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Abstract

Transcription factors (TFs) play an important role in regulating gene expression, thus the

identification of the sites bound by them has become a fundamental step for molecular and

cellular biology. In this paper, we developed a deep learning framework leveraging existing

fully convolutional neural networks (FCN) to predict TF-DNA binding signals at the base-res-

olution level (named as FCNsignal). The proposed FCNsignal can simultaneously achieve

the following tasks: (i) modeling the base-resolution signals of binding regions; (ii) discrimi-

nating binding or non-binding regions; (iii) locating TF-DNA binding regions; (iv) predicting

binding motifs. Besides, FCNsignal can also be used to predict opening regions across the

whole genome. The experimental results on 53 TF ChIP-seq datasets and 6 chromatin

accessibility ATAC-seq datasets show that our proposed framework outperforms some

existing state-of-the-art methods. In addition, we explored to use the trained FCNsignal to

locate all potential TF-DNA binding regions on a whole chromosome and predict DNA

sequences of arbitrary length, and the results show that our framework can find most of the

known binding regions and accept sequences of arbitrary length. Furthermore, we demon-

strated the potential ability of our framework in discovering causal disease-associated sin-

gle-nucleotide polymorphisms (SNPs) through a series of experiments.

Author summary

Identification of transcription factor binding sites (TFBSs) is fundamental to study gene

regulatory networks in biological systems, as TFs activate or suppress the transcription of

genes by binding to specific TFBSs. With the development of high-throughput sequencing

technologies and deep learning (DL), several DL-based approaches have been developed

for systematically studying TFBSs, achieving impressive performance. Nevertheless, these

methods either excessively focus on discriminating binding or non-binding sequences or
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individually accomplish multiple TFBSs-associated tasks. In this work, we provide an inte-

grated framework, which utilizes the FCN architecture to predict TF-DNA binding signals

at the base-resolution level, to simultaneously study multiple TFBSs-associated tasks.

More importantly, we also demonstrate that our proposed framework has the ability to

locate all potential TF-DNA binding regions from DNA sequences of arbitrary length. We

hope that our framework can provide a new perspective on studying the mechanism of

TF-DNA binding and its related tasks.

This is a PLOS Computational BiologyMethods paper.

Introduction

Transcription factors (TFs) can activate or suppress the transcription of genes by binding to

specific DNA non-coding regions, thereby playing an integral role in gene expression [1].

These specific regions bound by TFs are known as transcription factor binding sites (TFBSs)

[2], and the aligned profiles of TFBSs are referred to as cis-regulatory motifs [3]. In recent

years, a lot of substantial computational efforts have been invested to study TF-DNA binding

specificities and motifs prediction, resulting in the development of numerous algorithms,

computational tools, and databases [4–7]. However, the deep understanding of the mechanism

of TF-DNA binding remains fragmented. Thus, comprehensive computational methods are

needed to systematically uncover the binding mechanism.

The fast development of high-throughput sequencing technologies has brought about a

large amount of TF-DNA binding data for studying TFBSs-associated tasks. For example,

ChIP-seq [8] provides an opportunity for viewing genome-wide interactions between DNA

and specific TFs. Protein binding microarrays (PBMs) [9] have enabled large-scale characteri-

zation of TF-DNA binding in a high-throughput manner without considering the influence of

cofactors on predicting TFBSs. ATAC-seq [10] describes putative accessible regions in the

genome that often work together with transcription factors (TFs), RNA polymerases, or other

cellular machines. Furthermore, SMiLE-seq [11] is a newly-developed technology for protein–

DNA interaction characterization that can efficiently characterize DNA binding specificities of

TF monomers, homodimers and heterodimers. These binding data provide an unprecedented

opportunity for us to develop computational approaches to predict TFBSs and motifs. For

example, MEME [12] discovered TF-DNA binding motifs by searching for repeated, ungapped

sequence patterns that occur in the biological sequences. STREME [13] identified ungapped

motifs with recurring, fixed-length patterns that are enriched in query sequences or relatively

enriched in them compared to control sequences. gkm-SVM [14,15] detected functional regu-

latory elements in DNA sequences by using gapped kmer and support vector machine. How-

ever, these methods are often subject to the defects of low efficiency and poor performance.

There is hence a critical need for improved computational methods that can accurately

identify cis-regulatory motifs on high-throughput sequencing data. In recent years, deep learn-

ing (DL) has achieved amazing performance in many fields, such as computer version [16,17]

and natural language processing [18,19], inspiring researchers to develop DL-based methods

for predicting TFBSs and motifs [20–26]. For example, DeepBind [27] and DeepSea [28]

applied convolutional neural networks (CNN) to accurately predict diverse molecular pheno-

types, including TF binding from DNA sequences. DanQ [29] predicted TF-DNA binding
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motifs and prioritized functional SNPs by combining CNN with recurrent neural network

(RNN). However, these DL-based methods mainly focus on discriminating binding or non-

binding sequences and fail to accurately predict TFBSs and motifs. To remedy such problems,

DESSO [30] used a CNN model for extracting motif patterns from given ChIP-seq peaks and a

statistical model based on the binomial distribution for optimizing the identification of motif

instances. FCNA� [31] predicted TFBSs and motifs on ChIP-seq data by using a fully convolu-

tional neural network (FCN) and global average pooling (GAV). D-AEDNet [32] adopted an

encoder-decoder architecture to identify the location of TF-DNA binding sites in DNA

sequences. BPNet [33] introduced a dilated CNN to predict base-resolution ChIP-nexus bind-

ing profiles of pluripotency TFs. Although these DL-based methods have achieved high accu-

racy in the tasks of classification, location, or predicting motifs, a novel method that can

integrate the above TFBSs-associated tasks in a single-task way is still missing.

Overall, we proposed a FCN-based framework (FCNsignal) to predict transcription factor

binding signals at the base-resolution level, which can simultaneously achieve the following tasks:

(i) modeling the base-resolution signals of binding regions; (ii) discriminating binding or non-

binding regions; (iii) locating TF-DNA binding regions; (iv) predicting binding motifs. Specifi-

cally, the peaks and signals (p-value) of ChIP-seq and ATAC-seq were firstly collected from

ENCODE. Secondly, FCNsignal took as input the peaks and predicted the base-resolution sig-

nals. Finally, several competing methods were used to evaluate the performance of FCNsignal on

the four tasks. Experimental results show that FCNsignal is superior to the competing methods

on these tasks, which demonstrates the effectiveness of our proposed method. In addition, we

explored to use the trained FCNsignal to predict DNA sequences of arbitrary length and locate all

potential TF-DNA binding regions on a whole chromosome, and the results show that our

framework can accept inputs of arbitrary length and find most of the known binding regions.

Furthermore, we show that FCNsignal can be used to predict genome-wide opening regions and

discover causal disease-associated single-nucleotide polymorphisms (SNPs). Thus, we hope that

FCNsignal can provide a new perspective on studying TFBSs and its related tasks.

Results

Overview of experimental design

FCNsignal, consisting of an encoder architecture, a decoder architecture, and a skip architecture,

is designed to predict base-resolution signals of TF-DNA binding (Fig 1A). Substantially,

FCNsignal is a base-resolution regression framework, which accepts DNA sequences where each

sequence is converted to a matrix in one-hot format with A = [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0,

0, 1, 0], and T = [0, 0, 0, 1], and uses base-resolution binding signals (p-value) as the supervised

labels. Nevertheless, FCNsignal can also be applied to discriminate binding or non-binding

regions, locate TF-DNA binding regions, and predict binding motifs by using the maximum val-

ues of binding signals (see Materials and methods). A total of 53 ChIP-seq and 6 ATAC-seq

datasets were used to build models and evaluate the predictive performance of FCNsignal.

FCNsignal can accurately capture TF-DNA binding patterns

To test the ability to capture TF-DNA binding patterns, two validation experiments were

designed. Specifically, for the first experiment: (i) the maximum values of signals for peaks

were located; (ii) the length of the peaks were expanded to 1000bp by centering on the position

of the maximum values; (iii) the same process was repeated twice after shifting the position of

the maximum values by -250bp and +250bp respectively. For the second one: (i) the maximum

values of signals for peaks were located; (ii) the regions of length 100bp surrounding the posi-

tion of the maximum values were extracted; (iii) the extracted regions were randomly inserted
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into negative sequences and kept to 1000bp. Subsequently, the trained FCNsignal was used to

predict the base-resolution signals of these data. As shown in Figs 1B, 1C, and S2, we observe

that our proposed method can accurately identify the sequence-specific patterns of TF-DNA

binding regions and model their corresponding signals.

The overall performance of FCNsignal on ChIP-seq datasets

To test the performance of FCNsignal on ChIP-seq datasets, we collected 53 ChIP-seq datasets

for sequence-specific TFs from the ENCODE project, which consists of 21, 20, and 12 TF

Fig 1. Schematic overview of FCNsignal framework. (A) FCNsignal is mainly composed of an encoder architecture, a decoder architecture, and a skip

architecture, which takes as input DNA sequences and predicts the base-resolution signals. FCNsignal can simultaneously realize multiple tasks with high

accuracy by using the maximum values of predicted signals. (B) FCNsignal can accurately capture the signals of the shifted binding regions that are separately

located at 250bp, 500bp, and 750bp. (C) FCNsignal can accurately capture the signals of the binding regions that were randomly inserted into negative

sequences.

https://doi.org/10.1371/journal.pcbi.1009941.g001
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datasets in the GM12878, K562, and HeLa-S3 cell lines respectively. The overall performance

of the proposed method was investigated on the test data.

The MSE and Pearsonr between the predicted signals and the true signals were employed to

evaluate the performance of FCNAsignal in modeling the base-resolution signals. FCNA and

BPNet were used as the competing methods. As shown in Fig 2A, the average MSE values of

FCNsignal are lower than that of other methods, and the average Pearsonr values are higher

than that of other methods. More comparisons (S3A Fig) show that our method outperforms

the other two methods under the MSE and Pearsonr metrics. These results indicate that

FCNsignal can model the base-resolution signals well.

Fig 2. Performance comparison of FCNsignal and the competing methods on the 53 ChIP-seq datasets. (A) The MSE and Pearsonr values for

BPNet, FCNA, and FCNsignal, and the Wilson’s test p-values (paired) of the two metrics between FCNsignal and the other two methods. (B) The

AUC and PRAUC values for BPNet, DanQ, DeepCNN, FCNA, FCNsignal, and LSGKM, and the Wilson’s test p-values (paired) of the two metrics

between FCNsignal and the other five methods. The red triangles represent the average values.

https://doi.org/10.1371/journal.pcbi.1009941.g002
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The AUC and PRAUC metrics were employed to evaluate the performance of FCNsignal in

discriminating binding or non-binding sequences. LSGKM, DanQ, DeepCNN, FCNA, and

BPNet were used as the competing methods. As shown in Fig 2B, our method outperforms the

five competing methods with low p-values (Wilson’s test, paired), and the average AUC

(PRAUC) values are higher than theirs. More comparisons are displayed in S3B Fig, but we

observe that FCNsignal performs much worse than LSGKM on three TFs, including CEBPB

(AUC: 0.883 vs. 0.913), CUX1 (AUC: 0.837 vs. 0.882), and TCF7 (AUC: 0.885 vs. 0.944). To

analyze this phenomenon, for each of them, the distribution of the maximum values of signals

in the positive and negative samples was calculated. As shown in S4 Fig, for each of the three

TFs, the majority of the maximum values in the positive and negative samples are intersected

so it is difficult for our method to accurately discriminate positive or negative samples by the

maximum values of signals. On the contrary, for CTCF, the maximum values in the positive

and negative samples are barely intersected so that our method can accurately discriminate the

positive or negative samples with superior performance over LSGKM (AUC: 0.993 vs. 0.955).

Overall, these observations demonstrate that our method can accurately discriminate binding

or non-binding sequences, but also is possibly influenced by the quality of signals.

To explore the effect of the number of samples on the performance of FCNsignal, three

methods were selected including LSGKM, FCNAsignal, and BPNet, whose model complexity

is increasing. All TF datasets were first sorted in ascending order of quantity, and then the

three methods were compared using the AUC metric. As shown in S5 Fig, we observe that (i)

LSGKM has the competitive performance to and even surpasses FCNsignal on the datasets

with small size, but performs worse than FCNsignal on the datasets with large size; (ii) BPNet

performs much worse than the other two methods on the datasets with small size but is getting

better results as the number of datasets increases. Generally, these observations illustrate that

FCNsignal is slightly affected by the number of samples but also benefits from the increasing

number of samples.

FCNsignal can accurately predict TF-DNA binding motifs

Seven competing methods, including MEME, STREME, DanQ, DeepCNN, FCNA�, FCNA,

and BPNet, were employed to investigate the performance of FCNsignal in predicting

TF-DNA binding motifs. As described in the ‘Materials and methods’ section, the–log2(p-

value) produced by TOMTOM was used as the evaluation metric. As shown in Fig 3A, we

observe that (i) FCNsingal outperforms MEME, STREME, DanQ, DeepCNN, and BPNet with

low p-values (Wilson’s test, paired), and the average–log2(p-value) values are higher than

theirs; (ii) FCNA has the competitive performance to FCNsignal, but the average–log2(p-

value) value is lower than FCNsignal; (iii) FCNA� perform significantly better than FCNsignal,

and the average–log2(p-value) values are the highest among all methods; (iv) the number of

motifs found by FCNsignal (50/53) is more than other competing methods except FCNA� that

finds all motifs. FCNA and FCNsignal are both based on the symmetrical FCN architecture, so

they have comparable performance. FCNA� used the base-resolution labels (0/1) which were

manually annotated by PCMs while FCNsignal used the base-resolution signals which were

produced by high-throughput sequencing technologies, so FCNA� achieves the very impres-

sive performance. However, FCNA� was extremely dependent on the PCMs so that it cannot

distinguish positive sequences from negative sequences, which means that it even using the

negative sequences can also get very good results (experimental details and results can be

found in S1 Text and S6 Fig respectively), whereas FCNsignal can distinguish positive

sequences from negative sequences by the maximum values of signals. Moreover, the real

PCMs are not easily acquired unlike the signals produced by sequencing technologies.
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Fig 3. Motif prediction performance comparison of FCNsignal and the competing methods. (A) The–log2(p-value)

values for BPNet, DanQ, DeepCNN, FCNA, FCNA�, FCNsignal, MEME and STREME, and the Wilson’s test p-values

(paired) between FCNsignal and other seven methods. Note that the red triangles represent the average values and the

value of 0 means not finding the target. (B) Detailed view of identified TF motifs for K562. The TF motifs of the inner

loop are the target ones and the motifs of the outer loop are the found ones. The size of circles corresponds to the–log2

(p-value) value and different colors are used to designate different TF classes. The TF motifs marked by ‘pink’ belong

to the same TF family sharing the consensus binding sequence while the ones marked by other colors are more likely

the indirect TF motifs.

https://doi.org/10.1371/journal.pcbi.1009941.g003
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Generally, these results indicate that FCNsignal can accurately and efficiently predict TF-DNA

binding motifs. Motif visualization of some examples is displayed in S3 Table.

In addition, FCNsignal can be used to find indirect TF-DNA binding motifs. Taking all TFs

in the K562 cell line as an example, except each target TF motif, the top-5 matched motifs were

picked out according to the–log2(p-value). As shown in Fig 3B, we observe that (i) FCNsignal

are prone to finding similar motifs belonging to the same TF family. For example, the matched

TF motifs of NFYA contain NFYB and NFYC, which belong to the Heteromeric CCAAT-

binding family. The matched TF motifs of GATA2 contain GATA1, GATA3, and GATA4,

which belong to the C4-GATA-related family; (ii) FCNsignal can find the indirect TF motifs

interacting with the target TF. For instance, the Jun-related motifs (JUNB and JUND) and the

Fos-related motifs (FOSL1 and FOSL2) are mutually inclusive, which has been demonstrated

that all JUN–FOS heterodimers often strongly bind to the TPA-response element [11]. The

matched TF motifs of GATA2 involve JUN and FOSB with significant p-values, which has

been proved that GATA2 frequently occupies the same chromatin sites as c-JUN and c-FOS,

heterodimeric components of AP-1 [34].

FCNsignal can locate potential TF-DNA binding sites on the whole

chromosome

At first, the cross-cell-line prediction ability of FCNsignal was tested by using the models

trained on the datasets in the GM12878 and K562 cell lines to predict the datasets in the HeLa-

S3 cell line, and these datasets include CTCF, ELK1, and JUND. As shown in S7 Fig, the per-

formance of FCNsignal in predicting the datasets from different cell lines is slightly worse than

it predicting the ones from the same cell lines, but the overall cross-cell-line prediction perfor-

mance is very high. The above observations imply that FCNsignal is capable of predicting spe-

cific TF-DNA binding sites across the genome.

To test the ability of FCNsignal in predicting potential TF-DNA binding sites on the whole

chromosome, we applied a chromosomally-split strategy to divide the experimental datasets

into training data, validation data, and test data. Specifically, (i) six TF ChIP-seq datasets were

picked out from the HeLa-S3 and K562 cell lines respectively; (ii) for each dataset, the data

from chromosomes 17 and 18 were separately used as the test and validation sets while the

remaining data were used as the training set; (iii) these data were used to train and test

FCNsignal. The results demonstrate that FCNsignal can achieve high prediction performance

regardless of using the chromosomally-split or randomly-split strategies (S8 Fig). Subse-

quently, the entire chromosome 17 was used to validate the performance of our proposed

method in locating TF-DNA binding regions. Briefly, (i) the entire chromosome 17 was seg-

mented into sequences of length 1000bp; (ii) the trained models for CTCF and YY1 were used

to predict the base-resolution binding signals of these sequences; (iii) several sequences with

high confidence were selected only if the maximum values of the predicted signals exceed a

manually set threshold (here we set it to 1.5); (iv) the regions of length 60bp surrounding the

position of the maximum values were extracted. As a result, 2132 and 1060 potential regions

containing TFBSs for CTCF and YY1 were discovered respectively.

To validate these located short regions, the number of them intersecting with the true peaks

collected from ReMap2020 was counted by the rule that the intersection ratio is over 50%. As

shown in Fig 4A, 81% (1725/2132) of CTCF and 63% (671/1060) of YY1 are supported by the

true peaks. Moreover, we analyzed the distribution of h3k27ac signals for supported and

unsupported regions, finding that (i) the h3k27ac values of the supported regions are signifi-

cantly higher than that of the unsupported regions, meaning that the supported regions are

mostly from open chromatin regions while the unsupported regions are perhaps from unopen
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regions, and (ii) the unsupported regions also contain a small number of outliers that have

high h3k27ac values, implying that these outliers are similar to the CTCF/YY1-associated

binding sites. Besides, we utilized FIMO [35] to find motif instances with high significance (p-

value < 1e-4) and CentriMo [36] to do motif enrichment analysis, on the located regions and

Fig 4. The performance of FCNsignal in locating TF-DNA binding regions. (A) The results of FCNsignal in locating potential binding regions for CTCF and

YY1 on the whole chromosome 17 as well as the distribution of h3k27ac signals in the supported and unsupported sequences, where ‘Supported’ means

existing in the real peaks and ‘Unsupported’ means the opposite. (B) The number of motif instances found by FIMO on the located regions and the negative

regions as well as the distribution of the matched–log2(p-value) values. (C) The motif enrichment analysis on the located regions and the negative regions. The

dash lines represent the results on the negative regions. (D) The base-resolution signals of DNA sequences of arbitrary length predicted by FCNsignal, the true

signals, and the h3k27ac signals. The range of the top DNA sequence is chr17: 8376183–8384180 (7997bp length), and the range of the bottom DNA sequence

is chr17: 41548466–41580329 (31863bp length).

https://doi.org/10.1371/journal.pcbi.1009941.g004
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the negative regions respectively. As opposed to selecting the located regions, the sequences

were chosen as the negative regions if the maximum values of the predicted signals are less

than the threshold, of which the same number as the located ones were randomly selected. As

a result, the number of motif instances discovered by FIMO on the located regions (1682 for

CTCF and 514 for YY1) is much more than the ones found on the negative regions (117 for

CTCF and 34 for YY1), and the–log2(p-value) values of the located regions are much higher

than that of the negative regions (Fig 4B). Moreover, motifs for CTCF and YY1 are also more

enriched on the located regions than that on the negative regions (Fig 4C). These results con-

firm that the located regions are more likely to contain TFBSs. More examples can be found in

S9, S10 and S11 Figs, which has the same observations. Overall, FCNsignal has the capability

of classifying and locating potential TF-DNA binding sites on the whole chromosome but

does not easily distinguish similar binding sites (e.g. bound by the TFs from the same family).

Since FCNsignal is a FCN-based framework, it can accept DNA sequences of arbitrary

length. To explain this, we randomly cut off a few sequences of arbitrary length that contain

multiple peaks from chromosome 17. Then, the trained models for CTCF and YY1 were used

to predict the base-resolution binding signals of these sequences. As shown in Fig 4D,

FCNsignal can take sequences of arbitrary length as input and accurately predict the base-reso-

lution binding signals. More instances can be found in S12 Fig.

The overall performance of FCNsignal on ATAC-seq datasets

To test the performance of FCNsignal on ATAC-seq datasets, we collected 6 ATAC-seq data-

sets from the ENCODE project, including A549, GM12878, HepG2, IMR90, K562, and MCF7

cell lines. The way of processing ATAC-seq datasets is the same as ChIP-seq datasets. It is well

known that ATAC-seq data are often applied to the task of predicting chromatin accessibility

that is equivalent to identifying open or unopen regions across the genome. In this study, we

applied FCNsignal to predicting chromatin accessibility. Briefly, FCNsignal accepted DNA

sequences and predicted their corresponding base-resolution signals, and then used the maxi-

mum values of signals to distinguish open regions from unopen regions. Four competing

methods including LSGKM, DeepEmbed, Deopen, and BPNet were used to compare with our

proposed method.

The MSE and Pearsonr metrics were adopted to compare the performance of FCNsignal

and BPNet in modeling the base-resolution signals. As shown in Fig 5A, FCNsignal performs

better than BPNet on all datasets. The AUC and PRAUC metrics were employed to compare

the performance of FCNsignal and the four competing methods in discriminating binding or

non-binding sequences. As shown in Fig 5B, FCNsignal outperforms the four competing

methods on all datasets except that BPNet is superior to FCNsignal on the A549 dataset. More-

over, BPNet has comparable performance to FCNsignal when the number of samples is abun-

dant, which confirms the aforementioned conclusion that BPNet performs poorly on the

datasets with small size but gets good results on the datasets with large size. Overall, the above

observations demonstrate that the performance of FCNsignal on ATAC-seq datasets is better

than other competing methods.

In the above experiments, we simply considered the general regression and classification

performance of FCNsignal. However, the degree of accessibility of DNA sequences may differ

from each other even when they have the same binary labels. Such difference in the degree of

accessibility implicates that classification models are unable to discriminate putative open

regions with different accessibility. To explore this problem, we still used the maximum values

of predicted signals to model the degree of accessibility of ATAC-seq peaks. Therefore, the

openness of DNA sequences from the original test data, with only positive samples included,
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Fig 5. Performance comparison of FCNsignal and the competing methods on the six ATAC-seq datasets. (A) The MSE and Pearsonr

values for BPNet and FCNsignal. (B) The AUC and PRAUC values for LSGKM, DeepEmbed, DeopenBPNet, and FCNsignal. (C) The Pearsonr

between predicted maximum signals and true maximum signals for MCF7 (Pearsonr: 0534) and IMR90 (Pearsonr: 0.556). For MCF7, the

Pearnsonr for DNA sequences with low and high openness are 0.075 and 0.634 respectively. For IMR90, the Pearnsonr for DNA sequences

with low and high openness are -0.054 and 0.693 respectively.

https://doi.org/10.1371/journal.pcbi.1009941.g005
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across different cell lines were predicted using the trained FCNsignal. As shown in Figs 5C and

S13, we observe that FCNsignal performs well for DNA sequences with high openness values

(mean Pearsonr: 0.62) but poorly for ones with low openness values (mean Pearsonr: 0.07).

The possible reason leading to this phenomenon is that the peak signals are prone to noise,

especially for those with weak binding signals. Nevertheless, the task of discriminating putative

open regions with different accessibility remains a big challenge.

In addition, the enrichment of different TFBSs in each cell was analyzed by utilizing the

trained FCNsignal. Briefly, (i) all matched TF motifs were found by following the process of

motifs prediction (see Materials and methods); (ii) the significant matched motifs were

picked out by filtering out those with p-value less than 1e-04; (iii) the number of occurrences

of each motif was counted as the enrichment value. The heat maps of these selected TF motifs

across the six cell lines are plotted in Fig 6A, obviously showing some TFBSs enrichments in

the different cell lines. For example, (i) CTCF and Sp1-like family (e.g. Sp1, Sp2) motifs widely

exist in the six cell lines; (ii) Ets-related family (e.g. ETV1, ETV6) motifs are enriched in the

GM12878 cell line; (iii) AP2-related family (e.g. TFAP2A, TFAP2B) motifs are enriched in the

MCF7 cell line; (iv) RXR-related family (e.g. NR2F1, NR2C2) motifs are enriched in the

HepG2 cell line; (v) TEF1-related family (e.g. TEAD1, TEAD3) motifs are enriched in the

IMR90 cell line. To explain this, we collected all non-redundant peaks of five TFs including

CTCF, ETV6, TFAP2A, NR2C2, and TEAD1 from ReMap2020 and computed the intersection

ratio between them and the ATAC-seq peaks of the six cell lines. As shown in Fig 6B, the inter-

section ratio of CTCF to the six cell lines is all very high, while the maximum intersection ratio

of other TFs (ETV6, TFAP2A, NR2C2, and TEAD1) lies in the GM12878, MCF7, HepG2, and

IMR90 cell lines respectively, which is consistent with the above observations (Fig 6A). To

sum up, the motifs learned by FCNsignal can reflect the enrichment of TFBSs in the different

cell lines.

FCNsignal can identify causal SNPs from LD groups

To test the ability of FCNsignal in identifying causal SNPs, four causal SNP datasets with

strong LD effects were used and DeltaSVM was chosen as the competing method. For mye-

loma, pan-autoimmune, and CLL, the FCNsignal trained on the GM12878 cell line was used

to compute the SNP scores. For cancer breast, the FCNsignal trained on the MCF7 cell line

was used to compute the SNP scores (see Materials and methods). DeltaSVM computed the

SNP scores by directly utilizing the outputs of the LSGKM models on the GM12878 and

MCF7 cell lines. Subsequently, these SNPs are prioritized by the SNP scores and the highest

scored SNP in each set is assumed to be the causal one. As shown in Fig 7A, both FCNsignal

and DeltaSVM successfully identify the causal SNPs in myeloma risk variants (rs4487645) and

CLL risk variants (rs539846). Nevertheless, DeltaSVM fails to correctly identify the causal SNP

(rs6927172) among the seven pan-autoimmune genetic susceptibility candidate SNPs while

FCNsignal is able to pinpoint the right one. For breast cancer variants, Fig 7B shows that the

distribution of the SNP scores of LD groups predicted by FCNsignal is more concentrated in

the low score region than the ones predicted by DeltaSVM. Moreover, rs4784227 is believed to

disrupt the binding of FOXA1 [37], and rs3803662 is in significant LD with it in individuals of

European ancestry. As a result, the ratio of their SNP scores predicted by FCNsignal (0.054/

0.001 = 54) is much higher than that predicted by DeltaSVM (2.28/1.54 = 1.5). The above

results demonstrate that our proposed method can identify causal SNPs from LD groups.

Besides, BPNet is also able to successfully identify causal SNPs from LD groups (S14 Fig),

which demonstrates that the frameworks for predicting base-resolution signals can be directly

used to identify causal SNPs.
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Discussion

In this paper, we proposed a novel FCN-based framework, named FCNsignal, to predict pro-

tein-DNA binding signals at the base-resolution level, followed by its application on the

human ChIP-seq datasets and ATAC-seq datasets collected from ENCODE. This work pro-

vides an integrated framework to achieve multiple TFBSs-related tasks, including (i) modeling

Fig 6. The enrichment of different TFBSs in the six cell lines. (A) The heat maps of diverse motifs in the six cell lines. CTCF

binding motif is enriched in all six cell lines. EVT6, NR2C2, TFAP2A, and TEAD1 binding motifs are enriched in the GM12878,

HepG2, MCF7, and IMR90 respectively. (B) The intersection ratio between the above five TFs ChIP-seq peaks and the ATAC-seq

peaks of the six cell lines. The intersection ratio of CTCF to the six cell lines is all very high (mean: 0.786) corresponding to the

observation that CTCF binding motif is enriched in all six cell lines. The maximum intersection ratio of the other four TFs is 0.319,

0.458, 0.22, and 0.573, corresponding to the GM12878, HepG2, MCF7, and IMR90 cell lines respectively.

https://doi.org/10.1371/journal.pcbi.1009941.g006
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the base-resolution signals of binding regions; (ii) discriminating binding or non-binding

regions; (iii) locating TF-DNA binding regions; (iv) predicting binding motifs, while amounts

of previous works are always individually concentrated on these tasks and rarely on the task of

locating binding regions. We validated that the maximum values of the base-resolution signals

can reflect the openness degree of TF-DNA binding. In view of this, the maximum values can

be employed to discriminate binding or non-binding regions as the openness degree of bind-

ing regions is far higher than that of non-binding regions, and also used to locate binding

regions as the maximum values are most likely located in the binding regions. Our experimen-

tal results on the ChIP-seq and ATAC-seq datasets show that FCNsignal outperforms several

existing state-of-the-art methods in the tasks of signals regression, sequences classification,

and motifs prediction. Additionally, FCNsignal has the ability to classify and locate potential

binding regions on the whole chromosome (e.g. the chromosome 17) and can predict the

Fig 7. FCNsignal successfully pinpoints causal disease-related SNPs from LD groups. (A) The SNP scores of FCNsignal (top) and DeltaSVM (bottom) on

the myeloma, pan-autoimmune, and CLL. The risk variants for the myeloma, pan-autoimmune, and CLL are rs4487645, rs6927172, and rs539846 respectively.

(B) The distribution of the SNP scores of cancer breast predicted by FCNsignal (left) and DeltaSVM (right). The SNP scores of LD groups predicted by

FCNsignal are more concentrated in the low score region than the ones predicted by DeltaSVM.

https://doi.org/10.1371/journal.pcbi.1009941.g007
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base-resolution signals of DNA sequences of arbitrary length. Moreover, FCNsignal trained on

the ATAC-seq datasets can be directly used to identify causal SNPs from LD groups.

Although FCNsignal achieves superior performance in the four tasks, it still has several lim-

itations: (i) FCNsignal relies on one-hot encoding, which suffers from an obvious limitation of

being unable to capture dependencies between nucleotides. Hence, integrating k-mer based

approaches [38,39] into FCNsignal would be considered; (ii) FCNsignal for modeling the

degree of accessibility of ATAC-seq peaks is susceptible to noise, especially for the regions

with weak binding signals. Hence, quality control of datasets is very essential for FCNsignal;

(iii) FCNsignal does not easily discriminate similar binding sites (e.g. bound by the TFs from

the same family), which is a common problem that almost all DL-based frameworks will

encounter; (iv) The way of generating negative sequences is relatively simple (e.g. the upstream

or downstream of peaks). Hence, the complex negative sequences should be considered (e.g.

similar to the positive sequences or matched GC content with the positive sequences [40]); (v)

Model interpretation of FCNsignal is weak, thus some advanced interpretation techniques,

such as Grad-CAM [41], DeepLIFT [42], would be applied to extract more complex rules for

TF-DNA binding.

Except for the above limitations, some interesting problems should also be explored in

future works. For example, (i) It is well known, chromatin accessibility data (e.g. ATAC-seq

peaks) profiles all accessible regions in the genome and are composed of different kinds of pro-

tein-DNA binding regions. However, most of the current approaches are developed for mainly

solving a binary classification task that distinguishes accessible regions from inaccessible

regions. Hence, a novel method for constructing a multi-classification task that discriminates

different kinds of protein-DNA binding regions is urgently required, which will be helpful for

deeply studying the complex protein-DNA binding activities. (ii) Since FCNsignal takes DNA

sequences as input and uses base-resolution signals as supervised labels, thereby it is easily

expanded to other types of base-resolution signals (e.g. histone modification marks) and even

can be transformed into a multi-task framework by integrating multiple types of base-resolu-

tion signals (e.g. combining TF-DNA binding signals with H3k27ac signals).

Materials and methods

Data preparation

To investigate the overall performance of our proposed method, 53 ChIP-seq datasets for

sequence-specific TFs in the HeLa-S3, GM12878, and K562 cell lines, as well as 6 ATAC-seq

datasets for the A549, GM12878, HepG2, IMR90, K562, and MCF7 cell lines, were down-

loaded from the ENCODE project [43] (https://www.encodeproject.org/). To ensure the qual-

ity of data, datasets with biological replicates were firstly selected. Secondly, the peaks and

signals (p-value) were derived from the standard data processing pipelines available from the

ENCODE DCC Github (https://github.com/ENCODE-DCC). The peaks that were expanded

to 1000bp length and corresponding signals were used as the positive samples, while sequences

of the same length at 3000bp upstream of the peaks and corresponding signals were used as

negative samples (here to keep the environment realistic without setting their signals to 0),

simply considering that (i) keep the similar context information between positive and negative

samples; (ii) guarantee that the negative samples are not binding sequences of interest, and

with low binding signals. To alleviate the effect of data bias, the signals were normalized by

log10(1+signals). The accession list of these datasets is given in S1 Table.

To test the ability of our proposed method in locating TF-DNA binding regions, the whole

chromosome 17 on hg38 was downloaded from UCSC (https://hgdownload.soe.ucsc.edu/
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downloads.html) and all non-redundant peaks of two TFs (CTCF and YY1) were collected

from ReMap2020 [44].

To verify the ability of our proposed method in identifying causal SNPs, several SNP groups

with strong linkage disequilibrium (LD) effects were collected. Candidate causal SNPs of mye-

loma consisting of 10 risk variants at 7p15.3 that alter IRF4 binding [45], pan-autoimmune

consisting of seven genetic susceptibility variants at 6p23 that influence the binding of eight

TFs [46], and chronic lymphocytic leukemia (CLL) consisting of 27 risk variants at 15q15.1

that disrupt the binding of RELA [47] were obtained from the corresponding literature.

Besides, we collected a set of genetic variants from a previous study [37], which contains 29

SNPs associated with breast cancer having strong LD with several SNPs. These SNPs are given

in S2 Table.

The proposed framework

As shown in Fig 1A, FCNsignal is a symmetrical deep neural network like U-net [48], which

takes as input DNA sequences and predicts the base-resolution signals. It is composed of (i) an

encoder architecture for down-sampling the inputs and extracting sequence-specific features,

(ii) a decoder architecture for up-sampling features and modeling the signal of each base, and

(iii) a skip architecture for transferring the position information in the encoder to the high-

level features in the decoder. In the following, we will give a detailed description of the three

architectures sequentially.

The encoder architecture. This part consists of three convolutional blocks in which each

block is made up of a convolutional layer, a ReLU layer, a max-pooling layer as well as a drop-

out layer, a bi-directional GRU (Gated Recurrent Unit) layer [49], and a global average-pool-

ing layer. Specifically, the convolutional block is used to gradually reduce the spatial

dimension and encode the sequence-specific features. The bi-directional GRU layer is used to

learn the long-term dependencies within the sequence-specific features. The global average-

pooling layer is employed to capture the global context of DNA sequences. Generally, the cal-

culation process of this part can be described by Formulas 1, 2, and 3.

xðcÞ ¼ ReLUðSðcÞ �WðcÞ þ bðcÞÞ

xðcÞ ¼ MaxPoolðxðcÞÞ

xðcÞ ¼ DropoutðxðcÞ; ratio ¼ 0:2Þ

ð1Þ

where S(c), x(c),W(c), and b(c) are input, output, weight matrix, and bias vector of the cth convo-

lutional block in the encoder architecture, respectively; � denotes the convolutional operation.

rt ¼ sðWrxt þ Urht� 1Þ

~ht ¼ tanhðWxt þ Uðrt � ht� 1ÞÞ

zt ¼ sðWzxt þ Uzht� 1Þ

ht ¼ ð1 � ztÞ � ht� 1 þ zt � ~ht

ð2Þ

where rt and zt are the update gate and the reset gate respectively; σ() denotes the logistic sig-

moid function;� denotes the element-wise multiplication operation;W and U are weight

matrices.

h ¼ hf þ hb
y ¼ GlobalAvePoolðhÞ

ð3Þ

where hf and hb are the outputs along with the forward and backward direction.
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The skip architecture and decoder architecture. This part consists of three skip lines,

four upsample layers, and four blending blocks in which each block is composed of a batch

normalization (BN) layer, a ReLU layer, and a convolutional layer. Specifically, the skip line is

used to combine the position information (‘where’) in the encoder with the discriminating

information (‘what’) in the decoder. The upsample layer is used to restore the size of down-

sampled features. The blending layer is employed to re-adjust the values of upsampled features.

Generally, the calculation process of this part can be described by Formula 4.

zðcÞ ¼ BilinearðyðcÞÞ

zðcÞ ¼ zðcÞ þ xðcÞ

zðcÞ ¼ ReLUðBNðzðcÞÞÞ �WðcÞ þ bðcÞ
ð4Þ

whereW(c) and b(c) are the weight matrix and bias vector of the cth blending block in the

decoder architecture respectively; Bilinear(�) is the bilinear interpolation operation; x(c) is the

features from the encoder at the same level. Accordingly, the last output (z(4)) of this part is

regarded as the final prediction of FCNsignal.

The detailed flowchart of FCNsignal is shown in S1 Fig and the architecture settings of

FCNsignal can refer to our released codes.

Model training

Here, we adopted a randomly-split strategy to divide the experimental datasets into training

data, validation data, and test data. Specifically, for each dataset, 80% of the peaks with corre-

sponding signals were randomly chosen as the training data, 10% of which were randomly

selected as the validation data, while the remaining 20% were used as the test data. The

FCNsignal framework transforms TFBSs prediction into a base-resolution regression task,

hence the MSE (Mean Squared Error) loss at base-resolution was adopted.

MSE ¼
1

N � L

XN

i¼1

XL

j¼1

ðzi;j � ẑ i;jÞ
2

þ akwk
2

ð5Þ

where N is the number of samples from the training data; L is the length of each sequence; zi,j
and ẑ i;j are the predicted and true signal respectively; α is a regularization parameter to lever-

age the trade-off between the goal of fitting and the goal of the generalizability of the trained

model; || ||2 indicates the L2 norm.

The loss function was optimized by the Adam optimization algorithm [50] with a batch size

of 500. The backpropagation algorithm was used for gradient calculating, and exponential

decay was applied to the learning rate with a decay rate of 0.9. The weights of our model were

initialized by the Glorot initialization method [51]. The learning rate, betas of Adam and regu-

larization parameter were randomly selected from the pre-prepared sets {0.01, 0.001, 0.0001},

{0.9, 0.99, 0.999}, and {0, 0.001} respectively, and the dropout rate was taken from 0.2 or 0.5.

These hyperparameters were randomly sampled 15 times, and the validation data were used to

select the hyper-parameter set which corresponds to the best performance. Our model was

implemented on a single Tesla K40 GPU with 10GB memory using Pytorch.

Definition of the openness degree of protein-DNA binding

In this study, we defined the openness degree of protein-DNA binding as the number of reads

falling into the binding regions, called openness. To achieve this, we firstly collected filtered

bam files from ENCODE and then used the ‘multicov’ command in bedtools to compute the
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number of reads falling into each peak. The open degree values for all peaks are further scaled

by the log10 function.

Sequences classification & TFBSs location & motifs prediction

The existing problem is how to use the predicted signals to discriminate binding or non-bind-

ing sequences, locate binding regions and predict motifs. In this study, we assumed that, to

some extent, the maximum values of signals can reflect the openness degree of TF-DNA bind-

ing. To verify this assumption, we computed the Pearson correlation coefficients (Pearsonr)

between the openness values and the maximum values of signals. As shown in S15 Fig, the

results of four TF datasets confirm that the maximum values of signals are significantly corre-

lated with the openness degree of TF-DNA binding. Therefore, the maximum values of signals

can be employed to discriminate binding or non-binding sequences as the openness degree of

binding sequences is far higher than that of non-binding sequences, and be used to locate

binding regions as the maximum values are most likely located in the binding regions. For a

rigid definition of classification, the sigmoid function σ(x) = 1/(1+e−x) is used to limit the max-

imum values of signals into the range [0, 1], representing binding probability.

For motifs prediction, binding regions of length 100bp were firstly located by using the

position of the maximum values. Secondly, the trained weights of the first convolutional layer

were used to select the sub-regions with the highest scores. Thirdly, these selected sub-regions

were aligned to compute the corresponding position frequency matrices (PFMs). Finally,

TOMTOM [52] was employed to match the PFMs with experimentally validated motifs from

standard databases.

Competing methods and evaluation metrics

To measure the performance of our proposed framework FCNsignal, several existing state-of-

the-art methods were used, including MEME [12], STREME [13], DanQ [29], DeepCNN [53],

FCNA� [31], FCNA, BPNet [33], DeepEmbed [54], Deopen [55], LSGKM [56] and DeltaSVM

[57]. Specifically, MEME discovered TF-DNA binding motifs by searching for repeated,

ungapped sequence patterns that occur in the biological sequences. STREME identified

ungapped motifs with recurring, fixed-length patterns that are enriched in query sequences or

relatively enriched in them compared to control sequences. DanQ predicted TF-DNA binding

motifs and prioritized functional SNPs by combining CNN with RNN. DeepCNN, having a

similar architecture to DeepSea [28], used three convolutional layers to predict TF-DNA bind-

ing sites. FCNA� and FCNA shared the same architecture but used different supervised labels,

where FCNA� used the base-resolution labels (0/1) which were annotated by position counting

matrices (PCMs) collected from the HOCOMOCO database [58] while FCNA used the base-

resolution signals derived from high-throughput experiments. BPNet introduced a deep

dilated CNN to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. Dee-

pEmbed was developed to address the problem of chromatin accessibility prediction via a con-

volutional Long Short-Term Memory (LSTM) network and k-mer embedding. Deopen

applied a hybrid deep CNN to learn regulatory sequence code and predict chromatin accessi-

bility at the whole genome level. LSGKM proposed a new version of gkm-SVM for large-scale

datasets which offers much better scalability and provides further advanced gapped k-mer

based kernel functions. As a result, LSGKM achieved considerably higher accuracy than the

original gkm-SVM [15]. DeltaSVM presented a new sequence-based computational method to

predict the effect of regulatory variation, using a classifier (gkm-SVM) that encodes cell-type-

specific regulatory sequence vocabularies.
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Since our method involves multiple tasks, several evaluation metrics were adopted, includ-

ing AUC (Area Under the Receiver Operating Characteristic Curve), PRAUC (Area Under the

Precision-Recall Curve), MSE (Mean Squared Error), Pearsonr (Pearson Correlation), and–

log2(p-value). AUC and PRAUC were used to evaluate the classification performance of

FCNsignal. MSE and Pearsonr were used to evaluate the regression performance of

FCNsignal.–log2(p-value) was used to evaluate the motif prediction performance of

FCNsignal.

Computing SNP scores

Given a specific cell line, we firstly trained FCNsignal with related ATAC-seq data. Secondly,

for each SNP, we determined a region of 1000bp around the position of SNP and predicted the

signals for the corresponding reference and alteration sequences, respectively. Thirdly, we

computed the absolute value of the difference between the two signals at the position of SNP as

the SNP score which is equal to kyalti � y
ref
i k, where i denotes the position of SNP. Finally, the

SNP score was used to identify causal SNPs.

Supporting information

S1 Text. A brief description of applying FCNA to predict motifs on negative sequences.

(DOCX)

S1 Fig. A detailed flowchart of FCNsignal. It is composed of i) an encoder architecture (left)

for down-sampling the inputs and extracting sequence-specific features, ii) a decoder architec-

ture (right) for up-sampling features and modeling the signal of each base, and iii) a skip archi-

tecture (middle) for transferring the position information in the encoder to the high-level

features in the decoder.

(TIF)

S2 Fig. Some examples for showing that FCNsignal can capture the binding signals of

TFBSs. (A) The results of FCNsignal in predicting the base-resolution signals on the randomly

inserted binding regions. (B) The results of FCNsignal in predicting the base-resolution signals

on the shifted binding regions.

(TIF)

S3 Fig. Performance comparison of FCNsignal and the competing methods. (A) Scatter

plots for comparing FCNsignal with the two competing methods under the MSE and Pearsonr

metrics. (B) Scatter plots for comparing FCNsignal with the five competing methods under the

AUC and PRAUC metrics.

(TIF)

S4 Fig. The distribution of the maximum values of signals in the positive and negative sam-

ples for CEBPB, CUX1, TCF, and CTCF. As we can see, the maximum values of signals in

the positive and negative samples for CEBPB, CUX1, and TCF are difficult to distinguish while

the ones for CTCF are easy to distinguish.

(TIF)

S5 Fig. Performance comparison of LSGKM, BPNet, and FCNsignal on the sorted TF

ChIP-seq datasets.

(TIF)

S6 Fig. Performance of FCNA� on the positive and negative sequences. (A)The IOU (Inter-

section over Union) metric was used to test the performance of FCNA� in segmenting binding
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or non-binding sites. (B) The–log2(p-value) metric was used to test the performance of

FCNA� in predicting binding motifs. The results show that FCNA� performs well on the nega-

tive sequences, inferring that FCNA� is extremely dependent on the PCMs so that it cannot

distinguish positive sequences from negative sequences. The red triangles represent the aver-

age values.

(TIF)

S7 Fig. The cross-cell-line prediction performance of FCNsignal on the CTCF, ELK1, and

JUND datasets under the four metrics. ‘Original’ means prediction on the same cell lines and

‘Cross’ means prediction on the different cell lines.

(TIF)

S8 Fig. The performance of FCNsignal on six TF ChIP-seq datasets under the four metrics.

‘Randomly’ means using the randomly-split strategy and ‘Chromosomally’ means using the

chromosomally-split strategy.

(TIF)

S9 Fig. Performance of FCNsignal in locating binding regions. Most of these found regions

are supported by the true peaks and the distribution of h3k27ac signals of the supported

regions are significantly higher than that of the unsupported regions.

(TIF)

S10 Fig. Performance of FCNsignal in locating binding regions. The number of motif

instances discovered by FIMO on the located regions is much more than the ones found on

the negative regions. Moreover, the–log2(p-value) values of the located regions are much

higher than that of the negative regions.

(TIF)

S11 Fig. Performance of FCNsignal in locating binding regions. Motifs are more enriched

on the located regions than that on the negative regions. The dash lines represent the results

on the negative regions.

(TIF)

S12 Fig. Examples of inputs of arbitrary length for CTCF and YY1.

(TIF)

S13 Fig. Pearson correlation coefficients of predicted maximum signals and true maxi-

mum signals across 6 ATAC-seq datasets. As we can see, FCNsignal performs well for DNA

sequences with high openness values (mean Pearsonr: 0.62) but poorly for ones with low open-

ness values (mean Pearsonr: 0.07).

(TIF)

S14 Fig. The performance of BPNet in identifying causal SNPs from LD groups. The risk

variants for the myeloma, pan-autoimmune, and CLL are rs4487645, rs6927172, and rs539846

respectively.

(TIF)

S15 Fig. Pearson correlation coefficients for four TFs including CTCF, YY1, FOSL1, and

USF1. The results are 0.776, 0.926, 0.888, and 0.911 respectively, suggesting that the maximum

values of signals can reflect the openness degree of TF-DNA binding.

(TIF)

S1 Table. The accession list of experimental datasets. (A) The accession list of ChIP-seq

datasets from GM12878, K562, and HeLa-S3 cell lines. (B) The accession list of ATAC-seq

PLOS COMPUTATIONAL BIOLOGY Base-resolution signal prediction and deep learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009941 March 9, 2022 20 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009941.s017
https://doi.org/10.1371/journal.pcbi.1009941


datasets for A549, GM12878, K562, IMR90, HepG2, and MCF7 cell lines.

(XLSX)

S2 Table. The SNP list of Autoimmune, Myeloma, and CLL diseases.

(XLSX)

S3 Table. Motif visualization of three examples (BATF, CTCF, and NFYB).

(XLSX)
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