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Abstract

Motivation: Convolutional neural networks (CNNs) have outperformed conventional methods in modeling the
sequence specificity of DNA–protein binding. While previous studies have built a connection between CNNs and
probabilistic models, simple models of CNNs cannot achieve sufficient accuracy on this problem. Recently, some
methods of neural networks have increased performance using complex neural networks whose results cannot be
directly interpreted. However, it is difficult to combine probabilistic models and CNNs effectively to improve DNA–
protein binding predictions.

Results: In this article, we present a novel global pooling method: expectation pooling for predicting DNA–protein
binding. Our pooling method stems naturally from the expectation maximization algorithm, and its benefits can be
interpreted both statistically and via deep learning theory. Through experiments, we demonstrate that our pooling
method improves the prediction performance DNA–protein binding. Our interpretable pooling method combines
probabilistic ideas with global pooling by taking the expectations of inputs without increasing the number of param-
eters. We also analyze the hyperparameters in our method and propose optional structures to help fit different data-
sets. We explore how to effectively utilize these novel pooling methods and show that combining statistical methods
with deep learning is highly beneficial, which is promising and meaningful for future studies in this field.

Availability and implementation: All code is public in https://github.com/gao-lab/ePooling.

Contact: dengmh@pku.edu.cn or gaog@mail.cbi.pku.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA-binding proteins play important roles in gene regulation. The
transcription of each gene is controlled by a regulatory region of
DNA placed relatively near the start of the transcription site. Several
experimental methods, such as ChIP-Seq (Zhang et al., 2008), have
been proposed to detect protein–DNA bindings in vivo.
Convolutional neural networks (CNNs) have been successfully used
to identify functional motifs in massive genomic databases
(Alipanahi et al., 2015; Zhou and Troyanskaya, 2015). Analogous
to the computer vision task for two label image classification, gen-
omic sequences are first encoded (in one-hot format); then, the 2D
convolution operation is transformed into a 1D convolution with
four channels. Following a convolutional layer, pooling layers have
been widely applied as effective feature extractors to (i) reduce the
feature size and (ii) gain invariance to small input transformations
to increase model robustness.

While multiple pooling strategies have been proposed (Graham,
2014; Gulcehre et al., 2014; He et al., 2014; Huang et al., 2018; Lee
et al., 2016; Lu et al., 2015; Xie et al., 2015; Zeiler and Fergus, 2013;
Zhai et al., 2017), max pooling and average pooling are popularly
utilized in practical models (Boureau et al., 2008; Jarrett et al., 2009;
LeCun et al., 1990, 1998). Max pooling is done by applying a max
filter to subregions of the initial representation and global pooling uti-
lizes an average filter. It has been theoretically shown that max pool-
ing improves discriminability over average pooling (Boureau et al.,
2010) though max pooling causes overfitting easily. Global max pool-
ing (Lin et al., 2013) are mostly utilized in models of motif detecting,
because it has a reasonable statistical meaning of choose the biggest
score after convolution. However, max pooling which loses some in-
formation may be not optimal and lack of the better interpretation of
probability (Alipanahi et al., 2015) on motif inference.

Inspired by the expectation maximization (EM) algorithm, we
propose a new global pooling method: expectation pooling.

VC The Author(s) 2019. Published by Oxford University Press. 1405

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(5), 2020, 1405–1412

doi: 10.1093/bioinformatics/btz768

Advance Access Publication Date: 9 October 2019

Original Paper

http://orcid.org/0000-0001-6470-8815
http://orcid.org/0000-0002-9143-1898
https://github.com/gao-lab/ePooling
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz768#supplementary-data
https://academic.oup.com/


Evaluations on both simulated and real-world data demonstrate
that expectation pooling improves motif identification performance
significantly. We further analyze the hyperparameters used in our
method and propose optional structures to help fit different datasets.
Expectation pooling is both mathematically sound and provides a
plausible statistical interpretation for a CNN. All the code used to
implement expectation pooling and reproductions of all figures in
the manuscript are publicly available at https://github.com/gao-lab/
ePooling.

2 Materials and methods

2.1 Detecting sequence motifs with CNN
Our baseline neural network architecture for motif detection is
the simplest model, without a fully connected layer (see the
Supplementary Notes), as shown in Figure 1(a). The inputs are
DNA sequences; however, the neural network model requires nu-
merical input. Consequently, each sequence is transformed into a
one-hot format. Specifically, the sequences are transformed into
4�L matrices where each base pair in a sequence is denoted as one
of four one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0,
0, 1]. The first layer is a 1D convolutional layer with ReLU activa-
tion (Radford et al., 2015), which can be considered as a motif scan-
ner. The second layer is our expectation pooling layer, which will be
discussed in the next section. The last layer is a fully connected layer
with one output. We use sigmoid activation to obtain the probability
of a sample being positive.

2.2 Expectation pooling
In brief, expectation pooling calculates the weighted average of lo-
cally max pooled values. Specifically, the expectation pooling con-
sists of two sublayers: the first sublayer is a 1D local max pooling
with a window size of q with zero padding, and the output length is
1/q of the origin length. The second sublayer is a dense layer of size
1 with non-parameterized weights, which ensures that the whole
pooling layer has no additional parameter. Overall, the output of
the expectation pooling layer is a weighted linear combination of
the larger part of its input; the tendency is that for larger input val-
ues result in larger weight assignments. The mathematical formula is
shown below:

Input of expectation pooling ðoutput of 1 filterÞ :

Input ¼ Ai; i ¼ 1; . . . ;L;
(1)

First sub� layer : Bi ¼ max
k¼0;1;...;q�1

fAqi�kg; i ¼ 1; . . . ;L=q; (2)

Second sub� layer : Output ¼
XL=q

i

wiBi;

where wi ¼
1

Z
exp mðBi � �BÞ
� �

;

(3)

where Z ¼
P

expfmðBi � �BÞg;m > 0; �B refers to the average of all
scores of the layer, and m and q are hyperparameters determined by
validation. The l1 penalty is added to the weights to help the model
to assign insignificant input features with zero weight and avoid
overfitting (Tibshirani, 1996). If necessary, zero padding can be
added to the end of Ai.

2.3 Implementation of the parameterized convolutional

neural networks
The hyperparameters for simulated datasets in the convolutional
layer include the number and length of convolution kernels, the
number of epochs, the training batch size and the optimizer (see
Supplementary Table S1). The hyperparameters in the pooling layer
include the standard window width for local max pooling and the
weight-scale parameter m used for expectation pooling (if m is not
learnable).

For training, we used cross-entropy as a loss function without
any weight decay, and the models were trained using the standard
error backpropagation algorithm and the Adam optimizer (Kingma
and Ba, 2014). Ten percent sequences are split to form the valid-
ation set. Besides, standard early stopping strategy is took in every
model. Specifically, the training will be stopped as long as the loss
over the validation set has stopped improving during continuous 10
epochs.

We utilized the area under the receiver operating characteristic
curve (AUC) (Davis and Goadrich, 2006; Fawcett, 2004) to assess
the prediction performance. Our model is implemented using Keras
(Chollet et al., 2015) for Python.

Fig. 1. (a) The first layer is a convolutional layer followed by a ReLU activation

function. The next layer is the proposed expectation pooling, which is explained in

the next section. The third layer is a dense layer that linearly combines the outputs

of all the kernels. The last is a sigmoid function that converts the values obtained in

the dense layer to a probability between 0 and 1. The expectation pooling layer

architecture is as follows: First, we use a local max pooling to filter noise. Then, we

calculate the probability at each position and obtain the approximate expectation of

the log probability using Equation 3. (b) This figure represents the process of convo-

lution. When a convolutional kernel ‘scans’ across the whole sequence, multiple ker-

nel scores (i.e., the values after convolution) corresponds to the probability that a

particular position is motif starting points are computed along the sequence

(Equation 4). All these scores, plotting as the curve, are further feed into pooling

layer, where the expectation pooling will take the whole curve into account while

the canonical maxpooling only considers the highest point of the curve
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2.4 Datasets
2.4.1 Simulated dataset

For the simulations, we used the TRANSFAC (Wingender et al., 1996)
database to evaluate whether expectation pooling improves model per-
formance. Each simulated dataset includes both negative and positive
samples (i.e., sequences). Each negative sample consists of i.i.d. nucleo-
tides conforming to a multinomial distribution with a probability of
0.25 for each of fA;C;T;Gg. A positive sample is constructed the
same way as a negative sample except that sequences from certain
motif(s) are inserted at random locations. We firstly selected the two
representative motifs with different length from the TRANSFAC (see
Fig. 6). Specifically, the sequences inserted in the positive samples for
each of the three simulated datasets are as follows:

• simulated dataset 1: a sequence generated from the first, shorter

motif;
• simulated dataset 2: a sequence generated from the second, lon-

ger motif;
• simulated dataset 3: a sequence generated from either the first or

the second motif; the choice of motif for each positive sample is

determined randomly with equal probability.

It should be emphasized that simulated dataset 3 is an important
pattern in omics data: a protein is likely to bind to more than one
motif in the DNA sequence. All the three datasets contain 6000
sequences, with half as positives and 80% of the generated sequen-
ces were taken, randomly, as the training set.

2.4.2 Real dataset

We chose the 690 ChIP-seq ENCODE datasets tested by the
DeepBind model (Alipanahi et al., 2015). Each of these datasets cor-
responds to a specific DNA-binding protein (e.g., transcription fac-
tor); its positive samples are 101 bp DNA sequences that were
experimentally confirmed to bind to a given protein, and its negative
samples were created by shuffling the positive samples. All the data-
sets were downloaded from http://cnn.csail.mit.edu/.

3 Results

3.1 Expectation pooling performs better than global

max or average pooling on this simulated data
In this section, we compare expectation pooling with global max and
average pooling on the simulated datasets. We first selected the

simplest CNN model with no hidden layers, with m¼1, local window
size ¼ 10, batch size ¼ 32, kernel length ¼ 24 and kernel number ¼
128 (the same specifications listed in Supplementary Table S1).
Immediately after the convolutional layer, we appended one of the
three different pooling methods above to assess which pooling method
achieved a better performance. We set several random seeds to evaluate
the robustness of the model’s performance on the simulated datasets.

We found that compared to global max or average pooling, ex-
pectation pooling improved the motif finding performance on all
three simulated datasets (Fig. 2(a)). Specifically, the model with ex-
pectation pooling resulted in a considerable reduction in accuracy
variance (measured by AUC) than did the models with global max
or average pooling, which suggests that it is more robust to different
random seeds. Moreover, we found that the difference between
training loss and testing loss was still moderate for the expectation
pooling-based model after tens of epochs and it was smaller than
that of the models with global max/average pooling, further suggest-
ing that less overfitting occurred during training (see Fig. 2(b)).

The performance improvement was especially evident on simulated
dataset 3 with a hard model, reflecting the superiority of expectation
pooling in cases with complex motif settings. Clearly, on complex data-
sets, the huge fluctuation in the original model, it does not satisfy the
need for fitting for low accuracy and it lacks robustness to initialization.
On these simple simulated datasets, we can see that even a minor accur-
acy increase compared to the original model yields good performance.

3.2 Performance of real datasets
Having demonstrated the superior performance of expectation pool-
ing on the simulated datasets, we next tested whether it could main-
tain this performance level on real-world cases. The neural network
models differed only in their use of different pooling methods (i.e.,
global max pooling (baseline) and expectation pooling, respective-
ly). We used the same model structures and parameter settings as in
the preceding simulated unless explicitly stated otherwise. The win-
dow size of local max pooling was set to 10. The number of kernels
varied from 8 to 128. The two models can be compared because ex-
pectation pooling does not increase the number of parameters.

The results show that when the number of kernels is limited (e.g.,
8), the model with expectation pooling achieves a statistically signifi-
cant improvement in AUC (one-sided Wilcoxon signed-rank test, P ¼
4:01� 10�84); in particular, it achieved a better performance on 583
(84.5%) of the datasets (see Supplementary Table S2). However, its
accuracy was lower on (107 approximately 15.5%) of the datasets,

(a) (b)

The performances of models with different types of pooling on the
simulated data

The training loss with different types of pooling on the simulated data

Fig. 2. Expectation pooling performs better and is more robust to random seeds than are global max and average pooling (a), and expectation pooling suffers less from overfit-

ting than global max pooling (b). Here (a) shows the AUCs of models with different pooling methods on the simulated datasets 1 (short motif), 2 (long motif) and 3 (mixed

motifs). The mean AUCs on these datasets are 0.795774, 0.866507 and 0.720751 for models with global max pooling; 0.81092, 0.870577 and 0.801181 for expectation pool-

ing; and 0.545254, 0.636738 and 0.53726 for global average pooling, respectively. (b) The learning curves for models with different pooling methods is shown. The difference

between training and testing loss for the model with expectation pooling is still moderate after 20–40 epochs; in contrast, the difference for the model with max pooling

becomes very large immediately after 5 epochs. In addition, the model with global average pooling is difficult to fit and leads to low performance, while the methods with ex-

pectation pooling require more than 20 epoch to fit, and a slight overfitting occurs after 40 epochs
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which does not match the theoretical analysis above. Because neural
networks are not convex models, they do not necessarily obtain a glo-
bal optimum. We selected the datasets on which our model’s perform-
ance was lower and chose several different random seeds for
initialization. Subsequently, we found that the mean performance be-
tween the two models was almost identical (Supplementary Fig. S1).
In the DeepBind model, kernel length has a significant performance
effects; thus, we considered another smaller representative number.
We found that when the kernel length was set to 15, the baseline
attained the best performance (Table 1), and our method achieved a
greater improvement in average AUCs. To demonstrate the general-
ization, we further explored the other kernel length (e.g., 10, 20, 30,
40), and found a consistent pattern (Supplementary Fig. S6).

3.3 Varying the hyperparameters in our model
Next, we studied the effects of the hyperparameters on the perform-
ance of our model. In this section, we discuss the two newly added
hyperparameters in our model.

3.3.1 Varying m
The hyperparameter m controls the weights of each score: the larger
m is, the greater the weights assigned to the high scores are during
expectation pooling.

In this experiment, we also utilized one of the simulated datasets
(i.e., simulated dataset 3) to determine the general rules of m for the
models. From Figure 3, it is evident that after m is sufficiently large,
the AUC of the model will decrease if m grows larger, which proves
that the model with global max pooling is not optimal for motif
finding (i.e., our model degrades to the baseline as m approaches in-
finity). In addition, a steep fluctuation is apparent when m becomes
relatively small (i.e., between 1 and 5). Besides, because the underly-
ing true model is unknown (e.g., the number of motifs in the true
model), the specific distribution of AUC is hard to characterize
when m is between 1 and 5 (Supplementary Fig. S4). We know that
there are two motifs with different lengths implanted in the simula-
tion dataset 3. Further inspection shows that models with lower
AUC just captured one of the two implanted motifs, due to a bad
random seed, while models with high AUC captured both two
motifs simultaneously (Supplementary Fig. S5), which further results
in the observed the distribution similar to bimodal distribution.
Consistently, no similar bimodal observed in the simulation dataset
1 and dataset 2 (which only implant one motif). We also note that,
given that m is derived in the loss function, it could be learned from
the data directly via the classical backpropagation algorithm, which
would change m from a hyperparameter to a learnable parameter.

3.3.2 Varying the window sizes of local max pooling

The window sizes used for local max pooling are also significant in
our model. Because two regions of the motif cannot be located in
too-close proximity, we need to calculate the max score of a local
window, which means we must select a score to represent the whole
window. In addition, a large window size requires fewer calcula-
tions. The other parameters (including batch size, kernel length, ker-
nel number, batch size) are fixed to the same values shown in
Supplementary Table S1.

We trained models with different window sizes. The results in
Figure 4 show that the AUCs generally increase when the window
size increases from 1 to 15; subsequently, the model performance
remains relatively stable. When the local window size is sufficiently
large, expectation pooling degenerates into global max pooling.
Besides, we found that the model performance was rather robust

Table 1. Performances on real data (kernel length¼ 15)

Option structure Kernel

number

Local window

size

Maxpooling

AUC (%)

Expectationpooling

AUC (%)

The percentage of

improved dataset (%)

P-value

Optional structure 32 10 0.86174 0.87368 94.6 5.29 � 10�103

No optional structure 32 10 0.87289 93.5 6.58 � 10�98

Optional structure 64 10 0.87094 0.88043 93.3 3.22 � 10�96

No optional structure 64 10 0.87725 82.9 1.70 � 10�74

Optional structure 128 10 0.87579 0.88256223 87.4 1.02 � 10�78

No optional structure 128 10 0.87832 71.1 4.37 � 10�28

Fig. 3. The AUCs of the model with varying m (violin plot). Note that when m¼0,

expectation pooling is equivalent to average pooling, so the performance is worse

than when m>0. As m increases, the average AUCs also increase. When m reaches

approximately 1, the performance is both stable and good. When m becomes too

large, there is no difference between global max pooling and expectation pooling.

Consequently, the performance degrades

Fig. 4. The AUCs of models with different local window sizes (box plot): The per-

formance increases initially, but when the local window size exceeds approximately

5, the performance becomes almost stable. Finally, when the local window size

approaches the sequence length (which means expectation pooling becomes equiva-

lent to global max pooling) the performance equally as bad as that of global max

pooling
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among various combination of motif length and local window size,
unless the size is set too small (e.g., smaller than 5) (Supplementary
Fig. S3). The intuition behind this is that when the local window size
is too small, the local max-pooling operation can hardly ‘filter’ noise
effectively. Consequently, we set the local window size to approxi-
mately 10 (this is approximately the median length of the motifs in
the TRANSFAC database) or set it through validation.

3.4 The effect of kernel numbers on motif inference
By experimenting with different hyperparameters, Zeng et al. (2016)
demonstrated that including more kernels in convolutional layers
can lead to better performance. However, although many kernels
may be utilized, the truly effective and significant kernels are limited
after training according to model visualization. Considering the lim-
ited number of effective kernels, using fewer kernels is reasonable
from a model perspective, for the number of required calculations
and model visualization. However, extra kernels may affect the opti-
mization process by avoiding premature convergence due to becom-
ing trapped in a local minimum of the loss function. The results
show that increasing in the number of convolutional kernels has a
smaller impact on performance but is significant in the model with
global max pooling. Therefore, our model with expectation pooling
is robust to the number of kernels (Supplementary Fig. S2).

3.5 Optional structures
We also notice that the expression in the second sublayer (optional
structure) can be modified as follows:

wi ¼
1

Z
exp mðBi � �BÞ
� �

IBi> �B

where Z ¼
P

expfmðBi � �BÞgIBi> �B ;m > 0 and I represents an indi-
cator function to increase the sensitivity for motifs with only a few con-
served residents (i.e., when the pooling layer input consists of a few
large numbers but many small numbers). In Figure 5, expectation pool-
ing attains a better performance on 94.6% of the datasets when the op-
tional structure contains 32 kernels; these configurations resulted in the
best AUCs among the different hyperparameter values (Table 1).

Moreover, a hidden layer with a dropout layer can be introduced
after expectation pooling to increase model learning ability. A drop-
out layer is applied to a hidden layer to randomly mask portions of
its output to avoid overfitting. The introduction of the hidden layer
sacrifices some portion of model interpretability but helps in model-
ing complex datasets without prior model assumptions.

3.6 Model visualization
In this section, we show that the model with expectation pooling
can recover the underlying motifs more accurately. Here, we used
simulated data because we do not know the true motifs in real world
datasets. We generated the sequence logos from kernels as described
in Section 10.2 of the DeepBind Supplementary Notes (Alipanahi
et al., 2015). The best-recovered motifs (in the sense of information
content) are compared to the true motifs utilized in the simulated
data by calculating their similarity (E-value) with the Tomtom
(Gupta et al., 2007) algorithm.

The motifs recovered by our model and the model with global
max pooling are both aligned to the true motifs (Fig. 6). However,
based on the E-value, we found that the sequence logos generated by
our model are more informative and better match the ground truth.
This result demonstrates that our model is able to find more accurate
motifs. In addition, expectation pooling can clearly distinguish the
motif regions from other regions (obeying the background distribu-
tion). In Figure 6(b), the motif recovered by the origin model contains
obvious noise in addition to the eight positions corresponding to the
true motif, while in Figure 6(d), the noise is not obvious in our model.

4 Discussion

4.1 Expectation pooling as the E-step in an

(object-optimized) EM algorithm
In the context of sequence motif detection (see Supplementary Notes
for a brief summary on the typical CNN architecture used for motif
detection), expectation pooling can be interpreted as an (object-opti-
mized) EM algorithm.

In brief, given a particular motif represented as a position
weighted matrix (Stormo, 2000) (PWM) M, the i-th sequence Xi

(positive sample) and the motif location Zi ¼ j (Zi ¼ j if motif starts
at position j in sequence i), we obtain

PrðXi;Zi ¼ jjMÞ ¼
Yj�1

k¼1

pck ;0

Yjþw�1

k¼j

pck;k�jþ1

YL

k¼jþw

pck ;0 (4)

where ck is the character at position k in sequence i, pck ;0 is the prob-
ability of ck in the background distribution, pck ;iði > 0Þ is the prob-
ability of ck in the distribution of the i-th position in the motif region.
Here, if PWM M is given, we have the following E-step (Buhler and
Tompa, 2002; Dempster et al., 1977; Lawrence and Reilly, 1990):

Zij ¼ PrðZi ¼ jjXi;MÞ

¼ PrðXi;Zi ¼ jjMÞ
PrðXijMÞ

¼ PrðXi;Zi ¼ jjMÞ
PL�wþ1

k¼1 PrðXi;Zi ¼ kjMÞ

(5)

in which Zi is the latent variable (i.e., the start position Zi ¼ j is un-
known) and Zij represents the likelihood of Xi’s motif starting at
position j. The Zi ¼ fZijg represents the distribution of starting pos-
ition of Xi’s motif. Next, we update PWM using the M-step and iter-
ate until convergence.

Given the exact transformation between the convolutional layer
kernels and PWM (Ding et al., 2019), the log-likelihood of the result-
ing PWM of any DNA sequence is exactly the sum of a constant and
the convolution of the original kernel on the same sequence.

The formula is as follows:

convðXijÞ ¼ logaðPrðXi;Zi ¼ jjMÞÞ þ constant (6)

() PrðXi;Zi ¼ jjMÞ ¼ aconvðXijÞ
P

k aconvðXikÞ
(7)

where conv(Xij) represents the convolution result of the subsequence
starting at position j of sequence Xi with some kernel and is the
same as Ai, the input to the pooling layer, and a is a given constant.

Fig. 5. The performance of our model utilizing expectation pooling on real datasets,

where the window size ¼ 10, m¼1, kernel number ¼ 8, kernel size ¼ 15 and the

optional structures are utilized. Expectation pooling increases the AUC on real data-

sets. The x-axis shows the AUC difference under expectation pooling and max pool-

ing. The models with expectation pooling are better than are the models with max

pooling on 653 datasets but worse than the models with max pooling on 37 data-

sets. This figure clearly shows that expectation pooling achieves better performances
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As a result, the pooling layer input is a score vector equivalent to
the log-likelihood, namely, the larger the score, the more ‘similar’
the motif is to the specific sequence fragment it aligns to and the
more likely it is to have a positive label.

Next, we derive that our expectation pooling is equivalent to the ex-
pectation of the log probability of the motif in sequence Xi given a¼ em:

pooling value

¼
X

j

convðXijÞ
expðmðconvðXijÞ � convðXiÞÞÞP
k expðmðconvðXikÞ � convðXiÞÞÞ

¼
X

j

½logðPrðXi;Zi ¼ jjMÞÞ þ constant� PrðXi;Zi ¼ jjMÞP
k Pr ðXi;Zi ¼ kjMÞ

/
X

j

½logðPrðXi;Zi ¼ jjMÞÞ þ constant�PrðXi;Zi ¼ jjMÞ

¼ E
j�Zi

logðZijÞ þ constant

(8)

Equation 8 shows that the output of the expectation pooling is
proportional to the expectation of the motif in a sample when m is
appropriate from the statistical model perspective. Similar to the
E-step of the EM algorithm, which utilizes a distribution of Zi and
the calculation expectations combined with the distribution, expect-
ation pooling not only considers the highest peak of the score curve
but also considers every other score (see Fig. 1(b)) but with less em-
phasis. In contrast, max pooling considers only the highest score,
which can be affected by false positives caused by random fluctua-
tions of the background distribution (see Fig. 1(b)). Given the short
lengths of sequence motifs, there is a high probability that a high
score will correspond to the real PWM by coincidence given the
background distribution for negative samples.

However, calculating the expected value directly leads to
underestimation and requires excessive computation, which is not

desirable if many more kernels are utilized. To solve this problem,
we conduct local max pooling (i.e., the first sublayer of expectation
pooling) before calculating the expected value. Furthermore, local
max pooling filters the majority of small scores, which offsets the
disadvantage of taking the expectation of all the scores and leads to
a phenomenon referred to as ‘trimming the hills and filling the
valleys’.

After local max pooling, the probability (i.e., the weight) set for
each score is an exponent (i.e., weight), exp fmðBi � �BÞg without
normalization, in which m is an adjustable parameter. Thus, if m
tends toward infinity or zero, expectation pooling will obviously be
reduced to either max pooling or average pooling, respectively,
which also shows that our expectation pooling is an improvement
from a probability viewpoint, but differs from stochastic pooling
due to its forms of expectation.

4.2 Benefits of expectation pooling
We know that the Gaussian mixture model is often referred to as a
soft clustering method, while K-means is comparatively hard
(Friedman et al., 2001; MacQueen et al., 1967) because the
Gaussian mixture model does not directly yield sample labels
according to the minimal distance; instead, it applies labels from the
viewpoints of probability and expectation. Actually, expectation
pooling inherits ideas from the Gaussian mixture model and it yields
a ‘soft’ maximum of the scores while pooling.

Expectation pooling provides two main benefits. On one hand,
expectation pooling considers all the scores rather than only the
maximal score, which improves model robustness. This point is sig-
nificant because a motif-detection model is a probabilistic model
with high randomness. For example, for one positive and one nega-
tive sample, if the highest scores of a kernel of two models are nearly
the same, the outputs of expectation pooling are obviously

Fig. 6. Motifs recovered by our model (middle column) and by CNNs with global max pooling (top column) compared to the true motifs (bottom column). As a result, the

E-values of the motifs recovered by our model are 2:04� 10�19; 1:66� 10�8, respectively, while the ones recovered by CNNs with global max pooling are

1:59� 10�17; 2:55� 10�6, respectively. (a) Global max pooling, (b) Expectation pooling, (c) Real motifs, (d) Global max pooling (e) Expectation pooling (f) Real motifs
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distinguishable when the positive sample has more high scores.
On the other hand, expectation pooling can be shown to play a role
in reducing overfitting. Overfitting is a modeling error that occurs
when a function is too closely fit to a limited set of data points.
It has been shown that max pooling has the drawback of overfitting
easily, while average pooling avoids this problem. Consequently,
our neural network models do not overfit easily without a dropout
layer (Srivastava et al., 2014) for regularization, which is essential
for DeepBind. Actually, our method of pooling combines average
pooling with max pooling in a reasonable way whose probability in-
terpretation corresponds to that of the EM algorithm.

The first sublayer of expectation pooling is also essential not
only for reducing calculation time but also for overcoming the draw-
back of the underestimation of the second sublayer, which can occur
because many zero elements are included in the scores after ReLU
activation. From a statistical viewpoint, it is abnormal to regard two
close positions as two different motif start positions and to consider
their scores twice. As a result, expectation pooling is a balanced glo-
bal max pooling with clear interpretability.

4.3 Summary
In this article, we introduced a novel pooling method, termed expect-
ation pooling, to improve the performance of DNA sequence-related
prediction tasks. Expectation pooling is divided into two sublayers, a
local max pooling layer and a ‘dense’ layer without additional hyper-
parameters (other than m). Expectation pooling is a novel combin-
ation of average pooling and max pooling, and its performance in
other fields should be investigated. In this article, we show that ex-
pectation pooling improves model performance compared with global
max pooling. Our method improves the performance only from the
aspect of the meaning of the model results—without increasing
parameters or requiring data augmentation and allows the neural net-
work model to be related to a probabilistic model.

In addition to the experimental results presented here, expect-
ation pooling is more suitable for the model of motif finding from
two perspectives: those of deep learning and those of statistical mod-
els. From a statistical perspective, expectation pooling actually cal-
culates the expectation of kernel scores; it is evident that expectation
pooling matches what MEME does better than does max pooling.
From the of deep learning perspective, the drawback of max pooling
is overfitting and overestimation, while the drawback of global aver-
age pooling is underestimation. Thus, we combine these two pooling
methods to introduce our new expectation pooling method.
Additionally, considering all the scores improves our model’s ro-
bustness. From the analysis above, the experimental performances
are expected and can be interpreted from many aspects.

We also considered probabilistic pooling methods, which yield a
random largest score rather than a weighted average of the large
scores. Probabilistic pooling means that we consider the weight to be
the probability selected as the final output. Actually, our expectation
pooling uses the output expectation for convenience and robustness
without randomness, which is how ‘expectation’ is formed. Thus, our
results tend to be more stable and robust. However, we believe that
the probabilistic pooling mentioned above can be utilized during the
training process, for example, in dropout (Srivastava et al., 2014), to
enhance regularization and prevent CNNs from overfitting.

The motif finding problem remains unsolved. Deep learning is
magical when dealing with large datasets and intricate structures,
and it has dramatically improved the state-of-the-art in many fields.
Neural networks have achieved numerous successes, such as
DeepBind (Alipanahi et al., 2015) for motif inference. Nevertheless,
despite its great achievements, deep learning is also blamed for its
lack of interpretability (Castelvecchi, 2016; Zou et al., 2019).
Recently, many novel neural networks (He et al., 2016) have been
proposed based on intuition rather than through logical derivation.
Because the original models we utilized are simple and related to the
probabilistic model of motif finding, expectation pooling is a natural
improvement informed by the probabilistic model utilized in MEME
(Bailey et al., 2006). Obviously, global max pooling does not match
the statistical model particularly well; thus, we add the idea of ex-
pectation to the model. As mentioned before, expectation pooling is

a promising modification of global max pooling that transitions
from ‘hard’ pooling to ‘soft’ pooling from a statistical viewpoint.
We believe that the problem of motif finding implies a simple statis-
tical model and consequently, that simple neural network models
can be applied to analyze this problem. Under simple models, statis-
tical methods can be utilized reasonably while still obtaining some
seemingly magical performances. Finally, the interpretation of ex-
pectation pooling enhances model understanding; therefore, we re-
cover more accurate motifs as expected.

Recently, many works have been conducted to investigate the in-
terpretation of neural networks and to improve the prediction accur-
acy in the motif-finding field (Cao and Zhang, 2018; Pan and Shen,
2018; Pan et al., 2018; Zuallaert et al., 2018). These works have
given us more knowledge about the CNNs utilized in these models.
Moreover, many recent statistical methods such as clustering have
also been used to construct successful motif-finding applications
(Munteanu et al., 2018). These works inspired us to combine statis-
tical models with motif finding rather than experiment blindly with
new deep learning models. From a statistical viewpoint, many novel
and reasonable technologies may be proposed for this problem and
utilized in deep learning, such as dropout and expectation pooling.
Furthermore, our pooling method has a significant statistical rela-
tionship with the EM algorithm, which gives our model better inter-
pretability. Better interpretability, we believe is more impactful than
experimental performance because it allows us to understand bio-
logical models from their statistical models and provides interesting
ideas from a probability viewpoint. Our work in this article is gener-
ally instructive for applications of statistical methods in the motif-
finding field. We believe that statistical methods combined with
deep learning forms a substantial advancement by will making deep
learning an even more powerful tool for bioinformatics.
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