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Abstract: MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting
hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, reg-
ulates the development of primary organic solid tumors through DNA methylation mechanisms.
However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we
used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions
(DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found
that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat
diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG
methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs),
promoters and hypermethylation in CGI shores, 5′UTRs, exons, introns, 3′UTRs, and repeat regions.
A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethyla-
tion and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism
pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A
dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline
dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In
summary, we are the first to report the change in whole-genome methylation levels by miR-143-null
through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment
in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for
liver damage-associated diseases and hepatocellular carcinoma.
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1. Introduction

MiR-143-encoding genes are highly conserved and located on the fifth autosome [1].
MicroRNAs (miRNAs) are endogenous short single-stranded non-coding RNA molecules,
found in eukaryotic cells, that range in lengths from 18 to 25 nt [2,3]. MiRNAs have been
found to play a crucial role in the regulation of all major cellular functions, including
cell proliferation, differentiation, and apoptosis, which are involved in various human
diseases [4]. MiR-143 is widely distributed in mammalian tissues and serves an impor-
tant role in a number of physiological processes, such as adipocyte and smooth muscle
differentiation [5–7], tumorigenesis suppression [8], DNA methylation [9–12] and devel-
opment of tissues and organs [13]. MiR-143 has been reported as a biomarker for the late
stages of hepatocellular carcinoma and liver fibrosis [14,15]. MiRNA degrades the target
mRNA, or inhibits its translation, by combining with the seed region in the 3′ UTR of the
target mRNA, hence being able to regulate physiological or biochemical processes [16].
MiR-143 enhances hepatocarcinoma metastasis by repressing fibronectin expression [17].
MiR-143 plays a role as tumor suppressor via inhibiting hepatoma cell proliferation [18–21].
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MiR-143 induces apoptosis of liver carcinoma cells through the regulation of the NF-κB
pathway [22]. Bone marrow macrophage-derived exosomal miR-143-5p induces insulin
resistance in hepatocytes through repressing mitogen-activated protein kinase phosphatase-5
(MKP5) [23]. Overexpression of miR-143 inhibits insulin-stimulated AKT activation and
impairs glucose metabolism by targeting oxysterol-binding protein related protein (ORP8) in
the liver of obese mice models [24]. However, these data have not been investigated for
DNA methylation in those studies.

Many studies have shown that miRNAs are involved in epigenetic modifications [25–29].
Epigenetic modifications such as methylation/demethylation have been shown to be
involved in metabolism and diseases of the liver [30]. The definition of epigenetic modifica-
tion is the heritable change in gene expression or function without alterations in the DNA
sequence [31,32]. One of the most widely studied epigenetic modifications is DNA methyla-
tion [33]. DNA methylation plays an important role in regulating chromatin structure and
therefore regulating gene expression. Generally, DNA methylation is a process that trans-
fers a methyl group to the 5′ position of cytosine to form 5-methylcytosine (5mC), catalyzed
by DNA cytosine-5-methyltransferases (DNMTs) [34]. In mammalian cells, DNA methylation
occurs on the 5′ position of cytosine and almost exclusively on cytosine-guanine dinu-
cleotides (CpG) [35]. DNA methylation usually suppresses gene expression, whereas DNA
demethylation can lead to the reactivation and expression of the gene or the activation of
translocation [36]. Various physiological or biochemical processes are regulated by specific
DNA methylation patterns including transcription silencing, transposon repression, cell
differentiation, genomic imprinting, the inactivation of the X chromosome and the regula-
tion of tissue-specific gene expression [37]. Therefore, DNA methylation plays a critical
role in the regulation of gene expression, genomic DNA stability, cell proliferation, and
malignant transformation [38]. The alteration of DNA methylation modification in chronic
liver disease progression is important and helpful to find biomarkers of liver disease in
clinical diagnosis and therapies [39].

Previous researches have shown that DNMT3a, a DNA methyltransferase contributing
to de novo methylation, is a target of miR-143 [9–12]. These studies have reported on solid
tumors of primary organs other than the liver. Recently, some studies have investigated the
epigenetic alterations induced by chemicals and toxicants which mediate the alteration of
the expression levels of miRNAs and the DNA methylation trying to integrate these differ-
ent epigenetic modifications and associate them with the development of diseases [40–42].
However, the effect of miR-143 on whole-genome methylation is unclear in mice liver, such
as the change in methylation level in the liver genome, the differentially methylated regions
(DMRs) and DMR-related genes and their enriched pathways.

Bioinformatics is an interdisciplinary subject that includes the life sciences, mathemat-
ics, and computer science [43]. Its research methods are used for mining and understanding
the biological significance contained in massive data through various technologies and
tools of computer science, biology and mathematics [44]. Many studies have shown that
bioinformatics-based DNA methylation analysis is widely used for the identification of
multiple human diseases, malignant tumor diagnosis, biomarker screening and targeted
therapy [45–50]. The gold-standard method for quantitative interrogation of the methy-
lation state of all CpG dinucleotides in a genome is Whole-Genome Bisulfite Sequencing
(WGBS) [51]. WGBS is an unbiased method for genome-wide DNA methylation profil-
ing [52]. Clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-
associated protein 9 (Cas9)-mediated genome modification is a rapid and efficient tool for
editing the genomes of a variety of organisms [53,54]. This technique is widely used to
explore developmental mechanisms, gene function and expression regulation, etc. [55,56].

In this study, we used CRISPR/Cas9 to generate miR-143 knock-out (KO) transgenic
mice to explore the roles of miR-143 on DNA methylation by Whole-Genome Bisulfite
Sequencing. Our goal is to dissect the differentially methylated regions and decipher
the correlation of miR-143 and DNA methylation and how they regulate genomic gene
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expression and explore the role in liver disease to provide an experimental basis for clinical
diagnosis and treatment.

2. Results
2.1. Identification of Transgenic Mice

As shown in Figure 1, the electrophoretic bands and gene sequence alignment show
that an ~105 bp fragment containing miR-143-encoding gene was deleted in miR-143 KO
mice. MiR-143 was not expressed in miR-143 KO mice liver (Figure 1D). The above results
showed that miR-143 transgenic mice were established successfully.
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Figure 1. Identification of transgenic mice. (A) The schematic diagram of transgenic mice. (B) The electrophoretic bands of
miR-143 KO mice and WT mice after gDNA PCR. (C) Gene sequence alignment of miR-143 KO mice and WT mice. (D) The
relative expression levels of miR-143 in the liver of WT and miR-143 KO mice. (* p < 0.05, ** p < 0.01, n = 8).

2.2. WGBS Roundup

A total of 242.21 Gb data and 807,355,041 reads were obtained by Whole-Genome
Bisulfite Sequencing (WGBS). Strict quality control was conducted for each sample to
evaluate whether the sequencing data are qualified. After quality control, 789,789,445 clean
reads (215.31 Gb) were obtained, and 68.13% (WT), 72.41% (KO) of the clean reads were
uniquely mapped to the mouse reference genome (Mus musculus, GRCm38.p6; https://www.
ncbi.nlm.nih.gov/genome/?term=Mus+musculus, accessed date: 6 April 2019). In the
methylation assay, one of the important indicators to evaluate the sequencing depth is the
level of cytosine (C) sites coverage. The average C site was 10,010.9 (WT), 11,945.9 (KO) Mb
and 383.3 (WT), 462.4 (KO) Mb CG sites (Table 1). The coverage rate for each chromosome
and the coverage of C sites in each context (CG, CHH, and CHG) were uniform in WT and
KO sample (Figure 2A–F). The DNA methylation density and DNA methylation level are
shown in Figure 2G,H. We calculated the methylation level of each C site, and we found
that there were 1,143,203,528 C sites in the mouse genome, 32,321,811 (2.82%) methylated
in the WT group, and 34,460,213 (3.01%) methylated in the KO group. Under a HFD diet,
the methylated C sites consisted of 93.73% mCG, 1.04% mCHG, and 5.22% mCHH in
the WT group (Figure 2I). However, after miR-143 KO, the methylated C sites included

https://www.ncbi.nlm.nih.gov/genome/?term=Mus+musculus
https://www.ncbi.nlm.nih.gov/genome/?term=Mus+musculus


Int. J. Mol. Sci. 2021, 22, 13075 4 of 18

92.29% mCG, 1.29% mCHG, and 6.41% mCHH (Figure 2J). Compared with the WT group,
methylated cytosines increased by 0.19% in the KO group.

Motif analysis is important in the determination of DNA-protein binding sites. For
each sequence context (CG, CHG, and CHH), we analyzed its genome-wide environmental
site information and the methylated site sequence information (9 bp including sites) to
determine the enrichment of particular local sequences [57]. We found a prominent CAG
and a CAC sequence motif at the CHG and CHH methylated sites, respectively (Figure 3).
This result is consistent with previous findings reported in mammals [58,59].

The distribution of 5-methylcytosine level in sequence contexts, gene density and
DNA methylation level across chromosomes in the liver of the WT and KO groups were
shown in Figure 4A–D. Compared with the WT group, the CG methylation patterns of
the KO groups showed lower CG methylation levels in CG islands (CGI) and promoters,
and hypermethylation in CGI shores, 5′UTRs, exons, introns, 3′UTRs, and repeat regions
(Figure 4E). CG methylation density in regions except CGI were lower in the KO group
than in the WT group (Figure 4F). In the contexts of both CHG and CHH, the patterns of
methylation level and density in the CGIs, CGI shores, promoters, 5′UTRs, exons, introns,
3′UTRs and repeat regions were largely different between KO and WT group. The heat map
showed the methylation levels in the gene functional regions in the WT and KO groups
(Figure 4G–I).

Table 1. The overview of output data by Whole-Genome Bisulfite Sequencing.

Samples WTC KOC

Raw Reads 389,070,805 418,284,236
Raw Bases(G) 116.72 125.49
Clean Reads 380,970,003 408,819,442

Clean Bases(G) 104.02 111.29
Clean_ratio (%) 89.12 88.68

Q20(%) 96.36 96.32
Q30(%) 89.63 89.48

GC Content (%) 21.46 21.69
BS Conversion Rate (%) 99.802 99.807

Mapped Reads 259,554,863 296,026,157
Unique Mapping Rate (%) 68.13 72.41

Duplication Rate (%) 19.17 15.13
Number of Sites 2,467,496,725 2,469,014,115
1× Coverage (%) 87.53 87.59
5× Coverage (%) 83.58 84.04
10× Coverage (%) 79.02 80.62

C(Mb) 10,010.9 11,945.9
CG(Mb) 383.3 462.4

CHG(Mb) 2150.3 2594.3
CHH(Mb) 7477.2 8889.3
MeanC (%) 3.32 3.39

MeanCG (%) 74.71 74.99
MeanCHG (%) 0.45 0.47
MeanCHH (%) 0.49 0.52

2.3. Characterization of DMRs

A total of 984 DMRs were compared in the WT and KO groups, in which 559 hyper-
methylation and 425 hypomethylation DMRs were found in the liver of KO mice compared
with WT mice. A heat map was generated by a cluster analysis of DMRs between the
WT and KO groups (Figure 5A). The length distribution of DMRs ranged from dozens to
hundreds of nucleotides and complied with the Gaussian distribution (Figure 5B), which is
consistent with previous studies [60,61]. Violin boxplot was used to plot mean methylation
levels, which showed that DMR methylation levels were mostly at medium level and not
at low or high levels, and the mean methylation level was higher after miR-143 knock-out
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(Figure 5C). The distribution of the DMR-anchored region was shown in Figure 5D. The
results showed that DMRs were mainly distributed in the CGIs, exons and introns. A
Circos plot was drawn to show the distribution and statistical significance of DMRs in each
chromosome (Figure 5E).
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2.4. Functional Enrichment Analysis: Gene Ontology (GO)

Genes that overlap with DMRs for at least 1 bp in the functional region are known
as the DMR-related genes. According to DMR genome position, DMR-related genes were
annotated in Supplemental Table S1. Results showed that hypermethylated DMRs were
associated with 475 genes and hypomethylated DMRs were associated with 353 genes.
Gene Ontology (GO, http://www.geneontology.org/, accessed date: 7 April 2019) is an
international standardization of gene function classification system [62]. Based on the
Wallenius non-central hypergeometric distribution, GO enrichment analysis of the DMR-
related genes was implemented by the GOseq [63]. Results of GO enrichment analysis of
the DMR-related genes was showed in Supplemental Table S2. As shown in Figure 5F, most
of DMR-related genes were enriched significantly in the single-organism biologic process
of the GO (GO:0044699, p = 3.05 × 10−6). Moreover, a lot of DMR-related genes were
involved in cellular metabolic biologic process (GO:0044237, p = 8.71 × 10−6). We then
noticed that many DMR-related genes were also involved in cellular developmental process
(GO:0048869, p = 5.77 × 10−9) and cell differentiation (GO:0030154, p = 1.11 × 10−9). For

http://www.geneontology.org/
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molecular function analysis, a great many of DMR-related genes were enriched in binding
(GO:0005488, p = 3.04 × 10−10) and protein binding (GO:0005515, p = 9.93 × 10−7).

2.5. KEGG Pathway Enrichment Analysis

In the organism, different genes coordinate with each other to exercise their biological
functions [64]. Through the significant enrichment of specific metabolic pathways, we can
determine the biochemical metabolic pathways and signal transduction pathways that
may be in association with DMR-related genes. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) is the major public pathway-related database [65]. Hypergeometric test
was used to find significantly enriched KEGG pathways associated with DMR-related
genes (Supplemental Table S3). As shown in Figure 5G, we found that DMR-related genes
were enriched in metabolism pathways such as purine metabolism (3 hypermethylation
and 9 hypomethylation genes, including phosphoribosyl pyrophosphate synthetase 2 (Prps2)),
carbon metabolism (5 genes is hypermethylation and 3 hypomethylation, including serine
hydroxymethyltransferase 2 (Shmt2), and acyl-Coenzyme A dehydrogenase medium chain (Acadm))
and arginine and proline metabolism (5 hypermethylation and 1 hypomethylation genes,
including spermine synthase (Sms), and proline dehydrogenase 2 (Prodh2)). We also noticed that
apoptosis-related pathways (2 hypermethylation and 4 hypomethylation genes) including
B cell leukemia/lymphoma 2 (Bcl2) and interleukin-1 receptor-associated kinase 1 (Irak1) and
infectious disease were involved.

2.6. The Expression of DMR-Related Genes at mRNA Level

To verify the WGBS results, four DMR-related genes were randomly selected from the
metabolism pathways and apoptosis pathway. As shown in Supplemental Table S1, Irak1
and Bcl2 are hypomethylated DMR-related genes while Prps2 and Shmt2 are hypermethy-
lated DMR-related genes. The results of qPCR shown that Prps2 (Figure 6A) and Shmt2
(Figure 6B) were significantly downregulated in the liver of KO mice, compared with WT
mice. Compared with the WT group, Bcl2 (Figure 6D) was upregulated in the KO group
(p = 0.173). The qPCR results correspond with WGBS.
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of the methylation levels of mCG (G), mCHG (H), and mCHH (I) in the gene functional regions.
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3. Discussion and Conclusions

It is well known that miRNAs degrades mRNA or inhibits its translation by binding
to the 3′-UTR regions of the mRNA transcript. Recently, some studies have investigated
the epigenetic alterations induced by chemicals and toxicants which mediate the alter-
ation of the expression levels of miRNAs and the DNA methylation trying to integrate
these different epigenetic modifications and associate them with the development of dis-
eases [40–42]. We are the first to report that the whole-genome methylation level could
be influenced by miR-143 loss in mice liver via WGBS. In the methylation assay, one of
the important indicators to evaluate the sequencing depth is the level of coverage of cy-
tosine (C) sites. In our study, the average C site was 10,010.9 (WT), 11,945.9 (KO)Mb and
383.3 (WT), 462.4 (KO)Mb CG sites (Table 1). In mammalian cells, DNA methylation occurs
on the 5′ position of cytosine and almost exclusively on cytosine-guanidine dinucleotides
(CpG) [35]. In plant cells, DNA methylation also occurs on CHH and CHG (H=A, C, T)
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besides CpG [66]. The coverage rate for each chromosome and the coverage of C sites in
each context (CG, CHH, and CHG) were uniform in WT and KO sample (Figure 2A–F).
These data showed that the sequencing quality conformed in each sample. We found that
methylated cytosines increased by 0.19% after miR-143 knock out. Lai et al. showed that the
level of global DNA methylation is significantly lower in non-alcoholic fatty liver disease
(NAFLD) patients than in non-NAFLD overweight participants [30]. Furthermore, the
level of global DNA methylation in the liver tends to decrease with the increase in hepatic
inflammation and fibrosis grade and disease progression [67].

Motif represents the base distribution characteristics of a 9 bp sequence upstream
and downstream including mC sites. It can be a conserved sequence and may play a key
role in the regulation of gene expression. Motif analysis is important in the discovery of
DNA-protein binding sites. We found a prominent CAG and CAC sequence motif at the
CHG and CHH methylated sites, respectively (Figure 3). This result is consistent with a
previous findings reported in mammals [58,59].

In mammals, the liver is the center of glucose and lipid metabolism [68]. We found
that DMR-related genes were enriched in lipid metabolism. Normal lipid metabolism
is particularly important for normal liver function. Abnormal liver functions such as
hepatic steatosis causes NAFLD, which leads extensive inflammation, hepatocyte apoptosis
and liver damage, subsequently leading to progressive fibrosis and cirrhosis [69]. We
also noticed that DMR-related genes were enriched in apoptosis pathways. In healthy
conditions, apoptosis play a critical role in maintain equilibrium between cell loss and
replacement [70]. However, abnormal apoptosis such as cirrhosis is the key mechanism
of many diseases. Irak1 is the one of the DMR-related genes enriched in apoptosis. Irak1
can regulate apoptosis by PI3K/Akt pathway [71]. On the other hand, miR-143 can regulate
apoptosis via targeting Bcl2 [72–74]. Therefore, miR-143 might be involved in the regulation
of apoptosis by directly targeting apoptosis-related genes and changing the methylation
level of functional genes.

We found that DMR-related genes were enriched in many pathways of amino acid
metabolism. The metabolism of amino acids includes two aspects. On the one hand,
amino acids are mainly used to synthesize proteins, polypeptides and other nitrogen-
containing substances. On the other hand, it can be decomposed into alpha-ketoacids,
amines and carbon dioxide through deamination, transamination, combined deamination
or decarboxylation. The metabolites of amino acid can supply the cell with energy and
furnishes carbon skeletons for biosynthesis. Shmt2 is the key enzyme in glycine synthesis
flues by serine [75]. Many studies have shown that Shmt2 play a key role in tumor
development and prognosis [76–78]. Rapidly growing tumors cells have large energy
demands that could be provided by metabolites of amino acids. Furthermore, many studies
suggest that miR-143 is associated with the occurrence and development of many types
of cancer [79–82]. Therefore, miR-143 might be involved in the regulation of occurrence
and development of many types of cancer by the changing of amino acid metabolism, and
may be a biomarker in some cancer diagnosis [14,15]. Many studies have demonstrated
that RAS genes are important targets of miR-143 [83–93]. RAS are well known as proto-
oncogenes, which code three distinct genes (KRAS, NRAS and HRAS) and four distinct
proteins (KRAS4A, KRAS4B, NRAS and HRAS) [94]. Since RAS genes play a key role in
multiple tumor pathogeneses, they are potential therapeutic targets for multiple tumors.
So, miR-143 may provide a new therapeutic approach in multiple tumors.

KEGG pathway enrichment analysis of DMR-related genes also showed that purine
metabolism was altered by the change in methylation level of related functional genes.
Prps is one of the key enzymes in purine metabolism. The synthesis of phosphoribosyl-
pyrophosphate, which is a substrate for purine and pyrimidine nucleoside and nucleotide
synthesis, is catalyzed by Prps. Purine is an important base compound of nucleic acid,
and the end product of its metabolism in vivo is uric acid. The abnormal metabolism of
purine nucleotides is the basis of some diseases and the target of their treatment. Uric
acid has been found being a prooxidant, and contributes to tumorigenesis via reactive
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oxygen species and inflammatory stress [95,96]. Previous studies have shown that uric acid
induces hepatocyte fat accumulation [97], development of non-alcoholic fatty liver disease
(NAFLD) [97–101], liver cirrhosis [102,103] and hepatocellular carcinoma [96,104]. In this
study, we found that miR-143 loss inhibited purine synthesis in the liver. Therefore, miR-143
may provide a therapeutic target for the treatment of liver damage-associated diseases
and hepatocellular carcinoma, but more detailed studies, such as signaling pathways,
epigenetic modifications, and enzyme regulation, need to be explored further.

With their unique properties, including low immunogenicity, innate stability, high
delivery efficiency, and lipophilic properties, exosomes exhibit great promise as an endoge-
nous nano drug delivery system for delivering drugs to target tissues [105]. A number of
studies have shown the significance of exosomes in the development and treatment of mul-
tiple disease [106–112]. We can engineer and express a single-chain-variable fragment of a
high-affinity target-specific monoclonal antibody on the exosome’s surface. Subsequently,
the engineered exosomes were loaded with miR-143 and then used for the treatment of
corresponding disease. Furthermore, we can encapsulate the eukaryotic expression plas-
mids of miR-143 to make oral nanoparticles and applied to the treatment of some disease as
described by Bao et al. [113]. Additionally, phytochemicals may provide a potential clinical
therapeutic due to the ability of induce the expression of miR-143; for example, curcumin
has been shown to significantly induce miR-143 in cancer cells [114–116].

In conclusion, we are the first to report that the whole-genome methylation level
could be influenced by miR-143 knock-out in mice liver via WGBS, and we found that
the methylation levels of many metabolic pathway-related genes were altered by miR-143
knock out. Furthermore, miR-143 may provide therapeutic targets for the treatment of
liver damage-associated diseases and hepatocellular carcinoma, and may be a biomarker
in some cancer diagnoses.

4. Materials and Methods
4.1. Sample Collection and Processing

The experiments using mouse materials were approved by South China Agricultural
University. Global miR-143 knock-out mice (FVB) were generated by Cyanogen Biosciences
(Guangzhou, China) using CRISPR/CAS9 technique. A 104 bp region in the site of 5P
and 3P of Mir-143 was missing in chromosome 18 GRCm8.p6 and PCR was conducted to
verify the transgenic mice (F 5′-TGGGTGGGTCTATCACAAGAAAGC-3′ and R 5′- GACCA-
GAGCTTACTGTTGTAGAGGGC -3′). Wild-type (WT) and miR-143 knock-out (143KO)
male mice were fed a high-fat diet (D12492) at 4 weeks of age. The diets were provided by
the Guangdong Medical Laboratory Animal Center. A previous study reported that when
samples were sequenced as a pool, the estimates were generally accurate, compared with
separately determined samples [117]. Therefore, three individuals were mixed together for
one sample in both WT and KO groups.

Total genomic DNA was isolated and purified from frozen mouse liver tissue by
SDS-protease K treatment, phenol extraction, and ethanol precipitation. Genomic DNA
degradation and contamination was monitored on 1% agarose gels. DNA purity was
checked using the NanoPhotometer® spectrophotometer (IMPLEN, Calabasas, CA, USA).
DNA concentration was measured using Qubit® DNA Assay Kit in Qubit® 2.0 Flurometer
(Life Technologies, Calabasas, CA, USA).

4.2. Library Preparation and Quantification

A total amount of 5.2 µg genomic DNA spiked with 26 ng lambda DNA was frag-
mented by sonication to 200–300 bp with Covaris S220, followed by end repair and adenyla-
tion. Cytosine-methylated barcodes were ligated to sonicated DNA as per manufacturer’s
instructions. Then, these DNA fragments were treated with bisulfite twice using EZ DNA
Methylation-GoldTM Kit (Zymo Research Corporation, Irvine, CA, USA), and the resulting
single-strand DNA fragments were PCR amplificated using KAPA HiFi HotStart Uracil
+ ReadyMix (2X). Library concentration was quantified by Qubit® 2.0 Flurometer (Life
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Technologies, Calabasas, CA, USA) and quantitative PCR, and the insert size was assayed
on Agilent Bioanalyzer 2100 system.

4.3. Data Analysis

After cluster generation, the library preparations were sequenced at Novogene Bioin-
formatics Institute (Beijing, China) on Illumina Novaseq platform and 125/150 bp paired-
end reads were generated. Image analysis and base calling were performed with Illumina
CASAVA pipeline, and finally 125/150 bp paired-end reads were generated.

4.4. Quality Control

First, we used FastQC (fastqc_v0.11.5) to perform basic statistics on the quality of the
raw reads. Then, those reads produced by the Illumina pipeline in FASTQ format were pre-
processed through Trimmomatic (Trimmomatic-0.36) software using the given parameters
(SLIDINGWINDOW: 4:15; LEADING:3, TRAILING:3; ILLUMINACLIP: adapter.fa: 2:30:10;
MINLEN:36).

The remaining reads that passed all the filtering steps were counted as clean reads
on which all subsequent analyses were based. At last, we used FastQC to perform basic
statistics on the quality of the clean data reads.

4.5. Reference Data Preparation before Analysis

Before the analysis, we prepared the reference data for the species we study, which
includes the reference sequence fasta file, the annotation file in gtf format, the GO anno-
tation file, the description file and the gene region file in bed format. As for the bed files,
we predicted repeats by RepeatMasker, followed by getting CGI track from a genome
use cpgIslandExt.

4.6. Reads Mapping to the Reference Genome

Bismark software (version 0.16.3; [118]) was used to perform alignments of bisulfite-
treated reads to a reference genome (-X 700 –dovetail). The reference genome was firstly
transformed into bisulfite-converted version (C-to-T and G-to-A converted) and then
indexed using bowtie2 [119]. Sequence reads were also transformed into fully bisulfite-
converted versions (C-to-T and G-to-A converted) before being aligned to similarly con-
verted versions of the genome in a directional manner. Sequence reads that produced the
best and unique alignment from the two alignment processes (original top and bottom
strand) were then compared to the normal genomic sequence and the methylation state of
all cytosine positions in the read was inferred. The same reads that aligned to the same
regions of genome were regarded as duplicated ones. The sequencing depth and coverage
were summarized using deduplicated reads.

The results of methylation extractor (bismark_methylation_extractor, –no_overlap)
were transformed into bigWig format for visualization using IGV browser. The sodium
bisulfite non-conversion rate was calculated as the percentage of cytosine sequenced at
cytosine reference positions in the lambda genome.

4.7. Estimating Methylation Level

To identify the methylation site, we modeled the sum of methylated counts (mC) as a
binomial (Bin) random variable with methylation rate r

mC~Bin (mC + umC × r)

In order to calculate the methylation level of the sequence, we divided the sequence
into multiple bins with the size of 10 kb. The sum of methylated and unmethylated read
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counts in each window was calculated. Methylation level (ML) for each window or C site
shows the fraction of methylated Cs, and is defined as:

ML(C) =
reads(mC)

reads(mC) + reads(C)

Calculated ML was further corrected with the bisulfite non-conversion rate according
to previous studies [120]. Given a bisulfite non-conversion rate r, the corrected ML was
estimated as:

ML(corrected) =
ML− r

1− r

4.8. Differentially Methylated Analysis

Differentially methylated regions (DMRs) were identified using the DSS software [121–123].
The core of DSS is a new dispersion shrinkage method for estimating the dispersion
parameter from Gamma-Poisson or Beta-Binomial distributions.

DSS possesses three approaches to detect DMRs. The first is spatial correlation. Proper
utilization of the information from neighboring cytosine sites can help improve estimation
of methylation levels at each cytosine site, and hence improve DMR detection. Second, the
read depth of the cytosine sites provides information on precision that can be exploited to
improve statistical tests for DMR detection. Finally, the variance among biological replicates
provides information necessary for a valid statistical test to detect DMRs. When there is
no biological replicate, DSS combines data from nearby cytosine sites and uses them as
‘pseudo-replicates’ to estimate biological variance at specific locations. DMRs identification
parameters: smoothing = TRUE, smoothing.span = 200, delta = 0, p.threshold = 0.00001,
minlen = 50, minCG = 3, dis.merge = 100, pct.sig = 0.5.

According to the distribution of DMRs in the genome, we defined the genes related to
DMRs as genes whose gene body region (from TSS to TES) or promoter region (upstream
2kb from the TSS) had an overlap with the DMRs.

4.9. GO and KEGG Enrichment Analysis of DMR-Related Genes

Gene Ontology (GO) enrichment analysis of genes related to DMRs was implemented
by the GOseq R package [63], in which gene length bias was corrected. GO terms with cor-
rected p-value less than 0.05 were considered significantly enriched by DMR-related genes.

KEGG [65] is a database resource for understanding high level functions and utilities of
the biological system, such as the cell, the organism and the ecosystem, from molecular-level
information, especially large-scale molecular datasets generated by genome sequencing
and other high- through put experimental technologies (http://www.genome.jp/kegg/, ac-
cessed date: 7 April 2019). We used KOBAS software [124] to test the statistical enrichment
of DMR related genes in KEGG pathways.

4.10. Gene Expression Analysis by Quantitative RT-PCR

Total RNAs were extracted from the testis and ovary tissue using TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. After treatment
with DNase I (Takara Bio Inc., Shiga, Japan), total RNA (1.5 µg) was reverse-transcribed
to cDNA in a final 20 µL using M-MLV Reverse Transcriptase (Promega, Madison, WI,
USA) plus RNase inhibitor (Promega, Shanghai, China) with oligo-d(T)s or loop as primers.
SYBR Green Real-time q-PCR Master Mix reagents (Promega, Madison, WI, USA), sense
and antisense primers were used for real-time quantitative polymerase chain reaction
(RT-qPCR) analysis, which was performed using CFX96 Touch™ Optics Module instru-
ment (BIO-RAD, California, CA, USA). U6 was used as a candidate housekeeping gene.
The following primers were designed: U6, F 5′-CTCGCTTCGGCAGCACA -3′ and R 5′-
AACGCTTCACGAATTTGCGT-3′; miR-143, loop Primer 5′-GTCGTATCCAGTGCGTGTCG
TGGAGTCGGCAATTGCACTGGATACGACGAGCTA-3′, F 5′-GGGTGAGATGAAGCAC
TG-3′ and R 5′-CAGTGCGTGTCGTGGAGT-3′.

http://www.genome.jp/kegg/
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4.11. Statistical Analysis

All data were expressed as the mean ± standard error of the mean (SEM). Statistical
differences among groups were obtained using T tests (SPSS 22.0, Chicago, IL, USA).
p < 0.05 was considered statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222313075/s1.

Author Contributions: Q.X. and Y.Z. designed and managed the project. X.C. performed the molec-
ular experiments. X.C. and J.L. (Jie Liu) collected biological samples. X.C. wrote and revised the
manuscript. T.C., J.S., Q.X. and J.L. (Junyi Luo) revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by grants from Natural Science Foundation of China program
(31872435, 32072814, 31802156 and 31802032) and the Key Project of Guangdong Provincial Nature
Science Foundation (2018B030311015).

Institutional Review Board Statement: This article does not contain any studies with human par-
ticipants performed by any of the authors and all the animal procedures were conducted under
the protocol (SCAU-AEC-2016-0714, 14 July 2016) approved by Institutional Animal Care and Use
Committee (IACUC) of South China Agricultural University. All animal experiments complied with
the ARRIVE guidelines and carried out in accordance with the U.K. Animals (Scientific Procedures)
Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments. all the ex-
perimental procedures were conducted under the protocol (SCAU-AEC-2015-0127, 27 January 2015)
approved by the Experimental Operations Management Association (EOMA) of South China Agri-
cultural University.

Data Availability Statement: All sequencing raw data sets were deposited into the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database under BioProject acces-
sion number PRJNA71957 (https://dataview.ncbi.nlm.nih.gov/object/PRJNA719576). Sequencing
files can be found under accession number SRR14140298 and SRR14140299.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, B.; Fan, J.; Chen, N. A Novel Regulator of Type II Diabetes: MicroRNA-143. Trends Endocrinol. Metab. 2018, 29, 380–388.

[CrossRef]
2. Tian, T.; Wang, J.; Zhou, X. A review: Microrna detection methods. Org. Biomol. Chem. 2015, 13, 2226–2238. [CrossRef] [PubMed]
3. Zheng, W.; Yao, L.; Teng, J.; Yan, C.; Qin, P.; Liu, G.; Chen, W. Lateral Flow Test for Visual Detection of Multiple MicroRNAs. Sens.

Actuators B Chem. 2018, 264, 320–326. [CrossRef]
4. Zhang, C.Y.; Hu, Y.C.; Zhang, Y.; Ma, W.D.; Song, Y.F.; Quan, X.H.; Guo, X.; Wang, C.X. Glutamine switches vascular smooth

muscle cells to synthetic phenotype through inhibiting miR-143 expression and upregulating THY1 expression. Life Sci. 2021, 177,
119365. [CrossRef] [PubMed]

5. Esau, C.; Kang, X.; Peralta, E.; Hanson, E.; Marcusson, E.G.; Ravichandran, L.V.; Sun, Y.; Koo, S.; Perera, R.J.; Jain, R.; et al.
MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 2004, 279, 52361–52365. [CrossRef] [PubMed]

6. Chen, L.; Hou, J.; Ye, L.; Chen, Y.; Cui, J.; Tian, W.; Li, C.; Liu, L. MicroRNA-143 regulates adipogenesis by modulating the
MAP2K5-ERK5 signaling. Sci. Rep. 2014, 4, 3819. [CrossRef]

7. Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D.
miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460, 705–710. [CrossRef]

8. Liu, J.; Mao, Y.; Zhang, D.; Hao, S.; Zhang, Z.; Li, Z.; Li, B. Retraction notice to “MiR-143 inhibits tumor cell proliferation and
invasion by targeting STAT3 in esophageal squamous cell carcinoma”. Cancer Lett. 2018, 422, 133. [CrossRef]

9. Han, X.; Liu, D.; Zhou, Y.; Wang, L.; Hou, H.; Chen, H.; Zhang, L.; Chen, W.; Li, X.; Zhao, L. The negative feedback between
miR-143 and DNMT3A regulates cisplatin resistance in ovarian cancer. Cell. Biol. Int. 2021, 45, 227–237. [CrossRef]

10. Ng, E.K.; Tsang, W.P.; Ng, S.S.; Jin, H.C.; Yu, J.; Li, J.J.; Rocken, C.; Ebert, M.P.; Kwok, T.T.; Sung, J.J. MicroRNA-143 targets DNA
methyltransferases 3A in colorectal cancer. Br. J. Cancer 2009, 101, 699–706. [CrossRef]

11. Zhang, H.P.; Wang, Y.H.; Cao, C.J.; Yang, X.M.; Ma, S.C.; Han, X.B.; Yang, X.L.; Yang, A.N.; Tian, J.; Xu, H.; et al. A regulatory
circuit involving miR-143 and DNMT3a mediates vascular smooth muscle cell proliferation induced by homocysteine. Mol. Med.
Rep. 2016, 13, 483–490. [CrossRef] [PubMed]

12. Zhang, Q.; Feng, Y.; Liu, P.; Yang, J. MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer.
Tumour. Biol. 2017, 39, 1010428317711312. [CrossRef]

https://www.mdpi.com/article/10.3390/ijms222313075/s1
https://www.mdpi.com/article/10.3390/ijms222313075/s1
https://dataview.ncbi.nlm.nih.gov/object/PRJNA719576
http://doi.org/10.1016/j.tem.2018.03.019
http://doi.org/10.1039/C4OB02104E
http://www.ncbi.nlm.nih.gov/pubmed/25574760
http://doi.org/10.1016/j.snb.2018.02.159
http://doi.org/10.1016/j.lfs.2021.119365
http://www.ncbi.nlm.nih.gov/pubmed/33741416
http://doi.org/10.1074/jbc.C400438200
http://www.ncbi.nlm.nih.gov/pubmed/15504739
http://doi.org/10.1038/srep03819
http://doi.org/10.1038/nature08195
http://doi.org/10.1016/j.canlet.2018.03.021
http://doi.org/10.1002/cbin.11486
http://doi.org/10.1038/sj.bjc.6605195
http://doi.org/10.3892/mmr.2015.4558
http://www.ncbi.nlm.nih.gov/pubmed/26573388
http://doi.org/10.1177/1010428317711312


Int. J. Mol. Sci. 2021, 22, 13075 14 of 18

13. Rani, N.; Nowakowski, T.J.; Zhou, H.; Godshalk, S.E.; Lisi, V.; Kriegstein, A.R.; Kosik, K.S. A Primate lncRNA Mediates Notch
Signaling during Neuronal Development by Sequestering miRNA. Neuron 2016, 90, 1174–1188. [CrossRef]

14. El-Ahwany, E.; Nagy, F.; Zoheiry, M.; Shemis, M.; Nosseir, M.; Taleb, H.A.; El Ghannam, M.; Atta, R.; Zada, S. Circulating miRNAs
as Predictor Markers for Activation of Hepatic Stellate Cells and Progression of HCV-Induced Liver Fibrosis. Electron. Physician
2016, 8, 1804–1810. [CrossRef] [PubMed]

15. Mamdouh, S.; Khorshed, F.; Aboushousha, T.; Hamdy, H.; Diab, A.; Seleem, M.; Saber, M. Evaluation of Mir-224, Mir-215 and
Mir-143 as Serum Biomarkers for HCV Associated Hepatocellular Carcinoma. Asian Pac. J. Cancer Prev. 2017, 18, 3167–3171.
[CrossRef]

16. Ono, K.; Horie, T.; Nishino, T.; Baba, O.; Kuwabara, Y.; Yokode, M.; Kita, T.; Kimura, T. MicroRNA-33a/b in lipid
metabolism—Novel “thrifty” models. Circ. J. 2015, 79, 278–284. [CrossRef]

17. Zhang, X.; Liu, S.; Hu, T.; Liu, S.; He, Y.; Sun, S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances
hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 2009, 50, 490–499. [CrossRef]

18. Tang, H.; Li, X.; Yang, R. Downregulation of microRNA-143 promotes cell proliferation by regulating PKCepsilon in hepatocellular
carcinoma cells. Mol. Med. Rep. 2017, 16, 4348–4354. [CrossRef]

19. Liu, X.; Gong, J.; Xu, B. miR-143 down-regulates TLR2 expression in hepatoma cells and inhibits hepatoma cell proliferation and
invasion. Int. J. Clin. Exp. Pathol. 2015, 8, 12738–12747. [PubMed]

20. Zhang, J.; Huang, J.; Chen, W.; Hu, Z.; Wang, X. miR-143-3p Targets lncRNA PSMG3-AS1 to Inhibit the Proliferation of Hepatocel-
lular Carcinoma Cells. Cancer Manag. Res. 2020, 12, 6303–6309. [CrossRef]

21. Peng, J.; Wu, H.J.; Zhang, H.F.; Fang, S.Q.; Zeng, R. miR-143-3p inhibits proliferation and invasion of hepatocellular carcinoma
cells by regulating its target gene FGF1. Clin. Transl. Oncol. 2021, 23, 468–480. [CrossRef] [PubMed]

22. Zheng, Y.; Yang, F.; Fu, L.; Liu, K. The mechanism of miR-143 inducing apoptosis of liver carcinoma cells through regulation of
the NF-kappaB pathway. Oncol. Lett. 2018, 15, 9567–9571. [CrossRef] [PubMed]

23. Li, L.; Zuo, H.; Huang, X.; Shen, T.; Tang, W.; Zhang, X.; An, T.; Dou, L.; Li, J. Bone marrow macrophage-derived exosomal
miR-143-5p contributes to insulin resistance in hepatocytes by repressing MKP5. Cell Prolif. 2021, e13140. [CrossRef]

24. Jordan, S.D.; Kruger, M.; Willmes, D.M.; Redemann, N.; Wunderlich, F.T.; Bronneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen,
V.M.; Bottger, T.; et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs
glucose metabolism. Nat. Cell Biol. 2011, 13, 434–446. [CrossRef]

25. Zhang, P.; Sun, H.; Yang, B.; Luo, W.; Liu, Z.; Wang, J.; Zuo, Y. miR-152 regulated glioma cell proliferation and apoptosis via
Runx2 mediated by DNMT1. Biomed. Pharm. 2017, 92, 690–695. [CrossRef]

26. Yan, J.; Guo, X.; Xia, J.; Shan, T.; Gu, C.; Liang, Z.; Zhao, W.; Jin, S. MiR-148a regulates MEG3 in gastric cancer by targeting DNA
methyltransferase 1. Med. Oncol. 2014, 31, 879. [CrossRef]

27. Peng, Z.; Zhang, Y.; Shi, D.; Jia, Y.; Shi, H.; Liu, H. miR-497-5p/SALL4 axis promotes stemness phenotype of choriocarcinoma and
forms a feedback loop with DNMT-mediated epigenetic regulation. Cell Death Dis. 2021, 12, 1046. [CrossRef]

28. Wang, L.H.; Huang, J.; Wu, C.R.; Huang, L.Y.; Cui, J.; Xing, Z.Z.; Zhao, C.Y. Downregulation of miR29b targets DNMT3b to
suppress cellular apoptosis and enhance proliferation in pancreatic cancer. Mol. Med. Rep. 2018, 17, 2113–2120. [CrossRef]

29. Chavali, V.; Tyagi, S.C.; Mishra, P.K. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem. Biophys Res.
Commun. 2012, 425, 668–672. [CrossRef] [PubMed]

30. Lai, Z.; Chen, J.; Ding, C.; Wong, K.; Chen, X.; Pu, L.; Huang, Q.; Chen, X.; Cheng, Z.; Liu, Y.; et al. Association of Hepatic Global
DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with NAFLD. Obesity 2020, 28,
197–205. [CrossRef]

31. Tuesta, L.M.; Zhang, Y. Mechanisms of epigenetic memory and addiction. EMBO J. 2014, 33, 1091–1103. [CrossRef]
32. Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [CrossRef]

[PubMed]
33. Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis

pipeline for Illumina BeadChips. Bioinformatics 2017, 33, 3982–3984. [CrossRef]
34. Wu, X.; Li, G.; Xie, R. Decoding the role of TET family dioxygenases in lineage specification. Epigenet. Chromatin 2018, 11, 58.

[CrossRef] [PubMed]
35. Blomen, V.A.; Boonstra, J. Stable transmission of reversible modifications: Maintenance of epigenetic information through the cell

cycle. Cell. Mol. Life Sci. 2011, 68, 27–44. [CrossRef]
36. Lin, T.; Dang, S.; Su, Q.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Lu, Y.; Li, H.; Zhu, Z. The Impact and Mechanism of Methylated

Metabotropic Glutamate Receptors 1 and 5 in the Hippocampus on Depression-Like Behavior in Prenatal Stress Offspring Rats. J. Clin.
Med. 2018, 7, 117. [CrossRef] [PubMed]

37. Li, Y.; Liu, S.; Wang, H.; Mai, H.; Yuan, X.; Li, C.; Chen, X.; Wen, F. Methylation level of CpG islands in GGH gene promoter in
pediatric acute leukemia. PLoS ONE 2017, 12, e0173472. [CrossRef]

38. He, Z.M.; Li, J.; Hwa, Y.L.; Brost, B.; Fang, Q.; Jiang, S.W. Transition of LINE-1 DNA methylation status and altered expression in
first and third trimester placentas. PLoS ONE 2014, 9, e96994. [CrossRef]

39. Li, K.; Qin, L.; Jiang, S.; Li, A.; Zhang, C.; Liu, G.; Sun, J.; Sun, H.; Zhao, Y.; Li, N.; et al. The signature of HBV-related liver disease
in peripheral blood mononuclear cell DNA methylation. Clin. Epigenet. 2020, 12, 81. [CrossRef]

http://doi.org/10.1016/j.neuron.2016.05.005
http://doi.org/10.19082/1804
http://www.ncbi.nlm.nih.gov/pubmed/26955452
http://doi.org/10.22034/APJCP.2017.18.11.3167
http://doi.org/10.1253/circj.CJ-14-1252
http://doi.org/10.1002/hep.23008
http://doi.org/10.3892/mmr.2017.7092
http://www.ncbi.nlm.nih.gov/pubmed/26722463
http://doi.org/10.2147/CMAR.S242179
http://doi.org/10.1007/s12094-020-02440-5
http://www.ncbi.nlm.nih.gov/pubmed/32617870
http://doi.org/10.3892/ol.2018.8486
http://www.ncbi.nlm.nih.gov/pubmed/29844837
http://doi.org/10.1111/cpr.13140
http://doi.org/10.1038/ncb2211
http://doi.org/10.1016/j.biopha.2017.05.096
http://doi.org/10.1007/s12032-014-0879-6
http://doi.org/10.1038/s41419-021-04315-1
http://doi.org/10.3892/mmr.2017.8145
http://doi.org/10.1016/j.bbrc.2012.07.105
http://www.ncbi.nlm.nih.gov/pubmed/22842467
http://doi.org/10.1002/oby.22667
http://doi.org/10.1002/embj.201488106
http://doi.org/10.1038/npp.2012.112
http://www.ncbi.nlm.nih.gov/pubmed/22781841
http://doi.org/10.1093/bioinformatics/btx513
http://doi.org/10.1186/s13072-018-0228-7
http://www.ncbi.nlm.nih.gov/pubmed/30290828
http://doi.org/10.1007/s00018-010-0505-5
http://doi.org/10.3390/jcm7060117
http://www.ncbi.nlm.nih.gov/pubmed/29882864
http://doi.org/10.1371/journal.pone.0173472
http://doi.org/10.1371/journal.pone.0096994
http://doi.org/10.1186/s13148-020-00847-z


Int. J. Mol. Sci. 2021, 22, 13075 15 of 18

40. Giambo, F.; Leone, G.M.; Gattuso, G.; Rizzo, R.; Cosentino, A.; Cina, D.; Teodoro, M.; Costa, C.; Tsatsakis, A.; Fenga, C.;
et al. Genetic and Epigenetic Alterations Induced by Pesticide Exposure: Integrated Analysis of Gene Expression, microRNA
Expression, and DNA Methylation Datasets. Int. J. Environ. Res. Public Health 2021, 18, 8697. [CrossRef]

41. Aure, M.R.; Fleischer, T.; Bjorklund, S.; Ankill, J.; Castro-Mondragon, J.A.; Osbreac; Borresen-Dale, A.L.; Tost, J.; Sahlberg, K.K.;
Mathelier, A.; et al. Crosstalk between microRNA expression and DNA methylation drives the hormone-dependent phenotype of
breast cancer. Genome Med. 2021, 13, 72. [CrossRef]

42. Anwar, S.L.; Lehmann, U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma.
World J. Gastroenterol. 2014, 20, 7894–7913. [CrossRef] [PubMed]

43. Shi, H.; Wu, G.; Zhang, X.; Wang, J.; Shi, H.; Xu, S. Research on Components Assembly Platform of Biological Sequences
Alignment Algorithm. Front. Genet. 2020, 11, 630923. [CrossRef]

44. Wang, G.; Liu, Y.; Zhu, D.; Klau, G.W.; Feng, W. Bioinformatics Methods and Biological Interpretation for Next-Generation
Sequencing Data. Biomed Res. Int. 2015, 2015, 690873. [CrossRef]

45. Ahmed, M.; Goh, C.; Saunders, E.; Cieza-Borrella, C.; Consortium, P.; Kote-Jarai, Z.; Schumacher, F.R.; Eeles, R. Germline genetic
variation in prostate susceptibility does not predict outcomes in the chemoprevention trials PCPT and SELECT. Prostate Cancer
Prostatic Dis. 2020, 23, 333–342. [CrossRef]

46. Oh, J.J.; Shivakumar, M.; Miller, J.; Verma, S.; Lee, H.; Hong, S.K.; Lee, S.E.; Lee, Y.; Lee, S.J.; Sung, J.; et al. An exome-wide rare
variant analysis of Korean men identifies three novel genes predisposing to prostate cancer. Sci. Rep. 2019, 9, 17173. [CrossRef]

47. Aran, V.; Victorino, A.P.; Thuler, L.C.; Ferreira, C.G. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to
Reduce Onset and Mortality. Clin. Colorectal Cancer 2016, 15, 195–203. [CrossRef] [PubMed]

48. Kulasingam, V.; Diamandis, E.P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies.
Nat. Clin. Pr. Oncol. 2008, 5, 588–599. [CrossRef]

49. Bustin, S.A.; Dorudi, S. Gene expression profiling for molecular staging and prognosis prediction in colorectal cancer. Expert Rev.
Mol. Diagn. 2004, 4, 599–607. [CrossRef]

50. Nannini, M.; Pantaleo, M.A.; Maleddu, A.; Astolfi, A.; Formica, S.; Biasco, G. Gene expression profiling in colorectal cancer using
microarray technologies: Results and perspectives. Cancer Treat. Rev. 2009, 35, 201–209. [CrossRef]

51. Wang, Q.; Gu, L.; Adey, A.; Radlwimmer, B.; Wang, W.; Hovestadt, V.; Bahr, M.; Wolf, S.; Shendure, J.; Eils, R.; et al. Tagmentation-
based whole-genome bisulfite sequencing. Nat. Protoc. 2013, 8, 2022–2032. [CrossRef]

52. Ziller, M.J.; Hansen, K.D.; Meissner, A.; Aryee, M.J. Coverage recommendations for methylation analysis by whole-genome
bisulfite sequencing. Nat. Methods 2015, 12, 230–232. [CrossRef] [PubMed]

53. Ma, Y.; Zhang, L.; Huang, X. Genome modification by CRISPR/Cas9. FEBS J. 2014, 281, 5186–5193. [CrossRef]
54. Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.;

et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34,
184–191. [CrossRef]

55. Lentsch, E.; Li, L.; Pfeffer, S.; Ekici, A.B.; Taher, L.; Pilarsky, C.; Grutzmann, R. CRISPR/Cas9-Mediated Knock-Out of Kras(G12D)
Mutated Pancreatic Cancer Cell Lines. Int. J. Mol. Sci. 2019, 20, 5706. [CrossRef] [PubMed]

56. Palinkas, H.L.; Racz, G.A.; Gal, Z.; Hoffmann, O.I.; Tihanyi, G.; Rona, G.; Gocza, E.; Hiripi, L.; Vertessy, B.G. CRISPR/Cas9-
Mediated Knock-Out of dUTPase in Mice Leads to Early Embryonic Lethality. Biomolecules 2019, 9, 136. [CrossRef] [PubMed]

57. Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; et al.
Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [CrossRef]
[PubMed]

58. Zhang, S.; Qin, C.; Cao, G.; Guo, L.; Feng, C.; Zhang, W. Genome-wide analysis of DNA methylation profiles in a senescence-
accelerated mouse prone 8 brain using whole-genome bisulfite sequencing. Bioinformatics 2017, 33, 1591–1595. [CrossRef]

59. Guo, J.U.; Su, Y.; Shin, J.H.; Shin, J.; Li, H.; Xie, B.; Zhong, C.; Hu, S.; Le, T.; Fan, G.; et al. Distribution, recognition and regulation
of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 2014, 17, 215–222. [CrossRef]

60. Wen, Y.; Chen, F.; Zhang, Q.; Zhuang, Y.; Li, Z. Detection of differentially methylated regions in whole genome bisulfite sequencing
data using local Getis-Ord statistics. Bioinformatics 2016, 32, 3396–3404. [CrossRef]

61. Zhao, F.; Wu, W.; Wei, Q.; Shen, M.; Li, B.; Jiang, Y.; Liu, K.; Liu, H. Exogenous adrenocorticotropic hormone affects genome-wide
DNA methylation and transcriptome of corpus luteum in sows. FASEB J. 2019, 33, 3264–3278. [CrossRef] [PubMed]

62. Ulrich, V.; Konaniah, E.S.; Lee, W.R.; Khadka, S.; Shen, Y.M.; Herz, J.; Salmon, J.E.; Hui, D.Y.; Shaul, P.W.; Mineo, C. Antiphos-
pholipid antibodies attenuate endothelial repair and promote neointima formation in mice. J. Am. Heart Assoc. 2014, 3, e001369.
[CrossRef]

63. Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias.
Genome Biol. 2010, 11, R14. [CrossRef] [PubMed]

64. Warren, Y.A.; Citron, D.M.; Merriam, C.V.; Goldstein, E.J. Biochemical differentiation and comparison of Desulfovibrio species and
other phenotypically similar genera. J. Clin. Microbiol. 2005, 43, 4041–4045. [CrossRef]

65. Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.;
et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [CrossRef] [PubMed]

66. Song, Q.; Chen, Z.J. Epigenetic and developmental regulation in plant polyploids. Curr. Opin. Plant Biol. 2015, 24, 101–109.
[CrossRef]

http://doi.org/10.3390/ijerph18168697
http://doi.org/10.1186/s13073-021-00880-4
http://doi.org/10.3748/wjg.v20.i24.7894
http://www.ncbi.nlm.nih.gov/pubmed/24976726
http://doi.org/10.3389/fgene.2020.630923
http://doi.org/10.1155/2015/690873
http://doi.org/10.1038/s41391-019-0181-y
http://doi.org/10.1038/s41598-019-53445-2
http://doi.org/10.1016/j.clcc.2016.02.008
http://www.ncbi.nlm.nih.gov/pubmed/26964802
http://doi.org/10.1038/ncponc1187
http://doi.org/10.1586/14737159.4.5.599
http://doi.org/10.1016/j.ctrv.2008.10.006
http://doi.org/10.1038/nprot.2013.118
http://doi.org/10.1038/nmeth.3152
http://www.ncbi.nlm.nih.gov/pubmed/25362363
http://doi.org/10.1111/febs.13110
http://doi.org/10.1038/nbt.3437
http://doi.org/10.3390/ijms20225706
http://www.ncbi.nlm.nih.gov/pubmed/31739488
http://doi.org/10.3390/biom9040136
http://www.ncbi.nlm.nih.gov/pubmed/30987342
http://doi.org/10.1038/nature08514
http://www.ncbi.nlm.nih.gov/pubmed/19829295
http://doi.org/10.1093/bioinformatics/btx040
http://doi.org/10.1038/nn.3607
http://doi.org/10.1093/bioinformatics/btw497
http://doi.org/10.1096/fj.201801081RRR
http://www.ncbi.nlm.nih.gov/pubmed/30423262
http://doi.org/10.1161/JAHA.114.001369
http://doi.org/10.1186/gb-2010-11-2-r14
http://www.ncbi.nlm.nih.gov/pubmed/20132535
http://doi.org/10.1128/JCM.43.8.4041-4045.2005
http://doi.org/10.1093/nar/gkm882
http://www.ncbi.nlm.nih.gov/pubmed/18077471
http://doi.org/10.1016/j.pbi.2015.02.007


Int. J. Mol. Sci. 2021, 22, 13075 16 of 18

67. Hyun, J.; Jung, Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 8138. [CrossRef] [PubMed]
68. Ma, M.; Duan, R.; Zhong, H.; Liang, T.; Guo, L. The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD.

J. Immunol. Res. 2019, 2019, 3954890. [CrossRef]
69. Zhao, P.; Sun, X.; Chaggan, C.; Liao, Z.; In Wong, K.; He, F.; Singh, S.; Loomba, R.; Karin, M.; Witztum, J.L.; et al. An

AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science 2020, 367, 652–660. [CrossRef]
70. Michalopoulos, G.K.; DeFrances, M. Liver regeneration. Adv. Biochem. Eng. Biotechnol. 2005, 93, 101–134. [CrossRef]
71. Zhang, Y.; Chen, X.; Yuan, L.; Zhang, Y.; Wu, J.; Guo, N.; Chen, X.; Liu, J. Down-regulation of IRAK1 attenuates podocyte

apoptosis in diabetic nephropathy through PI3K/Akt signaling pathway. Biochem. Biophys. Res. Commun. 2018, 506, 529–535.
[CrossRef]

72. Liu, M.; Jia, J.; Wang, X.; Liu, Y.; Wang, C.; Fan, R. Long non-coding RNA HOTAIR promotes cervical cancer progression through
regulating BCL2 via targeting miR-143-3p. Cancer Biol. 2018, 19, 391–399. [CrossRef] [PubMed]

73. Qian, Y.; Teng, Y.; Li, Y.; Lin, X.; Guan, M.; Li, Y.; Cao, X.; Gao, Y. MiR-143-3p suppresses the progression of nasal squamous cell
carcinoma by targeting Bcl-2 and IGF1R. Biochem. Biophys. Res. Commun. 2019, 518, 492–499. [CrossRef] [PubMed]

74. Wang, S.; Chen, J.; Yu, W.; Deng, F. Circular RNA DLGAP4 ameliorates cardiomyocyte apoptosis through regulating BCL2 via
targeting miR-143 in myocardial ischemia-reperfusion injury. Int. J. Cardiol. 2019, 279, 147. [CrossRef]

75. Nigdelioglu, R.; Hamanaka, R.B.; Meliton, A.Y.; O’Leary, E.; Witt, L.J.; Cho, T.; Sun, K.; Bonham, C.; Wu, D.; Woods, P.S.; et al.
Transforming Growth Factor (TGF)-beta Promotes de Novo Serine Synthesis for Collagen Production. J. Biol. Chem. 2016, 291,
27239–27251. [CrossRef]

76. Shi, H.; Fang, X.; Li, Y.; Zhang, Y. High Expression of Serine Hydroxymethyltransferase 2 Indicates Poor Prognosis of Gastric Cancer
Patients. Med. Sci. Monit. 2019, 25, 7430–7438. [CrossRef]

77. Zhang, L.; Chen, Z.; Xue, D.; Zhang, Q.; Liu, X.; Luh, F.; Hong, L.; Zhang, H.; Pan, F.; Liu, Y.; et al. Prognostic and therapeutic
value of mitochondrial serine hydroxyl-methyltransferase 2 as a breast cancer biomarker. Oncol. Rep. 2016, 36, 2489–2500. [CrossRef]
[PubMed]

78. Ning, S.; Ma, S.; Saleh, A.Q.; Guo, L.; Zhao, Z.; Chen, Y. SHMT2 Overexpression Predicts Poor Prognosis in Intrahepatic
Cholangiocarcinoma. Gastroenterol. Res. Pr. 2018, 2018, 4369253. [CrossRef]

79. Du, Y.; Zhang, J.; Meng, Y.; Huang, M.; Yan, W.; Wu, Z. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone
metastasis of human breast cancer cells. AMB Express 2020, 10, 134. [CrossRef]

80. Dimitrova, N.; Gocheva, V.; Bhutkar, A.; Resnick, R.; Jong, R.M.; Miller, K.M.; Bendor, J.; Jacks, T. Stromal Expression of
miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016, 6, 188–201. [CrossRef]

81. Luo, L.; Wang, M.; Li, X.; Luo, C.; Tan, S.; Yin, S.; Liu, L.; Zhu, X. A novel mechanism by which ACTA2-AS1 promotes cervical
cancer progression: Acting as a ceRNA of miR-143-3p to regulate SMAD3 expression. Cancer Cell Int. 2020, 20, 372. [CrossRef]

82. Nabipoorashrafi, S.A.; Shomali, N.; Sadat-Hatamnezhad, L.; Mahami-Oskouei, M.; Mahmoudi, J.; Sandoghchian Shotorbani, B.;
Akbari, M.; Xu, H.; Sandoghchian Shotorbani, S. miR-143 acts as an inhibitor of migration and proliferation as well as an inducer
of apoptosis in melanoma cancer cells in vitro. IUBMB Life 2020. [CrossRef]

83. Takai, T.; Tsujino, T.; Yoshikawa, Y.; Inamoto, T.; Sugito, N.; Kuranaga, Y.; Heishima, K.; Soga, T.; Hayashi, K.; Miyata, K.; et al.
Synthetic miR-143 Exhibited an Anti-Cancer Effect via the Downregulation of K-RAS Networks of Renal Cell Cancer Cells in
Vitro and in Vivo. Mol. Ther. 2019, 27, 1017–1027. [CrossRef]

84. Kent, O.A.; Chivukula, R.R.; Mullendore, M.; Wentzel, E.A.; Feldmann, G.; Lee, K.H.; Liu, S.; Leach, S.D.; Maitra, A.; Mendell, J.T.
Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 2010, 24,
2754–2759. [CrossRef]

85. Xie, F.; Li, C.; Zhang, X.; Peng, W.; Wen, T. MiR-143-3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting
KRAS. Biomed. Pharm. 2019, 119, 109424. [CrossRef] [PubMed]

86. Pekow, J.R.; Dougherty, U.; Mustafi, R.; Zhu, H.; Kocherginsky, M.; Rubin, D.T.; Hanauer, S.B.; Hart, J.; Chang, E.B.; Fichera, A.;
et al. miR-143 and miR-145 are downregulated in ulcerative colitis: Putative regulators of inflammation and protooncogenes.
Inflamm. Bowel Dis. 2012, 18, 94–100. [CrossRef] [PubMed]

87. Liu, H.; Liu, J.; Huo, J.; Li, K.; Li, K.; Guo, H.; Yang, Y. Downregulation of miR143 modulates KRAS expression in colorectal
carcinoma cells. Oncol. Rep. 2019, 42, 2759–2767. [CrossRef]

88. Wang, S.; Liu, J.C.; Ju, Y.; Pellecchia, G.; Voisin, V.; Wang, D.Y.; Leha, L.R.; Ben-David, Y.; Bader, G.D.; Zacksenhaus, E. microRNA-
143/145 loss induces Ras signaling to promote aggressive Pten-deficient basal-like breast cancer. JCI Insight 2017, 2, e93313.
[CrossRef]

89. Zhang, Y.; Zhou, K.; Wu, L.; Gu, H.; Huang, Z.; Xu, J. Downregulation of microRNA143 promotes osteogenic differentiation of
human adiposederived mesenchymal stem cells through the kRas/MEK/ERK signaling pathway. Int. J. Mol. Med. 2020, 46, 965–976.
[CrossRef]

90. Xu, B.; Niu, X.; Zhang, X.; Tao, J.; Wu, D.; Wang, Z.; Li, P.; Zhang, W.; Wu, H.; Feng, N.; et al. miR-143 decreases prostate cancer
cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol. Cell. Biochem.
2011, 350, 207–213. [CrossRef]

91. Chen, X.; Guo, X.; Zhang, H.; Xiang, Y.; Chen, J.; Yin, Y.; Cai, X.; Wang, K.; Wang, G.; Ba, Y.; et al. Role of miR-143 targeting KRAS
in colorectal tumorigenesis. Oncogene 2009, 28, 1385–1392. [CrossRef] [PubMed]

http://doi.org/10.3390/ijms21218138
http://www.ncbi.nlm.nih.gov/pubmed/33143364
http://doi.org/10.1155/2019/3954890
http://doi.org/10.1126/science.aay0542
http://doi.org/10.1007/b99968
http://doi.org/10.1016/j.bbrc.2018.09.175
http://doi.org/10.1080/15384047.2018.1423921
http://www.ncbi.nlm.nih.gov/pubmed/29336659
http://doi.org/10.1016/j.bbrc.2019.08.075
http://www.ncbi.nlm.nih.gov/pubmed/31443963
http://doi.org/10.1016/j.ijcard.2018.09.023
http://doi.org/10.1074/jbc.M116.756247
http://doi.org/10.12659/MSM.917435
http://doi.org/10.3892/or.2016.5112
http://www.ncbi.nlm.nih.gov/pubmed/27666119
http://doi.org/10.1155/2018/4369253
http://doi.org/10.1186/s13568-020-01072-w
http://doi.org/10.1158/2159-8290.CD-15-0854
http://doi.org/10.1186/s12935-020-01471-w
http://doi.org/10.1002/iub.2345
http://doi.org/10.1016/j.ymthe.2019.03.004
http://doi.org/10.1101/gad.1950610
http://doi.org/10.1016/j.biopha.2019.109424
http://www.ncbi.nlm.nih.gov/pubmed/31521891
http://doi.org/10.1002/ibd.21742
http://www.ncbi.nlm.nih.gov/pubmed/21557394
http://doi.org/10.3892/or.2019.7359
http://doi.org/10.1172/jci.insight.93313
http://doi.org/10.3892/ijmm.2020.4651
http://doi.org/10.1007/s11010-010-0700-6
http://doi.org/10.1038/onc.2008.474
http://www.ncbi.nlm.nih.gov/pubmed/19137007


Int. J. Mol. Sci. 2021, 22, 13075 17 of 18

92. Dougherty, U.; Mustafi, R.; Zhu, H.; Zhu, X.; Deb, D.; Meredith, S.C.; Ayaloglu-Butun, F.; Fletcher, M.; Sanchez, A.; Pekow, J.; et al.
Upregulation of polycistronic microRNA-143 and microRNA-145 in colonocytes suppresses colitis and inflammation-associated
colon cancer. Epigenetics 2020, 16, 1–18. [CrossRef]

93. Tsujino, T.; Sugito, N.; Taniguchi, K.; Honda, R.; Komura, K.; Yoshikawa, Y.; Takai, T.; Minami, K.; Kuranaga, Y.; Shinohara, H.;
et al. MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer. Cancer Sci. 2019,
110, 2189–2199. [CrossRef]

94. Zhou, B.; Der, C.J.; Cox, A.D. The role of wild type RAS isoforms in cancer. Semin. Cell Dev. Biol. 2016, 58, 60–69. [CrossRef]
95. Lanaspa, M.A.; Sanchez-Lozada, L.G.; Choi, Y.J.; Cicerchi, C.; Kanbay, M.; Roncal-Jimenez, C.A.; Ishimoto, T.; Li, N.; Marek,

G.; Duranay, M.; et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: Potential role in
fructose-dependent and -independent fatty liver. J. Biol. Chem. 2012, 287, 40732–40744. [CrossRef]

96. Fini, M.A.; Elias, A.; Johnson, R.J.; Wright, R.M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl.
Med. 2012, 1, 16. [CrossRef]

97. Wan, X.; Xu, C.; Lin, Y.; Lu, C.; Li, D.; Sang, J.; He, H.; Liu, X.; Li, Y.; Yu, C. Uric acid regulates hepatic steatosis and insulin
resistance through the NLRP3 inflammasome-dependent mechanism. J. Hepatol. 2016, 64, 925–932. [CrossRef]

98. Paschos, P.; Athyros, V.G.; Tsimperidis, A.; Katsoula, A.; Grammatikos, N.; Giouleme, O. Can Serum Uric Acid Lowering Therapy
Contribute to the Prevention or Treatment of Nonalcoholic Fatty Liver Disease? Curr. Vasc. Pharm. 2018, 16, 269–275. [CrossRef]
[PubMed]

99. Zheng, X.; Gong, L.; Luo, R.; Chen, H.; Peng, B.; Ren, W.; Wang, Y. Serum uric acid and non-alcoholic fatty liver disease in
non-obesity Chinese adults. Lipids Health Dis. 2017, 16, 202. [CrossRef] [PubMed]

100. Oral, A.; Sahin, T.; Turker, F.; Kocak, E. Relationship Between Serum Uric Acid Levels and Nonalcoholic Fatty Liver Disease in
Non-Obese Patients. Medicina 2019, 55, 600. [CrossRef]

101. Abbasi, S.; Haleem, N.; Jadoon, S.; Farooq, A. Association of Non-Alcoholic Fatty Liver Disease with Serum Uric Acid. J. Ayub
Med. Coll. Abbottabad 2019, 31, 64–66.

102. Sari, D.C.R.; Soetoko, A.S.; Soetoko, A.S.; Romi, M.M.; Tranggono, U.; Setyaningsih, W.A.W.; Arfian, N. Uric acid induces liver
fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice. Med. J. Malays. 2020, 75,
14–18.

103. Fernandez Rodriguez, C.M.; Aller, R.; Gutierrez Garcia, M.L.; Ampuero, J.; Gomez-Camarero, J.; Martin-Mateos, R.M.f.; Burgos-
Santamaria, D.; Rosales, J.M.; Aspichueta, P.; Buque, X.; et al. Higher levels of serum uric acid influences hepatic damage in
patients with non-alcoholic fatty liver disease (NAFLD). Rev. Esp. Enferm. Dig. 2019, 111, 264–269. [CrossRef] [PubMed]

104. Huang, C.F.; Huang, J.J.; Mi, N.N.; Lin, Y.Y.; He, Q.S.; Lu, Y.W.; Yue, P.; Bai, B.; Zhang, J.D.; Zhang, C.; et al. Associations between
serum uric acid and hepatobiliary-pancreatic cancer: A cohort study. World J. Gastroenterol. 2020, 26, 7061–7075. [CrossRef]

105. Zou, X.; Yuan, M.; Zhang, T.; Wei, H.; Xu, S.; Jiang, N.; Zheng, N.; Wu, Z. Extracellular vesicles expressing a single-chain variable
fragment of an HIV-1 specific antibody selectively target Env(+) tissues. Theranostics 2019, 9, 5657–5671. [CrossRef] [PubMed]

106. Li, X.; Li, C.; Zhang, L.; Wu, M.; Cao, K.; Jiang, F.; Chen, D.; Li, N.; Li, W. The significance of exosomes in the development and
treatment of hepatocellular carcinoma. Mol. Cancer 2020, 19, 1. [CrossRef]

107. Wu, J.; Dong, T.; Chen, T.; Sun, J.; Luo, J.; He, J.; Wei, L.; Zeng, B.; Zhang, H.; Li, W.; et al. Hepatic exosome-derived miR-130a-3p
attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism 2020, 103, 154006. [CrossRef]

108. He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome Theranostics: Biology and Translational Medicine. Theranostics 2018, 8, 237–255.
[CrossRef]

109. Zhang, Y.; Bi, J.; Huang, J.; Tang, Y.; Du, S.; Li, P. Exosome: A Review of Its Classification, Isolation Techniques, Storage, Diagnostic
and Targeted Therapy Applications. Int. J. Nanomed. 2020, 15, 6917–6934. [CrossRef]

110. Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of
targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [CrossRef]

111. Xu, Z.; Zeng, S.; Gong, Z.; Yan, Y. Exosome-based immunotherapy: A promising approach for cancer treatment. Mol. Cancer 2020,
19, 160. [CrossRef]

112. Nie, W.; Wu, G.; Zhang, J.; Huang, L.L.; Ding, J.; Jiang, A.; Zhang, Y.; Liu, Y.; Li, J.; Pu, K.; et al. Responsive Exosome
Nano-bioconjugates for Synergistic Cancer Therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 2018–2022. [CrossRef]

113. Bao, W.L.; Wu, Q.; Hu, B.; Sun, D.; Zhao, S.; Shen, X.; Cheng, H.; Shen, W. Oral Nanoparticles of SNX10-shRNA Plasmids
Ameliorate Mouse Colitis. Int. J. Nanomed. 2021, 16, 345–357. [CrossRef]

114. Qiu, B.; Xu, X.; Yi, P.; Hao, Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the
miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways. J. Cell. Mol. Med. 2020, 24, 10855–10865. [CrossRef]

115. Liu, J.; Li, M.; Wang, Y.; Luo, J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143
and miR-143 mediated autophagy inhibition. J. Drug Target. 2017, 25, 645–652. [CrossRef]

116. Cao, H.; Yu, H.; Feng, Y.; Chen, L.; Liang, F. Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis.
Cancer Chemother. Pharm. 2017, 79, 985–994. [CrossRef] [PubMed]

117. Konczal, M.; Koteja, P.; Stuglik, M.T.; Radwan, J.; Babik, W. Accuracy of allele frequency estimation using pooled RNA-Seq. Mol.
Ecol. Resour. 2014, 14, 381–392. [CrossRef]

118. Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 2011, 27,
1571–1572. [CrossRef] [PubMed]

http://doi.org/10.1080/15592294.2020.1863117
http://doi.org/10.1111/cas.14035
http://doi.org/10.1016/j.semcdb.2016.07.012
http://doi.org/10.1074/jbc.M112.399899
http://doi.org/10.1186/2001-1326-1-16
http://doi.org/10.1016/j.jhep.2015.11.022
http://doi.org/10.2174/1570161115666170621082237
http://www.ncbi.nlm.nih.gov/pubmed/28676018
http://doi.org/10.1186/s12944-017-0531-5
http://www.ncbi.nlm.nih.gov/pubmed/29037239
http://doi.org/10.3390/medicina55090600
http://doi.org/10.17235/reed.2019.5965/2018
http://www.ncbi.nlm.nih.gov/pubmed/30810330
http://doi.org/10.3748/wjg.v26.i44.7061
http://doi.org/10.7150/thno.33925
http://www.ncbi.nlm.nih.gov/pubmed/31534509
http://doi.org/10.1186/s12943-019-1085-0
http://doi.org/10.1016/j.metabol.2019.154006
http://doi.org/10.7150/thno.21945
http://doi.org/10.2147/IJN.S264498
http://doi.org/10.1038/nbt.1807
http://doi.org/10.1186/s12943-020-01278-3
http://doi.org/10.1002/anie.201912524
http://doi.org/10.2147/IJN.S286392
http://doi.org/10.1111/jcmm.15714
http://doi.org/10.1080/1061186X.2017.1315686
http://doi.org/10.1007/s00280-017-3301-1
http://www.ncbi.nlm.nih.gov/pubmed/28391351
http://doi.org/10.1111/1755-0998.12186
http://doi.org/10.1093/bioinformatics/btr167
http://www.ncbi.nlm.nih.gov/pubmed/21493656


Int. J. Mol. Sci. 2021, 22, 13075 18 of 18

119. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef] [PubMed]
120. Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D.;

et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013, 341, 1237905. [CrossRef]
121. Feng, H.; Conneely, K.N.; Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide

resolution sequencing data. Nucleic Acids Res. 2014, 42, e69. [CrossRef] [PubMed]
122. Wu, H.; Xu, T.; Feng, H.; Chen, L.; Li, B.; Yao, B.; Qin, Z.; Jin, P.; Conneely, K.N. Detection of differentially methylated regions

from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res. 2015, 43, e141. [CrossRef]
123. Park, Y.; Wu, H. Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 2016, 32,

1446–1453. [CrossRef] [PubMed]
124. Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology

(KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [CrossRef] [PubMed]

http://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://doi.org/10.1126/science.1237905
http://doi.org/10.1093/nar/gku154
http://www.ncbi.nlm.nih.gov/pubmed/24561809
http://doi.org/10.1093/nar/gkv715
http://doi.org/10.1093/bioinformatics/btw026
http://www.ncbi.nlm.nih.gov/pubmed/26819470
http://doi.org/10.1093/bioinformatics/bti430
http://www.ncbi.nlm.nih.gov/pubmed/15817693

	Introduction 
	Results 
	Identification of Transgenic Mice 
	WGBS Roundup 
	Characterization of DMRs 
	Functional Enrichment Analysis: Gene Ontology (GO) 
	KEGG Pathway Enrichment Analysis 
	The Expression of DMR-Related Genes at mRNA Level 

	Discussion and Conclusions 
	Materials and Methods 
	Sample Collection and Processing 
	Library Preparation and Quantification 
	Data Analysis 
	Quality Control 
	Reference Data Preparation before Analysis 
	Reads Mapping to the Reference Genome 
	Estimating Methylation Level 
	Differentially Methylated Analysis 
	GO and KEGG Enrichment Analysis of DMR-Related Genes 
	Gene Expression Analysis by Quantitative RT-PCR 
	Statistical Analysis 

	References

