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Abstract: In recent years, many efforts have been made to present optimal strategies for cancer therapy through the
mathematical modelling of tumour-cell population dynamics and optimal control theory. In many cases, therapy effect is included
in the drift term of the stochastic Gompertz model. By fitting the model with empirical data, the parameters of therapy function
are estimated. The reported research works have not presented any algorithm to determine the optimal parameters of therapy
function. In this study, a logarithmic therapy function is entered in the drift term of the Gompertz model. Using the proposed
control algorithm, the therapy function parameters are predicted and adaptively adjusted. To control the growth of tumour-cell
population, its moments must be manipulated. This study employs the probability density function (PDF) control approach
because of its ability to control all the process moments. A Fokker–Planck-based non-linear stochastic observer will be used to
determine the PDF of the process. A cost function based on the difference between a predefined desired PDF and PDF of
tumour-cell population is defined. Using the proposed algorithm, the therapy function parameters are adjusted in such a manner
that the cost function is minimised. The existence of an optimal therapy function is also proved. The numerical results are finally
given to demonstrate the effectiveness of the proposed method.

1 Introduction
Since cancer has been one of the main reasons for deaths over the
last decades [1], many attempts have been made to find an effective
treatment. The mathematical modelling of tumour growth has
interested many researchers. In practice, the drug dosage is
obtained either from empirical data or clinical/preclinical assays.
However, several factors, such as cost, time of disposal, and the
difficulties of doing clinical tests, affect test results. Optimal
control plays an important role in the validation and even the
prediction of treatment strategy. Thereby, it decreases the cost of
disease treatment. In the last decades, many attempts have been
made to introduce effective treatment strategies through optimal
control theory [2–7]. In [2, 3], a cost function based on measures
obtained from the tumour-cell population is presented, and an
optimal dosage distribution of anti-cancer drugs has been
computed to minimise the tumour size. Bratus and Chumerina [4]
considered the logistic model for tumour growth with the aim to
determine an optimal treatment strategy. The suggested strategy
includes the determination of the drug amount to minimise the
number of tumour cells. Here, approximate and accurate solutions
of the optimisation problem through the dynamic programming
method have been obtained from the corresponding Hamilton–
Jacobi–Bellman equation. El-Gohary [5] considered optimal
control and chaotic issues of tumour model with or without drugs,
and studied the stability of its equilibrium states. A stability
analysis of the model showed that it behaves chaotically for some
values of model parameters. In the paper, optimal drug dosage
values have been calculated by minimising the Hamiltonian
function to control equilibrium states.

Genetic algorithm (GA) is an effective tool to seek an optimal
or a near-optimal solution to many optimisation problems. This
algorithm has a higher performance compared with traditional
optimisation methods, like the gradient approach [8]. GA can be
considered as a multidirectional search method to handle
optimisation problems and to find their solutions [8]. In many
papers, GA uses medical images for tumour detection. Examples
include diagnosis of pancreatic cancer [9], breast cancer [10], brain
cancer [11] and liver cancer [12].

One of the important aims of chemotherapy is to kill a large
number of cancer cells in a specific treatment period. This is why
therapy scheduling is an important issue in chemotherapy. The
authors in [13, 14] showed that GA is a useful tool to solve
multidimensional and multi-constraint cancer chemotherapy
optimisation problems. The authors in [15, 16] presented a
modified optimal control model for drug scheduling in the process
of cancer chemotherapy. They defined a performance index by
which an optimal drug scheduling can be determined by the use of
adaptive elitist population-based GA. The outcome of this research
is consistent with the results of clinical treatments. Badakhshan and
Khaloozadeh [17] repeated the stochastic method of [18] for
optimal drug scheduling in chemotherapy by the use of GA.

The papers we reviewed and most of the other research works
that used optimal control theory to determine an optimal treatment
strategy considered a deterministic model for tumour growth. Such
models do not give an appropriate description for tumour growth
behaviour. In deterministic models, fluctuations or disturbances
related to tumour dynamics are not taken into account. These
fluctuations are unknown and immeasurable. In addition, there are
sensible differences between clinical data and theoretical
predictions due to environmental disturbances. To study the impact
of environmental fluctuations on tumour growth, its model must be
stochastic. One of the stochastic models that have been widely used
in recent research works on tumour growth and cancer therapy is
the Gompertz model [19–26]. In current research works, the
treatment factor is considered implicitly within the drift term of the
Gompertz model. Having fitted the model with empirical data, and
by the use of statistical methods, such as linear regression [25] and
the maximum likelihood method [20, 23, 25, 26], the parameters of
the drift term are estimated. Consequently, the treatment strategy is
determined.

In this paper, like many others [20, 21, 25, 26], the Gompertz
model has been used to simulate the behaviour of tumour-cell
population. The therapy effect has been considered as an external
variable to model. Since the Gompertz model is non-linear, the
model output (tumour-cell population) will not be Gaussian.
Hence, the control of first and second moments will not be
sufficient. This is why the higher order moments of the output must
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be controlled. We know that all the moments of a stochastic
process can be extracted from its probability density function
(PDF), and PDF describes all the characteristics of a stochastic
process. In fact, by controlling the PDF of tumour-cell population,
we can control all its moments. Moreover, to give a clear sense of
decreasing tumour-cell population, a Gaussian desired PDF is
considered, in which both mean and variance values decrease
exponentially by elapsing the time. The method of controlling the
PDF of tumour-cell population in this paper is similar to the
method of [27, 28]. The differences between our paper and the two
mentioned works are: the use of path integral method to solve
Fokker–Planck equation, the definition of desired PDF for tumour-
cell population, the use of a time-variant logarithmic function as
control input instead of a constant function, and applying GA for
optimisation purpose in each time window.

In this paper, we considered the therapy effect as an external
control in which its parameters are optimised using a predictive
control technique. The cost function of this optimisation is defined
based on the difference between the PDF of tumour-cell population
and a desired PDF, where the PDF of the tumour-cell population is
computed by means of a Fokker–Planck non-linear observer. The
innovations of this paper are listed below:

• In many research works [20, 23, 25, 26], the therapy effect has
been included in the drift term of the stochastic Gompertz
model. Then, by fitting the model with empirical data by the use
of statistical methods like linear regression and maximum
likelihood methods, the parameters of therapy function have
been estimated. These works have not presented any algorithm
to determine the optimal parameters of therapy function. In this
paper, a logarithmic function is entered in the drift term of the
Gompertz model to consider the therapy effect. The therapy
function parameters are then predicted and adaptively adjusted
by using the proposed control algorithm.

• The growth of the tumour-cell population is a stochastic process.
To control it, the process moments must be monitored and
manipulated. This paper employs the PDF control approach
because of its ability to control all process moments. Such an
approach has not been used in the reported research works to
control the tumour-cell population.

• A non-linear stochastic observer based on the Fokker–Planck
equation is proposed to determine the PDF of tumour-cell
population at any instance of time.

• The existence of an optimal therapy function is proved.
• A desired PDF defined in this paper is theoretically meaningful.

This PDF shows the decrease in tumour-cell population with
elapsing time. Also, an appropriate ‘desired PDF’ can be defined
by adjusting the parameters of the PDF according to clinical
observation.

The organisation of the paper is as follows. In Section 2, we
will deal with the Gompertz model of tumour growth for which the
therapy effect u t  was added as an external control. A non-linear
Fokker–Planck observer is then designed for this stochastic model.
In Section 3, a cost function has been defined in which the Fokker–
Planck observer has been considered as a cost function constraint.
In Section 4, we study the existence and uniqueness of our optimal
solution. In Section 5, real-coded GA is briefly described. In
Section 6, the path integral method, by which the Fokker–Planck
observer is numerically solved, is explained. In Section 7, a
receding horizon model predictive control (RH-MPC)-based
scheme is presented to determine the optimal parameters of u t  in
each time window. Here, we have used the real-coded GA. Section
8 gives a numerical example to verify the performance and
correctness of our approach. A desired PDF with Gaussian
distribution has been designed. By the use of our suggested control
algorithm, the optimal parameters of the therapy function u t  are
obtained. The paper is finally terminated with a short conclusion.

2 Modelling the system

2.1 Gompertz model

The Gompertz model is an umbrella for growth modelling of a
variety of scientific issues like economic growth, biological
growth, energy growth, and the expansion of greenhouse gases
during climate change [20]. The stochastic Gompertz model can be
obtained from the deterministic Gompertz model by adding noise.
It is an appropriate model to describe tumour growth behaviour.

In many research works in which the Gompertz model has been
used to describe tumour growth, the therapy effect has been entered
either as a time-dependent linear function [21, 22] or as a time-
dependent logarithmic function [20, 21, 23] into the drift term of
the model. The model parameters are then estimated by the use of
statistical methods, such as linear regression, maximum likelihood,
and model fitting with empirical data. For instance, Moummou et
al. [20] presented a Gompertz-based stochastic model for tumour
growth, in which the drift term is dependent on two time-variant
functions. The first function models the immunologic endogenous
treatment factor. The second models the dynamic of external
controllable treatment. In this work, the probabilistic characteristics
of the model have been obtained by using its related Ito^  differential
equation followed by the estimation of model parameters through
the maximum likelihood method. Like [20, 25, 28], this paper has
used the Gompertz model to describe tumour growth

dX t = αX t − βX t logX t dt + σX t dW t (1)

In (1), X t , t ≥ t0 ≥ 0  denotes the tumour-cell population at
time t, and W t  represents the standard Wiener process. The
parameters α, β, and σ are positive constants representing birth
rate, death rate, and stochastic oscillation width, respectively. Like
[20, 25, 28], the time-dependent function u t  is used to insert the
therapy effect into the model. Thus, (2) is obtained

dX t = α − u t X t − βX t logX t dt + σX t dW t (2)

In (2), u t  models the effect of therapy. It can be considered as
either a constant function or a time-dependent function. If u t  is
considered as drug concentration, u t = u0, which means that the
concentration of drug is constant during the therapy period. In
constant treatment, tumour-cell population converges into a non-
zero value. Such a therapy model u t  was sought in this study by
which the tumour-cell population of (2) converges to zero. In [26],
the function has been proposed to therapy model u t = A + Bt .
Although the tumour-cell population goes down to zero by this
selection, this therapy scheduling is not acceptable to many
clinicians. The authors in [19, 29] showed that to have a therapy
scheduling with the capability of (i) asymptotically converging of
tumour-cell population to zero, and (ii) time-increasing behaviour,
a logarithmic therapy function is a very appropriate selection.

The present paper uses (3) to model the effect of therapy

u t = c0 ln e + ηt (3)

where e is the Euler number and η and c0 are parameters that must
be adjusted. For a patient, this therapy is more tolerable than the
one with linear therapy function.

2.2 Fokker–Planck equation for Gompertz model

The Fokker–Planck equation was introduced to describe the
Brownian motion of particles [30]. This equation is, in fact, a
parabolic partial differential equation of a given process model that
indicates the evolution of the process PDF. It can also be
considered as a non-linear observer by which the PDF of a given
process can be computed for a given initial PDF.

Suppose that y x, t  denotes PDF of process at time t and in
position x. Then, the Fokker–Planck equation for (2) will be as
follows [30]:
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∂y x, t

∂t
−

σ
2

2
∂2(x2

y(x, t))
∂x

2

+
∂((αx − μ(t)x − βxlog x)y(x, t))

∂x
= 0

y(x, t0) = ρ0(x)

(4)

In this paper, (4) is defined over Q = Ω × 0, T f , where Ω ⊂ ℝ is
a bounded space.

3 Therapy effect prediction based on Fokker–
Planck observer
3.1 Description of optimal control problem

The main aim of this paper is to introduce a methodology (based
on MPC) to compute the optimal parameters of therapy function.
To do this, the PDF of tumour-cell population X t  must be
controlled. In this way, the entire stochastic characteristic of X t

will be controlled. Here, the PDF must be computed at any instance
of time. Since the stochastic model of tumour growth is known, a
PDF observer is needed to compute its PDF.

We designed a Fokker–Planck observer for our stochastic
process X t , that if solved the process PDF (deterministic process)
will be obtained. Hence, the Fokker–Planck observer can be
interpreted as a mapping vehicle from the stochastic domain to
deterministic domain. To define our control problem, the time
interval 0, T f  is divided into time windows ti, ti + 1 . The size of
each window is Δt = T f /N in which N is a positive integer and
ti = iΔt, for i = 0, …, N. It is assumed that the control law u t  for
each time window ti, ti + 1  is a logarithmic function (3) and the
initial process PDF ρi x  at t = ti is known in advance. The aim of
control is to determine the value of u (by adjusting its parameters η
and u0) for each time interval ti, ti + 1  so that the process converges
from the initial PDF ρ at time t = ti towards a desired PDF
yd x, ti + 1  at time t = ti + 1. To do this, an optimal control problem is
defined as follows. By solving this problem, control law u can be
determined

J y, u =
1
2

∫
Ω

y x, ti + 1 − yd x, ti + 1
2dx +

υ

2
u t

2 (5)

subject to

∂y x, t

∂t
+

∂ αx − u t x − βx logx y x, t

∂x

−
σ

2

2
∂2

x
2
y x, t

∂x
2 = 0 in Qi = Ω × ti, ti + 1

(6)

y x, ti = ρi x in Ω (7)

y x, t = 0 on Σi = ∂Ω × ti, ti + 1 (8)

where Ω = 0, L . In (5), the positive parameter υ denotes control
weight. It should not be selected so small that the patient be unable
to tolerate such harsh therapy and it should not be selected so large
that the therapy be practically ineffective.

4 Existence and uniqueness of optimal solution
In this section, the existence and uniqueness of our optimal
solution will be studied. The optimisation problem given by (5)–(8)
shows a bilinear control problem in which the dependence of state
y on u is not linear. Thus, this optimisation problem is non-convex.
The existence of an optimal solution can be proven by the use of
[31], but because our optimal control is governed by a bilinear
parabolic partial differential equation, the uniqueness of the
optimal solution cannot be verified using [31]. Instead, the method
of [32] is applied to prove the uniqueness of the optimal solution.

4.1 Setting of the problem

Like [32], we define V = H0
1 Ω , its dual space V

∗ = H0
−1 Ω  and

their duality pairing . , . V
∗
V. Let H = L

2 Ω  be identified with its
dual H

∗. Then, we have the following Gelfand triple:

V ↪ H ↪ V
∗

It is assumed that all these embeddings are compact, continuous,
and dense. We now define the following space:

W 0, T = w x, t ∈ L
2 0, T; V , ẇ x, t ∈ L

2 0, T; V
∗

where wW 0, T = wL
2

0, T ; V + ẇL
2

0, T ; V
∗ . In the following equations,

for simplicity, the time interval 0, T  will not be written. Equations
(6)–(8) can be rewritten as follows:

ℳ y0, u, r
ẏ + Ay = uBy + Cy + r

y 0 = y0

(9)

where

A = − Z
∂2

∂x
2 , Z =

1
2

σ
2
x

2, B =
∂ x .

∂x
, C = −

∂ λ .
∂x

,

λ = αx − βx logx, r = σ
2
y + 2σ

2
x

∂y

∂x

(10)

Operators A, B, and C are defined as follows:

• A:V → V
∗, φ ↦ − Z(∂2

φ/∂x
2) is a linear continuous operator

and ∥ φ ∥ = a φ , where a φ = A φ , φ V
∗
V is equivalent to the

norm defined in H0
1 Ω  [32], and there exists a positive constant

α1 such that [31]

∥ AφV
∗ ∥ ≤ α1∥ φ ∥V

• B:V → V
∗, φ ↦ (∂ xφ /∂x) is a linear and continuous

operator. Then we have

u t By t = u t
∂ xy

∂x

• C:V → V
∗, φ ↦ − (∂ λφ /∂x) and λ ∈ C

1 Ω  is a linear and
continuous operator. Then, there exists a positive constant α2

such that [31]

∥ Cφ ∥V
∗ ≤ α2∥ φ ∥V

 
Lemma 1: λ x  is continuously differentiable on Ω λ x ∈ C

1 Ω .
 
Proof: See Appendix 1. □
 
Proposition 1: If y0 ∈ H and u ∈ U, then equation ℳ y0, u, r

admits a unique solution y in L
2

V ∩ L
∞

H . Also, we have
ẏ ∈ L

2
V

∗  and y ∈ C 0, T ; H .
 
Proposition 2: The mapping :U → C 0, T ; H , u → y = Θ u ,
where y is the solution of ℳ y0, u, 0 , is Frechet differentiable, and
Θū′ . h satisfies the following equation:

ℳ 0, ū, hBȳ
ż + Az = ūBz + hBȳ + Cz

z 0 = 0

where ȳ = Θ ū .

4.2 Existence of optimal solution

 
Proposition 3: Assuming the cost function of (5) in which y is the
unique solution of the following equation:
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ℳ y0, u, 0
ẏ + Ay = uBy + Cy

y 0 = y0

Then there exists a pair ȳ, ū ∈ C 0, T ; H ) × U such that ȳ is a
solution of ℳ y0, ū, 0  and ū minimises J in U.
 
Proposition 4: The function J^ u  is differentiable and we have

∀h ∈ U dJ
^

u . h = h, υu + ∫
0

T

p,
∂y

∂x VV
∗
dt

U

in which p is the solution of the following adjoint equation:

−
∂p

∂t
−

σ
2

2
x

2 ∂2
p

∂x
2 − αx − ux − βx logx

∂p

∂x
= 0

p x, T = y x, T − yd x, T , P ∈ L
2

V , Ṗ ∈ L
2

V
∗

4.3 Uniqueness of optimal solution

 
Proposition 5: There are positive constants k1, k2 so that

1
υm

2 ∥ ȳ1 x, T − yd x, T ∥H

+∥ ȳ2 x, T − yd x, T ∥H ≤ k1, k2 =
2

υm
3 2

(11)

Then, by assuming Propositions 1 and 3, and adequately small
initial PDF∥ y0 ∥H < (1/2) −(k1/k2) + (k1/k2)

2 + (4/k2) , the
optimal solution is unique.
 
Proof: See Appendix 2.□

5 Real-coded GA
GA is a search algorithm built on the basis of genetics and natural
selection [33]. It has been widely used for optimisation. GA
consists of three evolutionary operations: selection, crossover, and
mutation. In this algorithm, a set of chromosomes is first selected
randomly from a given search space to create a primary population.
From this population, based on a predefined selection rule, the
chromosomes that maximise a fitness function are selected as
parents. In the crossover phase, a pair of chromosome exchanges
meaningful information to generate two offspring. In the mutation
phase, with random handling of a chromosome, a new chromosome
is generated.

In traditional GA (binary-coded GA), bit strings are used to
represent chromosomes. This algorithm suffers from low
convergence due to its long chromosome structure, especially in
optimisation problems involving several parameters [34]. However,
for engineering problems, real-coded GA is more convenient than
binary-coded GA. The reason is that changing from real numbers
to binary digits may lead to loss of accuracy [8]. This is why in this
paper, we used real-coded GA.

In the real-coded GA used in this paper, Θ = θ1, θ2, …, θn

represents a set of possible solutions to a given optimisation
problem. Set Θ is called ‘chromosome’, and θi for i ∈ n and
n = 1, 2, …, n  is named ‘gene’. The search space of
chromosome in real-coded GA is defined as follows:

ΩΘ = {Θ ∈ ℝn | θ1 min ≤ θ1 ≤ θ1 max, …, θnmin ≤ θn

≤ θnmax}
(12)

It is also assumed that N indicates the number of chromosomes in
the population space, and parameters pc and pm represent the rate
of crossover and mutation processes, respectively.

6 Observer design

The PDF of tumour-cell population must be available at any
instance of time to control it. To obtain these PDFs, the Fokker–
Planck equation is used as a non-linear observer. The Fokker–
Planck equation is obtained from the stochastic model of tumour
growth. Solving this equation gives the instantaneous PDF. Various
numerical methods have been developed to numerically solve the
Fokker–Planck equation of which Monte Carlo [35], finite
difference [36], spectral approximation [37, 38], and path integral
[39, 40] methods are well known. Among these, the path integral
method is simple, effective, and accurate. It computes the process
PDF at any time given that its preceding PDF is known.

In this paper, the path integral method is used to solve the
Fokker–Planck equation of stochastic model of tumour growth.
The basis of the path integral method is the Chapman–Kolmogorov
equation. This equation is written as follows for the Markov
processes:

y x, t + τ = ∫
−∞

+∞

y x, t + τ | x̄, t y x̄, t dx̄ (13)

Equation (13) can be considered as a recursive method to
determine the process PDF for small values of τ. This means that if
the conditional PDF (CPDF) and process PDF are known at time t,
the process PDF at time t + τ can be easily computed for small
values of τ. For Gaussian white noise, the process PDF can be
obtained by the use of short-time Gaussian approximation [38].
Using this approximation for (4), y x, t + τ | x̄, t  can be
determined as follows:

y x, t + τ | x̄, t

=
1

2πτ σx̄
exp −

x − x̄ − αx̄ − u t x̄ − βx̄ logx̄ τ
2

2σ
2
x̄

2
τ

(14)

6.1 Numerical solution

To numerically solve the Fokker–Planck equation through the path
integral method, it must be discretised both in the time and space
domains. To do this, like [27], a uniform spatial mesh Ω̄s is
considered for spatial domain Ω = 0, L ⊂ ℝ in which s ∈ z

represents the mesh size and Ωs denotes the set of points located
inside the mesh. It is defined as follows:

Ωs = x ∈ ℝ | x: xm = m s, 1 ≤ m ∈ ℕ ≤ Nx ∩ Ω (15)

The space-time mesh is also defined as follows:

Qs, δt = x, tn : x ∈ Ωs, tn = n − 1 δt, 1 ≤ n ≤ Nt (16)

where δt denotes the size of time step and Nt is the number of time
steps.

On grid Qs, δt, ym
n  defines a grid function at Ωs at time t and xm.

By this definition, the PDF of tumour-cell population at time
t = tn − 1 is defined as follows:

y x1
n + 1, tn + 1

y x2
n + 1, tn + 1

⋮

y xNx

n + 1, tn + 1

=

y′1 |1 y′1 |2 … y′1 | N

y′2 |1 y′2 |2 ⋯ y′2 | Nx

⋮ ⋮ ⋱ ⋮

y′Nx | 1 y′Nx | 2 ⋯ y′Nx | Nx

y x1
n, tn

y x2
n, tn

⋮

y xNx

n , tn

(17)

where yq |r′  is the normalised CPDF for q = r = 1, 2, …, Nx. Since
the sum of columns of CPDF matrix must be one, yq |r′  will be
normalised as follows:

yq |r′ = yq |r / ∑
l = 1

Nx

yl |r (18)

In which CPDF yq |r ∼ = y xq
n + 1, tn + 1 | xr

n, tn  is obtained by the
use of short-time Gaussian approximation as follows:
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yq |r =
1

2πδt σxr

× exp −
xq − xr − αxr − uxr − βxrlogxr δt

2

2σ
2
xr

2
δt

(19)

7 Controller design
Our control aim in this paper is to find an optimal value for
parameters of u t  within ti, ti + 1  such that the process of tumour
growth converges to the predefined desired PDF yd x, ti + 1  at time
t = ti + 1 when starting from the initial PDF ρ at t = ti. To do this, an
appropriate cost function in the form of (5) must be defined and
minimised within each time window. To compute the PDF of
tumour growth, and insert it into the selected cost function, the
Fokker–Planck observer, defined in (4), is used.

Like [27], to determine optimal values for therapy function
parameters, we have used an RH-MPC scheme. So, the optimal
problem min J y u , u  in time interval t0, t1  is solved by the use
of real-coded GA. The value of PDF at time t1 is then used as the
initial PDF value to resolve the optimal problem within t1, t2 .
This procedure is repeated until the last time window. The block
diagram of this approach, to predict the optimal parameters of u t ,
is shown in Fig. 1. 

In the following, the RH-MPC scheme defined in [27] is
explained briefly. It is completed in six steps.

Step 1: Set the initial values – the initial PDF ρ0, y x, ti = ρi x  for
i = 0 and desired PDF yd x, ti  for i = 0.
Step 2: In time interval ti, ti + 1  use subroutine 1 to solve
min J y u , u  to obtain an optimal value to therapy function u.
Step 3: Solve the Fokker–Planck equation by the use of path
integral method to compute PDF y x, ti + 1  for optimal control of u.
Step 4: Set the obtained PDF as the initial condition of Fokker–
Planck observer in the next time window.
Step 5: If ti + 1 < T f , set i = i + 1 and go to step 2.
Step 6; Otherwise, end.

Subroutine 1: Real-code GA

Step 1: Set the initial values of population size N, search space ΩΘ,
maximum iteration kmax and parameters β, pc, pm, σ, and α.
Step 2: Set k = 1.
Step 3: Generate randomly a primary population with N
chromosomes in which all genes fall into ΩΘ.
Step 4: By using (3), compute the value of uk for each
chromosome.
Step 5: Compute PDF yk for uk of each chromosome by the use of
(17).
Step 6: Compute the cost function of each chromosome by the use
of (5).
Step 7: Compute the selection probability of each chromosome by
the use of the following equation:

Pi = e−β Ci/∑i = 1
N Ci (20)

In (20), parameters β and Ci represent the value of ‘pressure’ and

‘cost function for chromosome θi’, respectively. Select 
pc × N

2
chromosomes from the main population to carry out the crossover
operation by the use of the Roulette wheel selection defined in
[41]. The sign .  denotes the bracket operator and 0 ≤ pc < 1 is
the crossover rate.
Step 8: Create an offspring population by applying the arithmetic
crossover operator to parents. Suppose that X1 and X2 denote the
chromosomes of parents as

X1 = x11, x12, …, x1n

X2 = x21, x22, …, x2n .
(21)

Then, offspring Y1 and Y2 are created by using the arithmetic
crossover operation. The result is shown in the following equation:

Y1 = α X1 + 1 − α X2

Y2 = α X2 + 1 − α X1

(22)

In (22), α is a random variable with uniform distribution in interval
0, 1 .

Step 9: Select randomly pm × N chromosomes from the primary
population (note that 0 ≤ pm < 1). Generate the mutated population
by applying the Gaussian mutation operator to the selected
chromosome. If xi denotes the selected gene for mutation
operation, and xi′ shows the mutated gene, then (23) can be written
as

xi′ = xi + σ N 0, 1 (23)

in which σ denotes the standard deviation of Gaussian distribution
and N 0, 1  shows a standard Gaussian distribution with average
zero and variance 1 [33].
Step 10: Construct the new main population by replacing
chromosomes with higher fitness values.
Step 11: If k < kmax set k = k + 1 and go to step 3 else go to the
next step.
Step 12: End.

8 Simulation results
This section gives a numerical example to demonstrate the
performance of or suggested control method. Consider a Gompertz
stochastic model without any control input. It is described as

dX t = αX t − βX t logX t dt

+σX t dW t
(24)

Like [20], α = 0.1, β = 0.3, and σ = 0.1  are assigned. Moreover,
X 0 = 1 is defined for tumour-cell population. With these values,
the Gompertz model is simulated in the Matlab environment.

Fig. 2 indicates ten sample paths of the process X t  for the first
50 weeks without therapy. As the figure shows, without any
therapy, the tumour-cell population expands as time elapses. Fig. 3
indicates the initial PDF of tumour-cell population with delta-Dirac
distribution. By the use of this PDF and numerical solving of
Fokker–Planck equation (4), the evolution of the tumour-cell
population PDF is obtained. Fig. 4 depicts the PDF of tumour-cell
population for weeks 6, 12, 18, 24, and 30 when there is no control
input. 

In the proposed control approach, we seek a control input by
which the PDF of the tumour-cell population converges to an
expected ‘desired PDF’ by elapsing the time. It is assumed that the
tumour-cell grows continuously in the first 30 weeks during which
the tumour-cell population is maximised. During this period, no
therapy has been carried out (i.e. therapy is started from week 30).
The aim is the use of our proposed control algorithm to determine
the optimal weekly therapy parameters so that in the next 15
weeks, the PDF of tumour-cell population converges to the
expected desired PDF.

The distribution of desired PDF is assumed to be Gaussian as

Fig. 1  RH-MPC based on Fokker–Planck observer to predict therapy
function parameters
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yd x, t =
1

2πξ
2

t
exp −

x − md t
2

2ξ
2

t
(25)

in which md t = 16 exp ( − 0.7 πt /16) and
ξ t = 1.5 exp ( − 0.5 πt /16) for t = t1, …, tN.

The desired PDF for the treatment period (15 weeks) has been
shown in Fig. 5. The values of its mean md t  and deviation ξ t  are
selected such that, by elapsing the time, the width of the desired

PDF X t  and its mean are exponentially decreased. By tracking
Fig. 5, all the moments of X t  are decreased and controlled. 

To obtain the optimal values of therapy parameters, the
proposed algorithm is applied to the Gompertz model to ensure that
in each time window (a week), the process PDF converges to its
desired values. For this propose, T f = 15 and Δt = 1 are selected.
Moreover, for subroutine 1, it is assumed that
Θ = θ1, θ2 = c0, η . Search space ΩΘ is defined as follows:

ΩΘ = Θ ∈ ℝ2 | 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1 (26)

We set N = 40, kmax = 30, β = 8, pc = 0.8, pm = 0.3, and σ = 0.1,
respectively, for the parameters of subroutine 1. In addition it is
assumed that Ω = 0, 30 , λ = 0.1 and Nt = Nx = 101.

Fig. 6 shows the desired PDF and the computed PDF graphs,
and Fig. 7 indicates the optimal therapy function. As Fig. 6 shows,
the PDF of tumour-cell population converges to its desired values
within 15 weeks. Fig. 8 indicates the optimal values of coefficients
c0 and η calculated by real-coded GA. Fig. 9 indicates ten sample
paths of the process X t  in the presence of optimal therapy. As the
figure shows, by using the therapy after 30th weeks, the tumour-
cell population will be decreased. It can be seen that the mean and
variance of the tumour-cell population in the presence of therapy
both exponentially decrease comparing with the tumour-cell
population without therapy (Fig. 2). 

Fig. 2  Ten sample paths of the process X t  without therapy
 

Fig. 3  Initial PDF of tumour-cell population
 

Fig. 4  PDF of tumour-cell population for weeks 6, 12, 18, 24, and 30
without therapy

 

Fig. 5  Desired PDF graph
 

Fig. 6  Desired PDF and the computed PDF graphs
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9 Conclusion
The aim of this paper was to determine the parameters of therapy
function by controlling the tumour-cell population. Since the
tumour-cell population is a stochastic process, we were faced with
a stochastic process control problem. We used the well-known
Gompertz model to describe the dynamics of tumour-cell
population. This model is non-linear and the control of its first and
second moments is insufficient for thorough control of a process.
The higher order moments of the process must be controlled in this
case. Since all the process moments can be extracted from its PDF,
we used the process PDF as the control variable. We used a
Fokker–Planck-based non-linear stochastic observer to determine
the process PDF. The output of this observer was compared with a
predefined ‘desired PDF’ and the result was minimised to predict
and adjust the parameters of therapy function. To do this, a cost

function was defined and a control algorithm was proposed to
minimise that function. By using the proposed algorithm, the
therapy function parameters were adjusted. The existence and
uniqueness of an optimal therapy function was also proved. The
numerical results are finally given to demonstrate the effectiveness
of the proposed method.
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11 Appendix

11.1 Appendix 1: Proof of Lemma 1

The class C1 consists of all differentiable functions whose
derivatives are continuous; such functions are called continuously
differentiable. The function

λ x = αx − βx log x (27)

is continuous in Ω = 0, L  and its derivative

λ′ x = α − β 1 +
logx

ln10 (28)

is also continuous in 0, L , then λ x  is continuously differentiable
on Ω or λ x ∈ C

1 Ω .

11.2 Appendix 2: Proof of Proposition 5

The proof of Proposition 5 is based on the following two lemmas.
 
Lemma 2: Assume that y0 ∈ H, u ∈ U = ℝ, | | . | |U = | . | (the
absolute value), m = 1 − α2 and r ∈ L

2
V

∗ . Then, if y is the
solution of ℳ y0, u, r , the following inequalities exist:

∥ y ∥L
2

V ≤
1

m 2
∥ y0 ∥H +

1
m

2 ∥ r ∥L
2

V
∗ (29)

∥ y ∥ L
∞

H ≤ ∥ y0 ∥H +
2 2
m

∥ r ∥L
2

V
∗ (30)

∥ ẏ ∥L
2

V
∗ ≤ α1

1
m 2

∥ y0 ∥H +
1
m

2 ∥ r ∥L
2

V
∗

+ ∥ u ∥U + α2 ∥ y0 ∥H +
2 2
m

∥ r ∥ L
2

V
∗

+ ∥ r ∥L
2

V
∗

(31)

 
Proof of Lemma 2: With multiplying ℳ y0, u, r  by y, and
integrating over 0, T , we have

∫
0

T

ẏ, y V
∗
Vdt + ∫

0

T

Ay, y V
∗
Vdt = ∫

0

T

Cy, y V
∗
Vdt

+∫
0

T

uBy, y V
∗
Vdt + ∫

0

T

r, y V
∗
Vdt

(32)

Since uBy, y V
∗
V = 0 [32], (32) can be rewritten as follows:

1
2

∥ y T ∥ H
2 −

1
2

∥ y 0 ∥H
2 + ∫

0

T

Ay, y V
∗
Vdt

= ∫
0

T

Cy, y V
∗
Vdt + ∫

0

T

(r, y)V
∗
Vdt

Since ∥ y ∥L
2

V
2 = ∫0

T
Ay, y V

∗
Vdt, then

1 − α2 ∥ y ∥L
2

V
2 ≤

1
2

∥ y0 ∥H
2 + ∥ r ∥ L

2
V

∗ ∥ y ∥L
2

V

Thus, we obtain

m∥ y ∥L
2

V −
1

2m
∥ r ∥L

2
V

∗

2

≤
1
2

∥ y0 ∥H
2 +

1
4m

2 ∥ r ∥L
2

V
∗

2

This is equivalent to the following:

myL
2

V −
1

2m
rL

2
V

∗ ≤
1
2

y0H
2 +

1
2m

rL
2

V
∗

2

This implies inequality (29).
Multiplying ℳ y0, u, r  by y, and integrating over 0, t  gives

∥ y t ∥H
2 ≤ ∥ y 0 ∥H

2 + 2∥ r ∥ L
2

V
∗ ∥ y ∥L

2
V

From inequality (29) we have

∥ y t ∥H
2 ≤ ∥ y 0 ∥H

2 +
2

m
∥ r ∥L

2
V

∗ ∥ y0 ∥H +
2
m

2 ∥ r ∥L
2

V
∗

2

From this result, inequality (30) is obtained.
Multiplying ℳ y0, u, r  by ∈ L

2
V , and integrating over 0, T , we

have

∫
0

T

ẏ, φ V
∗
Vdt = ∫

0

T

−Ay, φ V
∗
Vdt + ∫

0

T

Cy, φ V
∗
Vdt

+∫
0

T

uBy, φ V
∗
Vdt + ∫

0

T

r, φ V
∗
Vdt

The use of Cauchy–Schwarz inequality gives

∫
0

T

ẏ, φ V
∗
Vdt ≤ α1∥ y ∥L

2
V ∥ φ ∥L

2
V

+∥ u ∥U∥ y ∥L
∞

H ∥ φ ∥L
2

V

+α2∥ y ∥L
∞

H ∥ φ ∥L
2

V

+∥ r ∥ L
2

V
∗ ∥ φ ∥L

2
V

Thus, we obtain the following inequality:

∥ ẏ ∥L
2

V
∗ ≤ α1∥ y ∥L

2
V

+ ∥ u ∥U + α2 ∥ y ∥L
∞

H + ∥ r ∥L
2

V
∗

Finally, by the use of inequalities (29) and (30), inequality (31) is
obtained.
 
Lemma 3: Assuming that ū1 and ū2 are two optimal solutions, we
have (see (33)) 
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Proof of Lemma 3: (i) Let ȳ1 and ȳ2 be the states corresponding to
the optimal controls ū1 and ū2, respectively. This means that ȳ j

satisfies the equation ℳ y0, ū j, 0  for j = 1, 2. By applying the
inequalities (29) and (30) to ȳ j, we obtain

∥ ȳ j ∥L
2

V ≤
1

m 2
∥ y0 ∥H (34)

∥ ȳ j ∥L
∞

H ≤ ∥ y0 ∥H (35)

(ii) Assume that p̄1 and p̄2 are the adjoint states corresponding to
the optimal solutions ū1 and ū2, respectively, and let

q̄ j t = p̄ j T − t

vj t = ū j T − t

Then it can be easily shown that q̄ j satisfies the following equation:

ℳ q̄ j 0 , vj, 0
q̇̄ j + Aq̄ j = vjB

∗
q̄ j + C

∗
q̄ j

q̄ j 0 = ȳ j x, T − yd x, T

where B∗ = − x(∂ . /∂x) and C∗ = λ(∂ . /∂x).
Now, by using inequalities (29) and (30), the following inequalities
hold:

∥ q̄ j ∥L
2

V ≤
1

m 2
∥ q̄ j 0 ∥

H

∥ q̄ j ∥L
∞

V ≤ ∥ q̄ j 0 ∥
H

thus

∥ p̄ j ∥L
2

V ≤
1

m 2
∥ ȳ j x, T − yd x, T ∥

H (36)

∥ p̄ j ∥L
∞

V ≤ ∥ ȳ j x, T − yd x, T ∥
H (37)

(iii) Set ȳ = ȳ1 − ȳ2. Then, it can be easily shown that ȳ satisfies the
following equation:

ℳ 0, ū1, ū1 − ū2 Bȳ2

ẏ̄ + Aȳ = ū1Bȳ

+ ū1 − ū2 Bȳ2 + Cȳ

ȳ 0 = 0

Now, applying inequalities (29) and (30) to ℳ 0, ū1, ū1 − ū2 Bȳ2

yields

∥ ȳ ∥L
2

V ≤
1
m

2 ∥ ū1 − ū2 Bȳ2 ∥L
2

V
∗

≤
1
m

2 ∥ ū1 − ū2 ∥U∥ ȳ2 ∥L
∞

H

(38)

∥ ȳ ∥L
∞

H ≤
2 2
m

∥ ū1 − ū2 ∥U∥ ȳ2 ∥L
∞

H (39)

By the use of (i), inequalities (38) and (39) can be rewritten as
follows:

∥ ȳ ∥L
2

V = ∥ ȳ1 − ȳ2 ∥L
2

V ≤
1
m

2 ∥ ū1 − ū2 ∥U∥ y0 ∥H (40)

∥ ȳ ∥L
∞

H = ∥ ȳ1 − ȳ2 ∥L
∞

V ≤
2 2
m

∥ ū1 − ū2 ∥U∥ y0 ∥H (41)

(iv) Denote p̄ = p̄1 − p̄2 and q̄ = q̄1 − q̄2. Then q̄ satisfies the
following equation:

ℳ ȳ1 x, T − ȳ2 x, T ,

v1, v1 − v2 B
∗
q̄2

.

q̇̄ + Aq̄ = v1B
∗
q̄

+ v1 − v2 B
∗
q̄2 + C

∗
q̄

q̄ 0 = ȳ1 x, T − ȳ2 x, T

Applying inequality (11) to ℳ ȳ1 x, T − ȳ2 x, T , v1, v1 − v2 B
∗
q̄2

yields

∥ q̄ ∥L
2

V ≤
1

m 2
∥ ȳ1 x, T − ȳ2 x, T ∥H

+
1
m

2 ∥ v1 − v2 B
∗
q̄2 ∥L

2
V

∗

=
1

m 2
∥ ȳ1 x, T − ȳ2 x, T ∥H

+
1
m

2 ∥ v1 − v2 ∥U∥ q̄2 ∥L
∞

H

Consequently

∥ p̄ ∥L
2

V ≤
2

m
3 2

∥ ū1 − ū2 ∥U∥ y0 ∥H

+
1
m

2 ∥ ū1 − ū2 ∥U∥ ȳ2 x, T − yd x, T ∥H

By the use of optimality condition, h, υu + ∫0

T
p,

∂y

∂x VV
∗

dt
U

= 0,

it can be obtained that

υ ū1 − ū2 = −∫
0

T

p̄1,
∂ȳ1

∂x VV
∗

dt + ∫
0

T

p̄2,
∂ȳ2

∂x VV
∗
dt

= −∫
0

T

p̄1,
∂ ȳ1 − ȳ2

∂x VV
∗
dt

−∫
0

T

p̄1 − p̄2 ,
∂ȳ2

∂x VV
∗
dt

Taking norms, we have (see (42)) This implies inequality (33).
 
Proof of Proposition 5: By the use of (11), inequality (33) can be
rewritten as follows:

∥ ū1 − ū2 ∥U ≤ k1 + k2∥ y0 ∥H ∥ y0 ∥H∥ ū1 − ū2 ∥U

∥ ū1 − ū2 ∥U ≤
1
m

2 ∥ ȳ1 x, T − yd x, T ∥H +
1

m
3 2

∥ y0 ∥H

+
1
m

2 ∥ ȳ2 x, T − yd x, T ∥H
1
υ

∥ ū1 − ū2 ∥∥ U ∥∥ y0 ∥H

(33)

υ∥ ū1 − ū2 ∥U ≤
1
m

2 ∥ ȳ1 x, T − yd x, T ∥∥ H ∥∥ ū1 − ū2∥ U∥ y0 ∥∥ H ∥

+
1

m
2 2

∥ ū1 − ū2 ∥∥ U ∥ȳ2 ∥(x, T)−yd(x, T) ∥H ∥ y0 ∥H

(42)
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By using the condition ∥ y0 ∥H <
1
2

−
k1

k2
+

k1

k2

2

+
4
k2

 we have

∥ ū1 − ū2 ∥ūU < ∥ ū1 − ū2 ∥U

Thus

ū1 = ū2 .

This proof is based on the method of Addou and Benbrik explained
in [32].
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