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Abstract

Speckle reduction remains a critical issue for ultrasound image processing and analysis.

The nonlocal means (NLM) filter has recently attached much attention due to its competitive

despeckling performance. However, the existing NLM methods usually determine the simi-

larity between two patches by directly utilizing the gray-level information of the noisy image,

which renders it difficult to represent the structural similarity of ultrasound images effectively.

To address this problem, the NLM method based on the simple deep learning baseline

named PCANet is proposed by introducing the intrinsic features of image patches extracted

by this network rather than the pixel intensities into the pixel similarity computation. In this

approach, the improved two-stage PCANet is proposed by using Parametric Rectified Lin-

ear Unit (PReLU) activation function instead of the binary hashing and block histograms in

the original PCANet. This model is firstly trained on the ultrasound database to learn the

convolution kernels. Then, the trained PCANet is utilized to extract the intrinsic features

from the image patches in the pre-denoised version of the noisy image to be despeckled.

These obtained features are concatenated together to determine the structural similarity

between image patches in the NLM method, based on which the weighted mean of all pixels

in a search window is computed to produce the final despeckled image. Extensive experi-

ments have been conducted on a variety of images to demonstrate the superiority of the pro-

posed method over several well-known despeckling algorithm and the PCANet based NLM

method using ReLU function and sigmoid function. Visual inspection indicates that the pro-

posed method outperforms the compared methods in reducing speckle noise and preserv-

ing image details. The quantitative comparisons show that among all the evaluated

methods, our method produces the best structural similarity index metrics (SSIM) values for

the synthetic image, as well as the highest equivalent number of looks (ENL) value for the

simulated image and the clinical ultrasound images.
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1 Introduction

Medical imaging plays a critical role in disease monitoring and diagnosis. Compared with

other imaging techniques such as X-ray, CT and MRI, ultrasound imaging is a noninvasive,

real-time and radiation-free imaging modality. However, the ultrasound images are inevitably

corrupted by speckle noise due to the coherent imaging mechanism from the scatters [1]. Such

a noise reduces the sharpness of image details and complicates the diagnosis of the tiny struc-

ture of lesions. Therefore, despeckling is of great significance for improving ultrasound image

quality. Moreover, as a pre-processing step, denoising will also benefit image post-processing

tasks such as image segmentation, classification and registration.

In ultrasound imaging, speckle noise has a random granular pattern. The distribution of

speckle noise is signal dependent and is governed by Fisher-Tippett distribution [2] or

Gamma distribution [3], which can be represented [4, 5] as:

uðx; yÞ ¼ vðx; yÞ þ vðx; yÞgZðx; yÞ ðEq 1Þ

where (x,y) is the pixel location, v(x,y) is the clean image, u(x,y) is the noisy image, η is a

Gaussian noise distribution with zero-mean and variance σ2, and the factor γ is related to the

ultrasound devices and additional processing. Extensive studies indicate that γ = 0.5 can be

used to model speckle noise in the ultrasound images [4, 6].

Many methods have been developed for ultrasound images despeckling [7]. In general, the

existing despeckling methods can be classified as the spatial domain based methods and the

frequency domain based ones. The traditional spatial domain based methods, such as Frost fil-

ter [8], Kuan filter [9], squeeze box filter (SBF) [10] and speckle reducing anisotropic diffusion

(SRAD) filter [11], are based on the local comparison of pixels. One disadvantage of these

approaches is that they cannot deliver sufficient noise reduction while preserving image details

effectively. For the frequency domain based methods, the most popular techniques are the

wavelet based methods [12–14]. These methods work by transforming speckle noise into addi-

tive noise and then removing it within the wavelet domain. They tend to introduce the artifacts

related to the choice of mother wavelet.

Recently, the nonlocal means (NLM) filter proposed by Buades et al. [15] is considered as a

state-of-the-art algorithm for eliminating the additive noise. This method explores the self-

similarities between image patches instead of individual pixels, and each image pixel is

restored by the weighted average of all pixels in a search window. Nowadays, the NLM method

has been widely applied to denoise the medical images such as MR images and CT images [16–

18]. Despite the success in removing Gaussian noise, the traditional nonlocal means (TNLM)

method by its very nature becomes unsuitable for speckle noise reduction since speckle noise

is different from Gaussian noise significantly. To overcome this drawback, several modified

NLM-based approaches have been presented [5, 19–22] for despeckling. Specifically, Zhan

et al. [5] have proposed a weight refining method for speckle noise reduction in which the

weights are calculated in the lower-dimensional principal component analysis (PCA) subspace.

Coupe et al. [19] have introduced the optimized Bayesian nonlocal means (OBNLM) filter. In

contrast to the TNLM, the OBNLM filter determines the similarity between two image patches

based on the Pearson distance derived by the Bayesian framework instead of the Euclidean dis-

tance of TNLM approach. Yang et al. [21] have presented a hybrid despeckling approach

which combines the NLM with the local statistics of noise (NLMLS). In this method, the local

statistics of speckle noise are used to pre-filter the ultrasound image and the similarity is com-

puted based on the pre-filtered image to produce the final denoised result. Two total variation

(TV) model based NLM methods have been proposed by Dong et al. [22] to reduce the multi-

plicative noise. Compared with the classical TV-based methods, the nonlocal TV methods
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perform better in preserving image textures and repetitive structures. The above-mentioned

methods as the extension of TNLM method have contributed to the development of ultra-

sound image restoration techniques.

However, most of the NLM-based despeckling methods depend on the utilization of gray-

level information and hand-crafted features. These features are not sufficient to accurately rep-

resent the structural similarity between image patches in the ultrasound images. If the intrinsic

features can be learned from the images of interest for structural similarity computation, the

better despeckled results can be obtained.

Deep learning, as a popular algorithm within the research community of machine

learning, can automatically learn the intrinsic features from the training data. Up to now,

various deep learning models, such as deep belief network (DBN), stacked auto-encode

(SAE), convolutional neural networks (CNN) and nonlocal deep network [23], have been

proposed. Among these models, the CNN is very popular due to the use of convolutional

architectures. In recent years, many CNN-based variations have been introduced and suc-

cessfully applied to various visual tasks such as feature extraction, classification [24, 25],

super-resolution [26], object detection [27, 28] and image denoising [29–31]. In particu-

lar, Zhang et al. [31] have proposed a denoising convolutional neural network (DnCNN)

model for removing the additive white Gaussian noise (AWGN), in which a very deep

convolutional architecture is constructed while residual learning strategy and batch nor-

malization are integrated to speed up the training process. Although the DnCNN and

other CNN-based denoising models exhibit the promising denoised results, they generally

involve the following problems. The training of CNN network is very complicated because

it involves numerous parameters to be learned and requires too much empirical knowl-

edge and special skills in parameter setting. In addition, most of the CNN-based denoisers

are specially designed for denoising AWGN, and they cannot handle speckle noise very

well. Thus, how to construct a simple and effective learning network for ultrasonic speckle

reduction will pose a great challenge.

More recently, the principal components analysis network (PCANet), a very simple unsu-

pervised deep learning baseline introduced by Chan et al. [32], has been proposed for image

classification and hand-written digit recognition. This network consists of three simple data

processing components: cascaded PCA, binary hashing and blockwise histograms. In this net-

work, the basic PCA is first employed for learning the multistage convolution kernels, and the

subsequent binary hashing and the blockwise histogram are utilized to produce the output fea-

tures. Compared with the CNN-based models, the training of the PCANet model is extremely

simple and efficient because no any regularized parameters or numerical optimization solvers

are required for the involved filter learning [32].

Due to the advantage of the PCANet, it will be of significance to introduce this model

into the NLM method to characterize structural similarity of image patches by extracting

the robust intrinsic features from the ultrasound images. However, the binary hashing

used in the PCANet may lead to the loss of useful feature information. To overcome the

problem, we will present an improved PCANet in which an activation function Paramet-

ric Rectified Linear Unit (PReLU) [33, 34] is used instead of the binary hashing and block

histograms at the output stage to extract the intrinsic features. To test the restoration per-

formance of the proposed method, the extensive experiments on the synthetic image, the

simulated image and the real ultrasound images are performed to make the comparisons

among the proposed method and other despeckling methods. The experimental results

demonstrate the superiority of the proposed method in speckle reduction and image detail

preservation.

PCANet based NLM method for ultrasonic speckle removal
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2 Methodology

2.1 The modified PCANet model

The PCANet model is a simple and valuable baseline for image classification and recognition

tasks. The intrinsic features can be effectively extracted through three processing layers includ-

ing the PCA-based convolutional layer, the binary hashing-based nonlinear layer and the his-

tograms-based output layer. These processing methods used in the nonlinear layer and the

output layer, which are similar to sparse representation strategies [35, 36], will result in the loss

of image features. To overcome the disadvantage, we propose a modified PCANet, which con-

sists of three processing components: the two convolutional layers and the output layer. The

detailed structure of this network is given as follows.

A. The convolutional layer. Let the number of training images be N, the patch size be

k1×k2 at all stages. For the p-th training image, all the patches around each pixel are collected

step by step. For each patch in this training image, its mean is subtracted from the intensities

of all pixels in this patch. Accordingly, the mean-removed matrix Ap = [ap,1,ap,2,. . .,ap,S] is pro-

duced for the whole image, where ap,s denotes the s-th mean-removed vectorized patch, and S
is the number of patches produced from the p-th image. By processing all the training images

in the same way, the matrix A is obtained as:

A ¼ ½A1;A2; � � � ;AN � 2 R
k1k2�SN ðEq 2Þ

The PCA operation is then implemented on A to derive the convolution kernels. The recon-

struction error within a family of orthonormal filters is minimized by the PCA algorithm, i.e.,

min
V2Rk1k2�L1

kA � VVTAk2

F; s:t: VTV ¼ IL1
ðEq 3Þ

where L1 is the number of filters in the first layer, IL1
is the identity matrix of size L1×L1, and

||�||F denotes the Frobenius norm. The solutions of Eq (3) are the L1 principal eigenvectors of

AAT. Therefore, the PCA filters are expressed as:

O1

l ¼ matk1 ;k2
ðqlðAA

TÞÞ 2 Rk1�k2 ; l ¼ 1; 2; � � � ; L1 ðEq 4Þ

where ql(AAT) represents the l-th principal eigenvector of AAT, andmatk1 ;k2
ðqlðAATÞÞ is the

function that maps ql(AAT) to the matrix O1
l .

Similar to the deep neural networks (DNNs), the multiple stages of PCA filters can be

stacked for extracting higher level features. All outputs of the first convolutional layer are uti-

lized as the inputs of the second convolutional layer. By repeating almost the same process as

in the first convolutional layer, the leading L2 eigenvectors are obtained as the filters in the sec-

ond one.

B. The output layer. For the p-th training image, there are L1 outputs fF1
p;vg

L1

v¼1
from the

first convolutional layer. Similarly, each input F1
p;v will produce L2 corresponding outputs

fF2
p;wg

L2

w¼1
from the second convolutional layer. In the original PCANet, all these L1×L2 outputs

are binarized using the Heaviside step function while each group of L2 binary outputs is

weighted summed to obtain L1 decimal-valued images. However, the previous analysis has

shown that this operation will degrade the effectiveness of the extracted features. To ensure

that all those features obtained from the input image can be kept as accurate as possible, the

binary hashing and block histograms will be replaced by the PReLU function [34]. The reason

of using PReLU function instead of ReLU and sigmoid functions is that it can help to preserve

image details better by additionally utilizing the structural information carried by the negative

PCANet based NLM method for ultrasonic speckle removal
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entries. In this modified PCANet model, the PReLU will be utilized as the final output layer to

map nonlinearity into the data to ensure the accuracy and robustness of the extracted intrinsic

features. Here, the PReLU function is defined as:

PReLUðxÞ ¼
x if x > 0

ax if x � 0
ðEq 5Þ

(

When a = 0, the function degenerates into the Rectified Linear Unit (ReLU). If a is a very

small fixed value, the PReLU will be reduced to the Leaky ReLU (LReLU). In this paper, a is

fine-tuned as 0.25 to ensure the optimal despeckled results.

2.2 Feature extraction using the modified PCANet model

To realize robust intrinsic features extraction, the modified PCANet must be trained to obtain

the convolution filter kernels. Considering that the PCANet uses the image patch based train-

ing strategy, we have chosen 200 general ultrasound images from the open ultrasound database

[37] to train the PCANet. They consist of abdomen images, urinary tract images, pediatrics

images, gynaecology images and musculo skeletal joints images, among which the number of

each type of ultrasound images is 40. All the 200 images are cropped to be the size of 480×320

and pre-processed by the OBNLM filter.

By using the trained PCA filters, the modified PCANet can extract the intrinsic features. A

flowchart is given to illustrate how the modified PCANet extracts the features from the consid-

ered patches of an input image. As shown in Fig 1, the original noisy ultrasound image is pre-

processed by the OBNLM filter before input into the PCANet. The patches in the pre-pro-

cessed ultrasound image are convoluted with the trained PCA filters to produce L1 feature

maps in the first convolutional layer. Then, each feature map is convoluted with the trained

PCA filters to generate L2 feature maps in the second convolutional layer. All the L1×L2 feature

maps are processed by the PReLU function to produce the final outputs.

2.3 The modified PCANet based nonlocal means method

The main aim in this study is to improve the despeckling performance of NLM method. To refine

the calculation of structural similarity between image patches in the NLM method, the proposed

Fig 1. Illustration of feature extraction of image patches using the modified PCANet.

https://doi.org/10.1371/journal.pone.0205390.g001
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method exploits the robust intrinsic features extracted by the modified PCANet instead of the

pixel intensities of the noisy image due to the strong feature learning abilities of PCANet. Fig 2

illustrates how to construct the feature vectors of size L for the computation of similarity weight,

where L = L1×L2 is the number of feature images. The pixel intensities of the same location in a

search window in all feature images are concatenated into a feature vector as shown in Fig 2. The

structural similarity ω(i,j,m,n) between two image patches centered at (i,j) and (m,n) is computed

based on the difference between the corresponding feature vectors, i.e.,

oði; j;m; nÞ ¼ e�
kXði;jÞ� Xðm;nÞk2

2;a

h2 ðEq 6Þ

where h acts as a decay parameter controlling the degree of filtering, X(i,j) and X(m,n) are the

concatenated feature vectors of image patches centered at (i,j) and (m,n), respectively. ||�||2,α is a

Gaussian weighted Euclidean distance with α denoting the standard deviation of Gaussian

function.

Based on the structural similarity ω(i,j,m,n), the restored intensity NLM[I(i,j)] at (i,j) in the

noisy image I is determined as:

NLM½Iði; jÞ� ¼

X

ðm;nÞ2Oði;jÞ

oði; j;m; nÞIðm; nÞ
X

ðm;nÞ2Oði;jÞ

oði; j;m; nÞ
ðEq 7Þ

where O(i,j) is the search window centered at (i,j).
To further improve the denoised results, the structural similarity between image patches

will be refined by using the image restored by the proposed method instead of the pre-filtered

results produced by the OBNLM method. The refined structural similarity will help the NLM

filter to provide better despeckling performance.

2.4 Implementation of the proposed method

The implementation of the proposed method is summarized in Fig 3, the detailed description

is as follows.

Step 1: Pre-processing. The original noisy image is pre-filtered by the OBNLM filter to

produce the pre-processed image. The noise standard deviation is estimated, and the decay

parameter is set as suggested in [38].

Step 2: Generation of the feature images. The pre-filtered image is input into the modi-

fied PCANet which has been trained using the open ultrasound database [37] to generate

L1×L2 feature images as the outputs of this network.

Fig 2. A detailed illustration of the construction of feature vectors based on the feature patches.

https://doi.org/10.1371/journal.pone.0205390.g002
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Step 3: Computation of similarity weight. For each considered image patch in the origi-

nal noisy image, the corresponding feature vector is constructed by using the feature images

obtained in Step 2. The produced feature vectors are employed to compute the structural simi-

larity between two image patches via Eq (6).

Step 4: Image restoration. Based on the similarity weight and the pre-fixed decay param-

eter, each pixel in the noisy image is restored by the NLM method based on Eq (7).

Step 5: Refinement of similarity weight. The restored image obtained in Step 4 is input

into the modified PCANet to produce L1×L2 feature images, and then they are used to com-

pute the structural similarity via Eq (6).

Step 6: Output of the final despeckled image. Based on the derived similarity weight in

Step 5, the final despeckled image is produced by Eq (7).

3 Experimental results and discussion

In this section, the proposed method is tested on the synthetic image, the simulated image and

the real ultrasound images. To demonstrate the superiority of the proposed PCANet based

NLM method (PPCA-NLM), it will be compared with such traditional well-known despeck-

ling algorithms as Frost, Kuan, SBF, SRAD, TNLM, OBNLM and NLMLS. Meanwhile, the

proposed method will be also compared with the DnCNN method and the NLM methods

using the original PCANet model (OPCA-NLM), the ReLU-based PCANet model

(RPCA-NLM) and the sigmoid-based PCANet model (SPCA-NLM). In all experiments, the

window size of Frost and Kuan filters is fixed to be 3×3. For SBF and SRAD filters, the parame-

ters are fine-tuned as referred in [10, 11]. The sizes of similarity window and search window

are set as 7×7 and 17×17 in the TNLM, OBNLM, NLMLS and PCANet based NLM filters,

respectively. For the DnCNN denoiser, the same database is used as the PCANet to train the

DnCNN model based on Eq (1), and the parameters and network structures are set as sug-

gested in [31]. For these NLM-based filters, the decay parameter is determined using the rule-

of-thumb, i.e., h = β�σ, where β and σ denote a predefined constant and the noise standard

deviation [38], respectively. In these PCANet based NLM methods, the number of PCA filters

in the two convolutional layers is fixed to be 12 and the patch size is 7×7, respectively.

3.1 The synthetic image

The experiment is conducted on the synthetic image corrupted by various levels of speckle

noise with σ = 3, 4, 5, and 6, which is simulated based on Eq (1).

Fig 4 shows the learned feature images by different activation functions based PCANet on

the synthetic image with σ = 3. It can be seen from Fig 4 that the PReLU based PCANet model

Fig 3. The scheme of the proposed method.

https://doi.org/10.1371/journal.pone.0205390.g003
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is more effective in learning the different features from the noisy image, which can facilitate

the accurate computation of structural similarity between image patches.

Fig 5 presents a visual comparison of restored results for the different filters operating on

the synthetic image. Obviously, speckle noise cannot be suppressed effectively by Frost and

Kuan filter. In contrast, the SBF and SRAD filters perform better in noise removal, but they

cause the blurring of image details. The evaluated NLM-based filters deliver sufficient speckle

reduction. However, the TNLM and OBNLM filters produce the artifacts as shown in Fig 5(G)

and 5(H), while the NLMLS filter damages some small image structure although it can reduce

the artifacts to some extent. The DnCNN filter can facilitate enhancing the image contrast, but

significant speckle noise and artifacts are observed in Fig 5(J). For the despeckling results

based on PCANet methods, one can notice that there are obvious artifacts in Fig 5(K) and 5

(L), whereas useful structure information cannot be preserved in Fig 5(M). By comparison, the

PPCA-NLM method has better performance in removing speckle noise and avoiding artifacts.

Furthermore, the zoomed views of a region of interest (ROI) from Fig 5 are shown in Fig 6 to

demonstrate the advantage of the proposed method in preserving the small structures and edges.

Clearly, Fig 6(C)–6(G) obtained with the Frost, Kuan, SBF, SRAD, and TNLM filters are unsatisfac-

tory since these methods cannot provide good edge preservation. In Fig 6(H)–6(J), it can be seen

that the OBNLM and NLMLS methods blur the edges and details of the rectangle, lines and circular

point, while the DnCNN denoiser tends to distort the small structures and produce the obvious

artifacts in the smooth region. Similarly, one can see from Fig 6(K)–6(M) that the OPCA-NLM and

RPCA-NLM filters generate the blurred edges, while the SPCA-NLM filter causes serious damage

to the image details. Compared with the other evaluated filters, the PPCA-NLM method is the most

effective for preserving the fine structures and maintaining the edge sharpness in the image.

The quantitative evaluations are also made among all the tested methods. Two well-known

evaluation indexes as peak signal-to-noise ratio (PSNR) and structural similarity index metrics

(SSIM) [39] are used for performance appreciation, which are defined as:

PSNR ¼ 10 log
10
ð

2552

1

W�H

XW

i¼1

XH

j¼1

ðûði; jÞ � uði; jÞÞ2
Þ ðEq 8Þ

Fig 4. Comparisons of the learned feature images by various activation functions in the PCANet. The top row, the second row, the third row and

the bottom row show the learned feature images by the original PCANet, ReLU-based PCANet, sigmoid-based PCANet and PReLU-based PCANet

models, respectively.

https://doi.org/10.1371/journal.pone.0205390.g004
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Fig 5. Visual comparison of restoration performance of the various despeckling methods on the synthetic image. (a) original image, (b) synthetic

image with speckle noise (σ = 3), (c) Frost filter, (d) Kuan filter, (e) SBF filter, (f) SRAD filter, (g) TNLM filter, (h) OBNLM filter, (i) NLMLS filter, (j)

DnCNN filter, (k) OPCA-NLM filter, (l) RPCA-NLM filter, (m) SPCA-NLM filter, and (n) PPCA-NLM filter.

https://doi.org/10.1371/journal.pone.0205390.g005
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SSIM ¼
ð2mûmu þ C1Þð2dû u þ C2Þ

ðmû
2
þ m2

u þ C1Þðsû
2

þ s2
u þ C2Þ

ðEq 9Þ

whereW andH represent the width and height of the image, respectively. u is the noise-free

image and û is the denoised image. mû and μu are the mean intensity of images û and u, respec-

tively. dûu is the covariance between images û and u, sû and σu are the standard deviations of

images û and u, respectively. C1 and C2 are the small constants to stabilize SSIM.

Tables 1 and 2 list the PSNR and SSIM values for all evaluated methods operating on the

synthetic image corrupted with different levels of speckle noise, where the best values are

marked in bold. It can be seen that the DnCNN can produce the maximum PSNR at all noise

Fig 6. Comparison of zoomed details in Fig 5 for the twelve despeckling methods. (a) Original ROI, (b) Noisy ROI, (c)

Frost filter, (d) Kuan filter, (e) SBF filter, (f) SRAD filter, (g) TNLM filter, (h) OBNLM filter, (i) NLMLS filter, (j) DnCNN

filter, (k) OPCA-NLM filter, (l) RPCA-NLM filter, (m) SPCA-NLM filter, and (n) PPCA-NLM filter.

https://doi.org/10.1371/journal.pone.0205390.g006

Table 1. The PSNR (dB) values of various despeckling methods on the synthetic image.

Methods σ = 3 σ = 4 σ = 5 σ = 6

Noisy image 16.60 14.45 12.87 11.73

Frost 22.25 20.11 18.55 17.42

Kuan 26.03 23.79 22.11 20.99

SBF 27.23 25.88 24.72 23.95

SRAD 30.51 27.20 22.70 19.47

TNLM 29.96 27.70 26.28 25.12

OBNLM 30.50 28.44 27.26 26.24

NLMLS 30.96 28.91 27.70 26.50

DnCNN 32.98 31.03 30.20 28.70

OPCA-NLM 32.46 29.87 27.93 26.48

RPCA-NLM 32.59 30.30 28.54 27.10

SPCA-NLM 26.17 25.97 25.78 25.39

PPCA-NLM 32.98 30.79 29.30 27.71

https://doi.org/10.1371/journal.pone.0205390.t001
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levels, and the PPCA-NLM method ranks the second. However, the proposed method provides

significantly higher SSIM values than the DnCNN. The overall evaluation based on the above-

mentioned visual inspection and the objective indexes demonstrates that the PPCA-NLM

method exhibits the excellent despeckling performance for the synthetic image.

3.2 The simulated image

A more challenging and relevant ultrasound image has been generated for the “cyst” phantom

based on FieldⅡ simulation, which is a program to simulate ultrasound transducer fields and

ultrasound imaging using the linear acoustics. The “cyst” phantom consists of a collection of

point targets, five cyst regions, and five highly scattering regions [40]. Fig 7 presents the “cyst”

phantom, the simulated image, and the despeckled results of all the tested methods. The Frost,

Kuan and SBF filters keep much noise in the images as shown in Fig 7(C)–7(E). The SRAD fil-

ter performs well in noise removal, but it leads to the blurry edges and the staircase effect in

the despeckled image. All NLM-based methods smooth out speckle noise more effectively than

the above-mentioned local filters. However, the TNLM and NLMLS filters cannot maintain

the sharpness of point targets and the OBNLM method produces the obvious artifacts. For the

DnCNN method, many unwanted artifacts can be observed in the smooth region as shown in

Fig 7(J). From Fig 7(K)–7(M), one can see that the OPCA-NLM and RPCA-NLM filters tend

to retain speckle noise, while the SPCA-NLM filter produces an over-smoothed image. The

comparison with the other eleven methods shows that the PPCA-NLM method can smooth

out speckle noise well while providing the clearer boundaries of points as depicted in Fig 7(N).

Moreover, two other widely used evaluation indexes, i.e., equivalent number of looks (ENL)

and contrast-to-noise ratio (CNR) [41] are utilized to quantitatively appreciate the despeckling

performance, which are defined as:

ENL ¼
m2
b

s2
b

ðEq 10Þ

CNR ¼
jmb � mojffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
b þ s

2
o

p ðEq 11Þ

where μb and μo are the mean intensity of background area and object area, σb and σo are the

standard deviation of background area and object area, respectively.

Table 2. The SSIM values of various despeckling methods on the synthetic image.

Methods σ = 3 σ = 4 σ = 5 σ = 6

Noisy image 0.105 0.071 0.054 0.042

Frost 0.254 0.185 0.146 0.119

Kuan 0.441 0.336 0.270 0.228

SBF 0.649 0.583 0.504 0.467

SRAD 0.863 0.698 0.415 0.219

TNLM 0.708 0.601 0.519 0.456

OBNLM 0.791 0.717 0.666 0.640

NLMLS 0.926 0.894 0.869 0.852

DnCNN 0.903 0.857 0.840 0.742

OPCA-NLM 0.927 0.851 0.751 0.703

RPCA-NLM 0.936 0.892 0.831 0.800

SPCA-NLM 0.830 0.829 0.828 0.818

PPCA-NLM 0.950 0.928 0.904 0.879

https://doi.org/10.1371/journal.pone.0205390.t002
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Fig 7. Visual comparison of restoration performance of various despeckling methods on the simulated image. (a) the “cyst” phantom, (b)

simulated image generated by FieldⅡ and four ROIs marked with various colors, (c) Frost filter, (d) Kuan filter, (e) SBF filter, (f) SRAD filter, (g)

TNLM filter, (h) OBNLM filter, (i) NLMLS filter, (j) DnCNN filter, (k) OPCA-NLM filter, (l) RPCA-NLM filter, (m) SPCA-NLM filter, and (n)

PPCA-NLM filter.

https://doi.org/10.1371/journal.pone.0205390.g007
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Four pairs of ROIs are selected to evaluate the despeckling performance for these tested

methods, and the ROIs are marked with different colors as shown in Fig 7(B). The ENL and

CNR are listed in Tables 3 and 4, respectively. As regards ENL, the PPCA-NLM method pro-

vides the maximum values at all ROIs. Likewise, the proposed method performs the best for

three ROIs except that its CNR is slightly less than that of the RPCA-NLM method for the blue

ROI. The performance appreciation based on ENL and CNR confirms that the PPCA-NLM

method is superior to other compared methods.

3.3 The real ultrasound images

Three real ultrasound images are also used to further assess the effectiveness of the proposed

method. Fig 8 shows the despeckled results for the compared methods on a real ultrasound

image of benign lymph nodes. Visually, the Frost and Kuan filters maintain much speckle in

the image as shown in Fig 8(B) and 8(C), while the SBF and SRAD filters result in the blurry

object boundaries as shown in Fig 8(D) and 8(E). Compared with the TNLM and NLMLS fil-

ters, the PCANet based NLM filters are more effective in smoothing out speckle noise.

Table 3. The ENL values of four ROIs on the simulated ultrasound image.

Methods ROI 1 (blue) ROI 2 (green) ROI 3 (yellow) ROI 4 (red)

Noisy image 30.49 30.54 35.77 29.02

Frost 44.64 40.83 49.43 44.46

Kuan 49.10 43.82 54.18 50.10

SBF 88.05 63.55 120.95 170.36

SRAD 175.44 125.91 286.10 168.68

TNLM 148.97 162.10 186.82 185.09

OBNLM 282.94 439.41 417.05 483.60

NLMLS 279.34 510.83 430.73 529.97

DnCNN 160.93 550.15 449.86 800.90

OPCA-NLM 414.09 522.25 623.68 702.50

RPCA-NLM 520.27 595.68 935.03 850.07

SPCA-NLM 464.00 1110.27 1125.99 783.06

PPCA-NLM 546.77 1336.78 1163.53 1145.27

https://doi.org/10.1371/journal.pone.0205390.t003

Table 4. The CNR values of four ROIs on the simulated ultrasound image.

Methods ROI 1 (blue) ROI 2 (green) ROI 3 (yellow) ROI 4 (red)

Noisy image 2.74 3.81 2.60 4.04

Frost 3.33 4.63 3.08 4.91

Kuan 3.51 4.82 3.23 5.18

SBF 4.67 6.06 3.97 7.38

SRAD 7.85 6.78 5.97 7.13

TNLM 6.81 9.99 5.12 9.66

OBNLM 9.34 14.29 5.58 13.20

NLMLS 9.40 14.34 5.83 13.18

DnCNN 6.75 14.72 4.40 14.13

OPCA-NLM 11.72 15.90 6.04 15.02

RPCA-NLM 12.19 16.39 6.52 15.69

SPCA-NLM 9.01 7.67 5.40 11.37

PPCA-NLM 11.45 21.49 7.49 18.20

https://doi.org/10.1371/journal.pone.0205390.t004
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Fig 8. Comparison of restoration performance of various despeckling methods on a real ultrasound image of benign lymph nodes. (a) original noisy image and

four ROIs marked with the different colors, (b) Frost filter, (c) Kuan filter, (d) SBF filter, (e) SRAD filter, (f) TNLM filter, (g) OBNLM filter, (h) NLMLS filter, (i)

DnCNN filter, (j) OPCA-NLM filter, (k) RPCA-NLM filter, (l) SPCA-NLM filter, and (m) PPCA-NLM filter.

https://doi.org/10.1371/journal.pone.0205390.g008
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However, the SPCA-NLM filter damages many image details. For the OBNLM and NLMLS fil-

ters, we can see from Fig 8(G) and 8(H) that they tend to generate the artifacts in some regions.

By comparison, the PPCA-NLM method can preserve the sharpness of node boundaries better

than the OBNLM and DnCNN methods. In contrast to the despeckled results of the

OPCA-NLM and RPCA-NLM methods, the image details can be preserved with higher sharp-

ness by the PPCA-NLM filter. The experiments on the real ultrasound image demonstrate the

superiority of the proposed method to the other despeckling methods.

The quantitative results of four ROIs shown in Fig 8(A) are listed in Tables 5 and 6. With

regard to ENL results, the PPCA-NLM method produces the maximum values at three ROIs

among all the filters. In terms of CNR, the OPCA-NLM method provides the competitive

results, followed by the PPCA-NLM and DnCNN methods. The above quantitative compari-

sons and visual inspection illustrate that the PPCA-NLM method is very suitable and practica-

ble for despeckling the real ultrasound image.

Besides, two other clinical ultrasound images including the fetal image and the parotid

gland image are used to further display the visual impression for the TNLM, OBNLM,

Table 5. The ENL values of four ROIs on a real ultrasound image.

Methods ROI 1 (blue) ROI 2 (green) ROI 3 (yellow) ROI 4 (red)

Noisy image 219.45 338.21 112.34 102.96

Frost 333.15 569.40 172.76 136.67

Kuan 358.50 635.66 184.73 146.96

SBF 536.42 1155.25 245.41 153.03

SRAD 564.67 1145.40 292.45 193.45

TNLM 926.57 2204.59 243.73 191.82

OBNLM 1564.69 5393.52 591.38 396.95

NLMLS 1167.61 5212.99 391.28 290.55

DnCNN 1457.50 1419.98 534.73 538.04

OPCA-NLM 2913.80 6073.30 673.99 426.89

RPCA-NLM 2476.94 6232.09 687.21 487.45

SPCA-NLM 1857.40 413.23 666.11 282.31

PPCA-NLM 2054.56 8175.66 845.83 935.00

https://doi.org/10.1371/journal.pone.0205390.t005

Table 6. The CNR values of four ROIs on a real ultrasound image.

Methods ROI 1 (blue) ROI 2 (green) ROI 3 (yellow) ROI 4 (red)

Noisy image 9.28 11.79 5.45 3.80

Frost 10.56 14.15 6.39 4.18

Kuan 10.71 15.04 6.51 4.27

SBF 12.63 17.52 7.27 4.38

SRAD 11.46 16.01 7.41 4.43

TNLM 15.83 19.90 7.36 4.79

OBNLM 18.29 21.53 9.78 6.21

NLMLS 14.65 20.97 8.32 5.44

DnCNN 16.88 18.01 11.00 5.12

OPCA-NLM 19.86 21.88 10.16 6.58

RPCA-NLM 19.45 21.22 10.08 6.67

SPCA-NLM 18.96 8.15 6.12 1.91

PPCA-NLM 19.42 21.80 10.33 7.13

https://doi.org/10.1371/journal.pone.0205390.t006

PCANet based NLM method for ultrasonic speckle removal

PLOS ONE | https://doi.org/10.1371/journal.pone.0205390 October 12, 2018 15 / 19

https://doi.org/10.1371/journal.pone.0205390.t005
https://doi.org/10.1371/journal.pone.0205390.t006
https://doi.org/10.1371/journal.pone.0205390


Fig 9. Comparison of restoration performance on a real fetal ultrasound image for the NLM-based and DnCNN methods. (a) original image, (b) TNLM filter, (c)

OBNLM filter, (d) NLMLS filter, (e) DnCNN filter, and (f) PPCA-NLM filter.

https://doi.org/10.1371/journal.pone.0205390.g009

Fig 10. Comparison of restoration performance on a real parotid gland adenoma ultrasound image for the NLM-based and DnCNN methods. (a) original image,

(b) TNLM filter, (c) OBNLM filter, (d) NLMLS filter, (e) DnCNN filter, and (f) PPCA-NLM filter.

https://doi.org/10.1371/journal.pone.0205390.g010

PCANet based NLM method for ultrasonic speckle removal

PLOS ONE | https://doi.org/10.1371/journal.pone.0205390 October 12, 2018 16 / 19

https://doi.org/10.1371/journal.pone.0205390.g009
https://doi.org/10.1371/journal.pone.0205390.g010
https://doi.org/10.1371/journal.pone.0205390


NLMLS, DnCNN and PPCA-NLM filters. As indicated in Figs 9 and 10, the PPCA-NLM

method outperforms the compared methods in that it not only effectively removes speckle

noise but also enhances the sharpness of boundaries and retains image structures very well.

4 Conclusion

In this paper, the modified PCANet based deep learning baseline is introduced into NLM

method for reducing speckle noise in the ultrasound images. This proposed method utilizes

the intrinsic features extracted from an input noisy image by the PCANet to refine the similar-

ity computation in the NLM method. The introduction of the intrinsic features instead of the

gray-level information into the NLM method can facilitate the effective despeckling of ultra-

sound images due to its effectiveness in representing their structural information. The experi-

mental results demonstrate that the proposed method outperforms the other compared

methods in speckle reduction and image detail preservation. Therefore, the proposed approach

has the great potential application to ultrasound-based clinical diagnosis. In future, the new

deep learning models will be developed to denoise the images corrupted by Rician noise or

Poisson noise.
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