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Reports describing significant health risks due to inadequate vitamin D status continue to 
generate considerable interest amongst the medical and lay communities alike. Recent 
research on the various molecular activities of the vitamin D system, including the nuclear 
vitamin D receptor and other receptors for 1,25-dihydroxyvitamin D and vitamin D metab-
olism, provides evidence that the vitamin D system carries out biological activities across a 
wide range of tissues similar to other nuclear receptor hormones. This knowledge provides 
physiological plausibility of the various health benefits claimed to be provided by vitamin D 
and supports the proposals for conducting clinical trials. The vitamin D system plays criti-
cal roles in the maintenance of plasma calcium and phosphate and bone mineral homeo-
stasis. Recent evidence confirms that plasma calcium homeostasis is the critical factor 
modulating vitamin D activity. Vitamin D activities in the skeleton include stimulation or in-
hibition of bone resorption and inhibition or stimulation of bone formation. The three major 
bone cell types, which are osteoblasts, osteocytes and osteoclasts, can all respond to vita-
min D via the classical nuclear vitamin D receptor and metabolize 25-hydroxyvitamin D to 
1,25-dihydroxyvitamin D to activate the vitamin D receptor and modulate gene expression. 
Dietary calcium intake interacts with vitamin D metabolism at both the renal and bone tis-
sue levels to direct either a catabolic action on the bone through the endocrine system 
when calcium intake is inadequate or an anabolic action through a bone autocrine or 
paracrine system when calcium intake is sufficient.
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INTRODUCTION

Reports describing significant health risks due to an inadequate 

vitamin D status continue to generate considerable interest in the 

medical field as well as in other lay communities. The number of 

scientific publications on vitamin D indexed by the PubMed da-

tabase has been increasing by 15-20% every year since 2009. 

Many of them describe the associations between a low vitamin D 

status and increased risk of various diseases. The highest level 

of evidence (systematic review of the results from randomized 

controlled trials [1]) indicates that an adequate vitamin D status 

protects against rickets in children (or osteomalacia in adults) [2], 

osteoporotic fractures [3], falls [4], and premature mortality [5]. 

The efficacy of adequate vitamin D status in reducing the risk of 

the latter three conditions has been particularly demonstrated in 

weak elderly individuals. A recent meta-analysis demonstrated 

that even in people younger than 65 yr, vitamin D status re-

mained inversely related to mortality, although the impact was 

not as high as that in older subjects [5]. Lower level evidence, in-

cluding randomized controlled trials, comparative studies with or 

without concurrent controls, and case series, suggest that a low 

vitamin D status is associated with an increased risk of cancer, 

cardiovascular disease, respiratory infections, autoimmune dis-

eases, and health service utilization and costs [6].

 There continues to be considerable skepticism and contro-

versy regarding such wide-ranging effects from what some clini-
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cians consider a simple nutrient. Such skepticism particularly 

arises from efficacy claims made on the basis of weak evidence 

[7]. However, as the complex cell biology of vitamin D, including 

its metabolism and molecular modes of action, continues to be 

elucidated, the plausibility of such wide-ranging actions is in-

creased [8]. Vitamin D activity requires at least two elements, 

metabolism to synthesize the biologically active metabolite 1,25- 

dihydroxyvitamin D (1,25D) [9] and a receptor protein of which 

at least two have been well described. These include the classi-

cal nuclear receptor [10] and a receptor strongly associated with 

membranes [11]. It is quite possible that other receptors may be 

discovered in the future along with other physiologically relevant 

ligands for these receptors. Our current understanding of vitamin 

D metabolism formed in the skin following exposure to ultravio-

let-B (UVB) light, sequential hydroxylation at the carbon 25- and 

the 1- positions of vitamin D to form 1,25D is well described [12]. 

The critical serum 25-hydroxyvitamin D levels for prevention of 

rickets in children and osteomalacia is 20 nmol/L, which is lower 

than that required for reducing the risk of osteoporotic fractures 

that are reduced at levels greater than 60 nmol/L in combination 

with an adequate dietary calcium intake [13].

ENDOCRINE AND AUTOCRINE/PARACRINE 
METABOLISM OF VITAMIN D

The renal activity of the enzyme 25-hydroxyvitamin D-1α hydrox-

ylase (CYP27B1) is responsible for synthesizing plasma 1,25D, 

and in healthy, non-pregnant subjects, renal synthesis appears 

to be the sole source of plasma 1,25D [14]. The endocrine ac-

tivities of plasma 1,25D are strongly linked with the regulation of 

plasma calcium and phosphate homeostasis as well as impart-

ing protection against rickets, a metabolic bone disease, in chil-

dren and osteomalacia in adults [13]. Renal synthesis of plasma 

1,25D is tightly regulated largely through regulation of the renal 

expression of the gene coding for 25-hydroxyvitamin D-1α hy-

droxylase (CYP27B1), in which the parathyroid hormone, FGF 

23, and plasma calcium through the calcium-sensing receptor 

play key roles [12].

 1,25D also exerts autocrine or paracrine activities, because it 

is synthesized in a wide range of tissues through the expression 

of CYP27B1 [15]. There is no evidence that synthesis of 1,25D 

in these non-renal tissues significantly contributes to plasma 

1,25D levels [13]. The autocrine/paracrine activities of 1,25D and 

their physiological significance have been well described in the 

skin where it is responsible for the regulation of the proliferation 

and maturation of keratinocytes, including formation of the per-

meability barrier in the skin, as well as in innate immunity, hair 

follicle cycling, and suppression of tumor formation [16]. Each of 

these activities requires a nuclear vitamin D receptor (VDR).

 Autocrine/paracrine activities have been well described within 

both rodent and human bone cells demonstrating that local syn-

thesis of 1,25D from 25-hydroxyvitamin D inhibits osteoblast pro-

liferation and stimulates osteoblast maturation and mineral depo-

sition in vitro [17]. The effects of 1,25D on osteoblast-like cells 

are dependent on their maturation stage, for example, stimula-

tion of osteoblast expression of the receptor activator of nuclear 

factor- kappaB ligand (RANKL) by 1,25D only occurs in imma-

ture osteoblasts [18]. There is also in vivo evidence from a rodent 

model supporting the concept that bone cell 1,25D synthesis 

regulates bone mineral homeostasis by down-regulating mRNA 

levels of RANKL in whole bone and increases the time required 

for osteoblast bone formation [19]. Considerable clinical data 

suggest that maintaining serum 25-hydroxyvitamin D levels in 

the elderly in combination with adequate dietary calcium intake 

reduces the risk of fractures [3], thereby supporting the view that 

this is applicable to humans.

 It is likely that such autocrine/paracrine activities of 1,25D are 

exerted in other tissues, thereby regulating specific tissue physi-

ology with data available for the colon [20] and breast [21] tis-

sues. The one mechanism common in these various tissues is 

the inhibition of cell proliferation and enhancement of cell matu-

ration. Clearly, such activities could be associated with the risk 

of cancer.

MOLECULAR ACTIONS OF VITAMIN D AND 
VITAMIN D RECEPTOR

1. Regulation of gene transcription
Vitamin D exerts one of its biological activities through binding of 

the 1,25D metabolite to the classical nuclear VDR, which acts as 

a nuclear transcription factor similar to other steroid hormones. 

The VDR was found to be expressed in 31 out of 39 tissues har-

vested from young mice, although only 7 of these tissues dem-

onstrated high levels of VDR mRNA [22]. A hierarchical cluster-

ing of nuclear receptor tissue expression indicates that VDR is 

most closely related to nuclear receptors regulating bile acids 

and xenobiotic metabolism. VDR acts to stimulate gene tran-

scription after binding to 1,25D by forming a heterodimer with 

the retinoid-X receptor (RXR) protein, which binds to a VDR-spe-

cific gene sequence [23]. Vitamin D responsive genes are de-

fined by the genetic coding of a specific control element known 

as the vitamin D response element (VDRE) in the regulatory re-
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gion of the genome, which is often but not always situated close 

to the transcriptional start site of the gene. Binding of the 1,25D-

VDR-RXR complex to the VDRE initiates recruitment and assem-

bly of a very large complex of coactivator proteins. This complex 

remodels the locally condensed chromatin by the actions of en-

zymes, which either add or remove acetyl or methyl groups from 

histones. The complex recruits the RNA polymerase II enzyme 

to the transcriptional start site, which initiates mRNA synthesis of 

the vitamin D-responsive gene.

 Such transcriptional complexes have been identified for all ste-

roid hormone nuclear receptors investigated, and this transcrip-

tional complex defines the specificity and sensitivity of many of 

their biological responses. It appears that vitamin D also regulates 

a multiplicity of biological responses through a wide range of tis-

sues in this manner. Currently, we have understood the contribu-

tion of at least four elements of the transcriptional complex [24]. 

In the case of vitamin D, the nuclear receptor ligand, 1,25D, 

identifies the physiological specificity of the response. The VDRE 

identifies the genetic specificity of the response. The various co-

activators and other proteins complexing to the liganded VDR-

RXR heterodimer bound to the VDRE identify the cell or tissue 

specificity of the response. Finally, the transcription and transla-

tion of the gene and the specific gene product activity identifies 

the physiological response.

2. Rapid actions of vitamin D (non-genomic activities)
Over time, the ability of 1,25D to exert biological effects over pe-

riods of time considerably shorter than those required to detect 

products of gene transcription have been recognized. These ac-

tivities take minutes and have been termed as “non-genomic 

actions,” although very often gene transcription levels are en-

hanced by such activities. They take place in the cytoplasm of 

the cell rather than in the nucleus and often involve modulation 

of intracellular calcium levels as well as activation of intracellular 

signals through phosphate kinases and phosphatases, the path-

ways vary among different cell types [25, 26].

 One study has demonstrated that 1,25D acts through a dis-

tinct membrane-associated, rapid response steroid binding re-

ceptor (MARRS) [11] to initiate such rapid activities. This protein 

belongs to a superfamily of multifunctional glucose-regulated 

and redox-sensitive proteins that have been previously impli-

cated in binding thyroid hormones and estrogens in glycoprotein 

biosynthesis and in immune responses [27]. The classical nu-

clear VDR also elicits rapid responses, which are considered to 

require the association of the VDR with plasma cell membrane 

constituents [25, 28].

3.   Actions of the vitamin D receptor through intracellular 
protein binding 

Recent data suggests that a further mode of action of the vita-

min D system is by direct binding of the classical nuclear VDR 

to intracellular proteins. Many of these VDR-binding proteins are 

transcriptional co-activators or co-repressors involved in the 

transcriptional complex required for genomic actions or act as 

transcription factors themselves. One such protein is β-catenin, 

and interaction with VDR modulates expression of β-catenin-

responsive genes in some cells and vitamin D-responsive genes 

in others [29]. Some of these complexes require 1,25D binding 

to the VDR, while others do not require 1,25D. In skeletal cell 

physiology the wingless integration (Wnt) signaling pathway in-

cluding β-catenin regulates bone formation as indicated by the 

inhibition of bone formation by the actions of the Wnt signaling 

pathway antagonist sclerostin. Inhibitors of sclerostin are cur-

rently under investigation for use in the treatment for postmeno-

pausal osteoporosis [30]. Preliminary in vitro experimentation 

with a human osteoblast-like osteosarcoma cell line indicates 

that VDR stimulates β-catenin activity in this cell line apparently 

independent of 1,25D [10].

THE ROLE OF VITAMIN D RECEPTOR IN 
CALCIUM AND BONE MINERAL HOMEOSTASIS

Each of the molecular mechanisms of the vitamin D system de-

scribed above contributes to maintaining plasma calcium and 

bone mineral homeostasis. VDR expression in intestinal, renal, 

and bone tissues is essential for maintaining plasma calcium and 

phosphate homeostasis. VDR is expressed by all three major 

bone cell types: osteoblasts, osteoclasts, and osteocytes [12]. 

Ablation of the VDR gene produces hereditary vitamin-D-resistant 

rickets (HVDRR), a rare autosomal recessive condition charac-

terized by significantly elevated levels of 1,25D, alopecia, hypo-

calcaemia, hypophosphatemia, and rickets, which is a bone tis-

sue mineralization abnormality in children [31-33]. Global VDR-

ablated mouse models (global-VDR [-/-]) demonstrate rachitic 

bone changes analogous to HVDRR when fed a standard diet; 

however, feeding these animals high calcium, phosphorus, and 

lactose diets until 10 weeks of age corrects plasma calcium and 

phosphate levels preventing the development of rachitic bone 

changes, which achieved normal bone volume and strength [34, 

35]. Specific ablation of VDR in the intestine with concomitantly 

reduced calcium absorption, increased serum 1,25D, and para-

thyroid hormone (PTH) levels associated with trabecular and 

cortical bone loss and cortical porosity sufficiently severe to initi-
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ate spontaneous bone fractures [36]. When an intestinal-specific 

transgene for VDR was expressed in the global-VDR (-/-) mouse, 

thereby inducing VDR expression only in the intestine of this 

mouse model, calcium absorption was restored accompanied by 

restoration of plasma calcium homeostasis preventing the ra-

chitic phenotype of VDR knockout mice [37]. Such data clearly 

show that any defect in bone mineralization is largely dependent 

on the availability of plasma calcium and phosphate via VDR-

mediated intestinal absorption.

 Regulation of plasma calcium homeostasis is also maintained 

by 1,25D-mediated renal reabsorption of calcium, which re-

quires expression of VDR in the kidney. Global-VDR (-/-) mice 

show increased renal excretion of calcium whether on a normal 

diet with hypocalcaemia and marked increase in the PTH levels 

or on high calcium and phosphate diets with normal plasma cal-

cium and PTH levels [38]. Clinical evidence confirms that se-

rum 1,25D regulates renal tubular reabsorption of calcium in 

humans so that in case of mild renal failure, 1,25D acts to main-

tain plasma calcium homeostasis [39].

 VDR-mediated activities within bone cells are also critical in 

regulating plasma calcium and bone mineral homeostasis. Stud-

ies conducted with in vitro and in vivo models have shown that 

vitamin D activity can either promote or inhibit bone formation 

and stimulate or inhibit bone mineral catabolism. These actions 

on the bone mineral appear most likely to support the mainte-

nance of plasma calcium homeostasis under varying physiologi-

cal circumstances. However, definitive proof of such a relation-

ship between vitamin D actions on bone cells and plasma cal-

cium homeostasis is yet to be demonstrated. Evidence is avail-

able to support the plausibility of the concept summarized here.

 Global-VDR (-/-) mice fed a standard calcium diet develop hy-

pocalcemia and hypophosphatemia with markedly raised PTH 

levels. However, there is a failure to increase osteoclastic activity, 

which is mostly likely due to inadequate levels of RANKL, a VDR-

mediated factor produced by osteoblasts and osteocytes re-

quired for osteoclastogenesis [40]. Even when global-VDR (-/-) 

mice were fed the high calcium and phosphate diet, animals at 

16 weeks of age demonstrated marked osteopenia despite nor-

malization of serum calcium and phosphate levels. The reduced 

trabecular bone volume was a result of impaired mineral apposi-

tion in these global-VDR (-/-) mice and not increased bone re-

sorption. According to the authors, the importance of stimulation 

of bone formation may increase with aging. Recent data with an 

osteoblast-specific VDR knockout mouse model demonstrated 

impaired RANKL expression and activity, thereby confirming the 

essential role of VDR in osteoblasts for the regulation of osteo-

clastogenesis [41]. There were no apparent changes in the bone 

formation parameters observed in these 16-week-old osteoblast-

specific VDR knockout mice, suggesting that the VDR activity in 

osteoblasts mainly stimulates bone resorption.

 The role of VDR has also been examined in osteocytes in vivo 
with an osteocyte-specific VDR deletion mouse model [42]. Un-

der normal dietary conditions, the absence of VDR in osteocytes 

did not appear to be essential for osteocyte function or to bone 

mineral status. With pharmacological levels of plasma 1,25D, 

osteocyte expression of genes involved in inhibition of mineral-

ization was upregulated in Wild Type mice only, and the local-

ized regions of under-mineralized bones around the osteocyte 

lacunae were detected. Data generated from this model indicate 

that high 1,25D plasma levels can act on osteocytes to inhibit 

bone mineral deposition in addition to stimulating bone resorp-

tion by way of increasing RANKL expression by osteoblasts and 

possibly osteocytes. Such actions would maintain or even in-

crease calcium within the plasma compartment through the ac-

tion of plasma 1,25D and osteocyte VDR.

 In contrast to these catabolic and anti-mineralization activities 

of plasma 1,25D and VDR in osteoblasts and osteocytes in bone, 

VDR also mediates anabolic activity within the bone under con-

ditions of adequate dietary calcium intake. Over-expression of 

VDR, specifically in mature osteoblast lineage cells (OSVDR), 

demonstrated increased mineral apposition and decreased bone 

resorption activity resulting in increased cortical and trabecular 

bone volumes [43]. In addition, the calcium content of the min-

eralized matrix in both the cortical and trabecular bones was 

modestly increased in OSVDR mice [44]. Importantly, this in-

creased bone mineral phenotype is lost when OSVDR mice are 

fed low dietary calcium suggesting that the mechanism by which 

1,25D and VDR in mature osteoblasts increases bone volume 

depends on the adequacy of dietary calcium and possibly on low 

plasma 1,25D levels.

 A similar anabolic action of vitamin D has been demonstrated 

by dietary manipulation of vitamin D status in rodents, where 

both adequate serum 25-hydroxyvitamin D combined with ade-

quate dietary calcium intake were required for optimal trabecular 

and cortical bone mineral volumes [45, 46]. The adequate se-

rum 25-hydroxyvitamin D levels under these conditions reduced 

bone RANKL expression and bone resorption, while also slightly 

prolonging the bone formation period of osteoblasts.

CONCLUSION

The 21st century has witnessed an increase in knowledge re-



Morris HA
Vitamin D activities for health outcomes

http://dx.doi.org/10.3343/alm.2014.34.3.181 www.annlabmed.org  185

garding vitamin D metabolism and its modes of action, which 

provides plausibility to claims of the various organs and disease 

processes modulated by vitamin D. Expression of VDR and syn-

thesis of 1,25D occurs in many if not most tissues of the body. 

Two protein receptors for 1,25D have been characterized. Other 

metabolites of vitamin D such as 24,25-dihydroxyvitamin D have 

been proposed to exert biological activities possibly through their 

specific receptor [47], and others have suggested that metabo-

lites of vitamin D other than 1,25D may activate the classical 

nuclear VDR [16]. The various modes of VDR action described 

here along with tissue expression indicate that the vitamin D 

system is part of a hierarchical circuitry that extends beyond in-

dividual tissues to form a mega-network governing the physiol-

ogy at the scale of a whole organism [22]. However, there con-

tinues to be considerable difficulty in categorizing these activities 

within the clinical context for maintaining good health, and re-

cent meta-analyses of clinical trials of vitamin D supplementa-

tion suggest that a low vitamin D status is a marker and not a 

cause of ill health [48].

 Current data confirm that vitamin D plays a critical role in 

maintaining plasma calcium and phosphate homeostasis and 

bone mineral homeostasis. This knowledge provides a sound 

basis for improving nutritional strategies for the prevention of os-

teomalacia (and rickets in children) and osteoporosis and frac-

tures in the elderly. This new knowledge reinforces the concept 

that the various activities of vitamin D on the bone are depen-

dent on the state of plasma calcium and phosphate homeostasis 

rather than on the bone mineral status. When plasma calcium 

levels are low, vitamin D has the capacity to both stimulate the 

release of calcium and phosphate from bone and inhibit bone 

mineral deposition. When plasma calcium and phosphate levels 

are adequate, associated with lower plasma levels of calciotropic 

hormones in conjunction with an adequate vitamin D status, 

bone cells, particularly mature osteoblasts and osteocytes, can 

convert plasma 25-hydroxyvitamin D to 1,25D to enhance cal-

cium and phosphate accrual in bone tissue and improve bone 

strength.

 Further studies are required to determine the various molecu-

lar actions of vitamin D on bone cells as well as on the intestine 

and kidney, which contribute to plasma calcium and phosphate 

homeostasis. The new data obtained from these studies will en-

hance the understanding of the interaction of vitamin D status 

and dietary calcium and phosphate intakes for optimal health, 

including the optimization of bone health and reduction in the 

risk of fractures, including skeletal complications of diseases 

such as seen in chronic kidney disease. Laboratory medicine will 

continue to make important contributions to the care of these 

patients through analyses of serum 25-hydroxyvitamin D and 

other biomarkers.
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