLR9 or TLR3 upon
ligand stimulation.

1.3.2 Mechanisms of Type I IFN Production
TLR-dependent type I IFN production is controlled by the
endosomal compartment in multiple ways. For instance, the
endosomal compartment is the site where metabolic information
is gathered. It is not surprising that metabolic sensors, such as
mammalian target of rapamycin complex 1 (mTORC1), are
localized in the endosomal compartment. Type I IFN
production by TLR7 or TLR9 in pDCs is dependent on
mTORC1 activation. Interestingly, proinflammatory cytokine
production does not depend on mTORC1. Because mTORC1
activation drives anabolic processes in immune cells, type I IFN
response might be more dependent on the anabolic activity than
on proinflammatory responses.

TLR-dependent type I IFN induction is preceded by the
stimulation of proinflammatory cytokines (46). This delayed
type I IFN induction is ascribed to the requirement of
endosomal trafficking for type I IFN production (47).
Endosomal trafficking depends on small GTPases such as ADP
ribosylation factors like 8b (Arl8b) and Rab7a. Interestingly,
these proteins are differentially activated by TLRs. For example,
TLR7 trafficking in pDCs depends on Arl8b, whereas TLR3
trafficking is regulated by Rab7a (46, 48). These GTPases
mediate anterograde trafficking of TLR-containing endosomes
from perinuclear regions to the cell periphery. Endosomal
trafficking enables TLRs to interact with mTORC1 (49),
suggesting that such trafficking connects the metabolic status
with type I IFN responses.

TLR7 activation in pDCs initiates inside-out signaling of aLb2
integrin, the adhesion of which is required to induce endosomal
trafficking (46). Consistent with this, cell-cell interactions
enhance type I IFN production by pDCs (50). The initiation of
type I IFN responses is likely to depend on the optimal
environment, such as the anabolic process and cell adhesion.
TLRs sense these environmental conditions through endosomal
trafficking. In other words, environmental cues affect TLR-
dependent type I IFN responses via endosomal positioning.

SLC15A3 and SLC15A4 are peptide transporters in
endosomal compartments. These molecules transport
endosomal muramyl dipeptides (MDPs), which are sensed by
NOD2 in the cytoplasm (51). SLC15A4 is required for TLR7 and
TLR9 responses in pDCs (52). It also mediates AP3-dependent
Frontiers in Immunology | www.frontiersin.org 4
endosomal trafficking required for TLR7 and TLR9 responses
(53). Moreover, SLC15A4 serves as a scaffold protein by
associating with TLR adaptor interacting with SLC15A4 on the
lysosome (TASL) (54), which recruits IRFs to transmit signals
from TLR7, TLR8, and TLR9. These molecules mediate the
production of TLR-dependent type-I IFN. Interestingly,
SLC15A4, IRF5 and TASL are all lupus-associated genes (55),
which strongly suggest that type I IFN production by endosomal
TLRs is activated in SLE.

1.4 Inflammatory Diseases Associated
With Dysregulated Responses of
Endosomal TLRs
1.4.1 Monogenic Diseases
Gain-of-function mutations in the TLR8 gene such as P432L,
F494L, and G527D, cause neutropenia , infect ions ,
lymphoproliferation, and B cell deficiency (56). Although
TLR8 is expressed in myeloid cells, T cell activation and B cell
deficiency develop, probably because of the cell non-autonomous
mechanisms. These clinical manifestations are not necessarily
consistent with the phenotypes of TLR8 transgenic mice, in
which TLR8 expression is driven by a human endogenous
promoter (57). TLR8 transgenic mice exhibit severe
inflammation in the pancreas, salivary glands, and joints. In
contrast to human patients harboring gain-of-function
mutations in the TLR8 gene, neither neutropenia nor B cell
deficiency was observed. The TLR8 responses in TLR8 transgenic
mice are distinct from those in humans.

Constitutive activation of TLR7 due to its gain-of-function
mutation causes monogenic SLE in humans (58). The increase in
B cell number depends on TLR7 expression. Because TLR7 is
expressed not only in myeloid cells, but also in B cells, mutated
TLR7 drives cell-autonomous B cell activation. A lupus-prone
mouse strain, the Y-linked autoimmune accelerator strain, has
an additional copy of the TLR7 gene that results in TLR7
hyperactivation, leading to lupus-like state (59, 60). Clinical
manifestations in patients harboring gain-of-function
mutations in TLR7 genes differ from those with TLR8
mutations and are ascribed to different expression in
different immune cells. TLR7 is highly expressed in B cells and
pDCs, whereas TLR8 is highly expressed in monocytes
and macrophages.

The ACP5 gene encodes lysosomal acid phosphatase
expressed in osteoclasts, macrophages, and DCs. Loss-of-function
mutations in the ACP5 gene cause spondyloenchondrodysplasia
with immune dysregulation, a disease characterized by
skeletal dysplasia and neurologic and autoimmune manifestations
(61). The detailed mechanisms underlying autoimmune
manifestations remain unclear. ACP5 deficiency increases the
level of hyperphosphorylated osteopontin, which is suggested to
promote TLR9 responses in osteoclasts and macrophages.

1.4.2 Polygenic Diseases
SLE is an autoimmune disease characterized by autoantibody
production and clinical manifestations affecting the skin, joints,
kidneys, and the central nervous system (62). Causative
autoimmune responses are driven by autoreactive B cells that
June 2022 | Volume 13 | Article 941931
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produce autoantibodies against NA-associated autoantigens and
cDCs and pDCs that produce proinflammatory cytokines and
type I IFN, respectively (63, 64). In addition to these cells,
monocytes/macrophages infiltrate the glomeruli and play
pathologic roles in glomerular damage associated with SLE,
independent of immune complex (IC) deposition (65–67). The
TLR7 agonist imiquimod drives lupus nephritis in mice (68, 69),
whereas the pathologies in the lupus-prone strain, New Zealand
Black/New ZealandWhite F1 (NZBWF1) mice, is ameliorated by
TLR7 chemical inhibitor or by anti-TLR7 monoclonal antibody
(70, 71). The number of Ly6Clow patrolling monocytes TLR7-
dependently increases in NZBWF1 mice (39). Interestingly,
during monocyte maturation from Ly6Chi to Ly6Clow cells,
TLR9 expression decreases with TLR7 expression unchanged
(72). The IC-independent glomerular accumulation of Ly6Clow

patrolling monocytes causes lupus nephritis in another lupus-
prone mouse strain lacking the human SLE susceptibility gene,
Tnip1 (67).

The TLR7-dependent increase in Ly6Clow monocytes/
macrophages might be driven by self-derived RNAs. The 60
kDa Ro60 ribonucleoprotein, also known as the SSA/Ro antigen,
is one of the most studied autoantigens associated with SLE or
primary Sjögren syndrome. Because Alu retroelements, repetitive
transposons, bind to Ro60 and activate TLR7 and TLR8 (73), the
IC consisting of Ro60, Alu retroelements, and autoantibodies is
formed in lupus-prone mice and internalized by autoreactive B
cells or DCs via the BCR or FcR, respectively. Alu retroelements
in the IC activate endosomal TLR7 or TLR8 to drive
Frontiers in Immunology | www.frontiersin.org 5
autoimmunity (74). TLR7 may also be activated by RNA from
bacteria, which enter the circulation through the leaky gut (75).
Notably, commensal orthologs of Ro60 might play a pathologic
role in SLE (76).

Systemic sclerosis (SSc) is a multisystem life-threatening
fibrosing disorder (77). Aberrant TLR8 expression in pDCs has
been reported in patients with SSc (78). pDCs normally express
only TLR7. Additional expression of TLR8 may promote
autoimmune responses in SSc.
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