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Abstract 
Idiopathic nephrotic syndrome is the most common childhood glomerular disease. Most forms of this syndrome respond to 
corticosteroids at standard doses and are, therefore, defined as steroid-sensitive nephrotic syndrome (SSNS). Immunological 
mechanisms and subsequent podocyte disorders play a pivotal role in SSNS and have been studied for years; however, the 
precise pathogenesis remains unclear. With recent advances in genetic techniques, an exhaustive hypothesis-free approach 
called a genome-wide association study (GWAS) has been conducted in various populations. GWASs in pediatric SSNS 
peaked in the human leukocyte antigen class II region in various populations. Additionally, an association of immune-
related CALHM6/FAM26F, PARM1, BTNL2, and TNFSF15 genes, as well as NPHS1, which encodes nephrin expressed in 
podocytes, has been identified as a locus that achieves genome-wide significance in pediatric SSNS. However, the specific 
mechanism of SSNS development requires elucidation. This review describes an updated view of SSNS pathogenesis from 
immunological and genetic aspects, including interactions with infections or allergies, production of circulating factors, and 
an autoantibody hypothesis.
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Autoantibody

Introduction

Idiopathic nephrotic syndrome (NS) is the most common 
childhood glomerular disease. The incidence of this syn-
drome has been reported to be 1.15–16.9/100,000 children, 
and it is highest in non-Western countries [1]. Most of these 
patients are initially treated with corticosteroids and fall into 
one of the following two broad categories: steroid-sensitive 
nephrotic syndrome (SSNS) and steroid-resistant nephrotic 
syndrome (SRNS), in which corticosteroids induce and do 
not induce remission, respectively [2]. In SRNS, abnormali-
ties in podocyte-associated genes have been identified in 

approximately 30% of patients [3–5], and the mechanism 
of pathogenesis associated with structural abnormalities 
appears to be the most relevant. Conversely, immunologi-
cal mechanisms and subsequent podocyte disorders have 
been considered [1]. Although genetic research, including 
genome-wide association study (GWAS), has improved the 
understanding of these mechanisms, the precise pathophysi-
ology of SSNS remains elusive. In this review, we describe 
an updated view of SSNS pathogenesis from immunological 
and genetic aspects, including interactions with infections or 
allergies, production of circulating factors, and an autoan-
tibody hypothesis.

Immunological aspects of SSNS

T cell theory

The pivotal role of prednisolone and the efficacy of immu-
nosuppressive agents in SSNS treatment strongly implicate 
the immune system in the pathogenesis of the disease. The 
involvement of T cells in nephrotic syndrome (NS) was 
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reported in the 1970s [6]. The main basis of this T cell the-
ory is as follows: (1) there is an absence of routine deposi-
tion of immunoglobulins or complement in the glomeruli, 
suggesting the involvement of humoral factors; (2) immuno-
suppressants that suppress T cell function (corticosteroids, 
ciclosporin, and cyclophosphamide) are effective; and (3) 
some cases achieve remission following measles infection, 
which impairs T-cell function [7]. After the 1970s, the fol-
lowing relationships between NS and T cells were reported: 
upregulation of CD8 + cytotoxic T cells with downregulation 
of CD4 + T helper (Th) cells, an imbalance between Th2 
and Th1 cells resulting in Th2 upregulation, and an imbal-
ance between regulatory T cells and Th17 cells resulting in 
the prevalence of Th17 cells (reviewed in [8]). However, 
because of the heterogeneity of NS, these results were not 
replicable and did not account for all of its pathologies.

B cell theory

Based on the highly effective therapeutic effects of B cell-
depleting monoclonal antibody rituximab (RTX) [9, 10], the 
hypothesis that B cells are associated with disease was pro-
posed in the 2010s. RTX is a chimeric anti-CD20 monoclo-
nal antibody initially developed to treat B-cell non-Hodgkin 
lymphoma [11]. CD20 is expressed on the surface of all B 
cells from the pro-B phase until they eventually differentiate 
into plasma cells. The parallel occurrence of B cell depletion 
and a decrease in disease activity in NS strongly suggests a 
direct involvement of B cell pathology [12, 13]. Moreover, 
the lymphocyte subset most associated with relapse after 
RTX administration are switched memory B cells [14]. 
Additionally, mycophenolate mofetil, useful in preventing 
the recurrence of SSNS, suppresses switched memory B 
cells dominantly, suggesting that B cells are also involved 
in its pathogenesis [15]. Another possible mechanism for 
the efficacy of RTX in controlling NS is its direct action on 
the glomeruli or T cells. Various immunosuppressive agents 
act not only on immune cells but also directly on podocytes 
[16]. RTX also binds to acid sphingomyelinase-like phos-
phodiesterase 3b, which is expressed in glomerular epithelial 
cells [17]. However, ofatumumab, a humanized anti-CD20 
monoclonal antibody with different corresponding epitopes, 
is also effective in patients with SSNS [18]. Therefore, the 
direct effect of RTX is thought to be exerted via B cells. B 
cells also interact with T cells in general antigen presenta-
tion; accordingly, the immune system is extremely inter-
twined so that both cell types cannot be separated.

CD80 and human leukocyte antigen class II

CD80 (B7-1), important for B-cell and T-cell interaction, 
has attracted considerable attention because of its associa-
tion with SSNS. CD80 is a transmembrane protein expressed 

in activated B cells and antigen-presenting cells. During 
antigen presentation, CD80 binds to CD28 on Th cells or 
cytotoxic T-lymphocyte-associated-4 on Treg cells and con-
trols the activation or inactivation of T cells [19] (Fig. 1). 
Although podocytes are highly differentiated glomerular-
specific cells, they express CD80 and possess immunogenic 
aspects [20–24] (Fig. 1). However, it is unclear whether 
urinary CD80 is useful in differentiating minimal change 
disease and focal segmental glomerular sclerosis or cyto-
toxic T-lymphocyte-associated-Ig is effective in refractory 
NS [25–27]. Podocytes express human leukocyte antigen 
(HLA) class II and function as immune cells [21]. HLA is a 
cell-surface molecule that presents specific antigen peptides 
to the host immune system, such as T cells [28]. Aberrant 
expression of HLA class II causes autoimmune diseases in 
antigen-presenting cells and various organs [29]. These facts 
suggest that podocytes can act as immune cells in the patho-
genesis of NS.

Circulating factors

The pathophysiological role of circulating factors in NS has 
been suggested, especially in patients with focal segmental 
glomerulosclerosis (reviewed in [30, 31]). The involvement 
of circulating factors has been demonstrated by trying to 
identify a substance from the serum of patients, proving that 
it induces urinary protein in animal models, and examin-
ing the effect on podocytes or endothelial cells, among oth-
ers. The recurrence of NS in patients with focal segmental 
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Fig. 1  Molecules possibly involved in the pathogenesis of SSNS. 
The molecules identified in the genome-wide association studies are 
highlighted in red. HLA class II molecules present antigens mainly in 
APCs and B cells, but they are also expressed in podocytes. BTNL2 
shares a common structure with CD 80/86 and may be involved in 
T cell regulation. CALHM6 is expressed in various lymphocytes 
and releases cytokines such as IFN-γ. TNFSF15 interacts with death 
receptor 3 and activates immune cells. Nephrin is a key component of 
the slit diaphragm in podocytes. APC, antigen-presenting cell; TCR, 
T cell receptor; Treg, regulatory T cell; BTNL2, butyrophilin-like 2; 
CTLA4, cytotoxic T-lymphocyte-associated-4; IFN-γ, interferon-
gamma; TNFSF15, tumor necrosis factor superfamily member 15; 
DR3, death receptor 3; Flash, some signals related to T cell differen-
tiation
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glomerulosclerosis after kidney transplantation from unaf-
fected donors strongly suggests the existence of circulat-
ing factors [32]. In patients with minimal change disease, 
interaction with vascular permeability factor derived from 
T cells or hemopexin has been indicated [31]. Activated 
hemopexin has been identified in patients with recurrent 
MCD, and it has also been reported that hemopexin induces 
transient urinary protein in rats [33, 34]. A certain number 
of patients are thought to have NS caused by circulating 
factors [35], but there is no conclusion on how many whose 
SSNS is attributed to circulating factors or what the specific 
circulating factor is.

Interaction with infection

The role of infection as a trigger for the onset or relapse of 
SSNS has been suggested [36, 37]. Dossier et al. investigated 
the prevalence of herpes viruses at the onset of childhood 
NS [38]. They measured the amount of Epstein–Barr virus 
(EBV), cytomegalovirus (CMV), human herpesvirus 6, and 
human herpesvirus 7 in peripheral blood and specific anti-
bodies against EBV and CMV. They found that the preva-
lence of EBV DNA was higher in patients at the onset of NS 
than in controls.

EBV persists in circulating memory B cells without 
virion production by establishing latency [39]. How EBV 
latency affects B cells remains elusive, but it is associated 
with the risk of developing various autoimmune diseases 
[40]. EBV downregulates CD74, which may be a way of 
avoiding HLA class II antigen presentation and consequent 
CD4 + Th cell recognition while latent in B cells [41]. EBV 
survival strategies can alter B cells, and their effects can 
determine SSNS disease susceptibility.

Interaction with allergy

Many studies have investigated the association between 
SSNS and allergic diseases such as asthma, atopic derma-
titis, or hay fever (reviewed in [42]). Wei et al. reported 
that patients in the cohort with atopic dermatitis had twice 
the incidence of NS [43]. Elevated serum IgE levels are 
known to be a trigger in allergic diseases, and a previ-
ous study showed that some patients with NS also have 
elevated IgE levels [44]. At present, the prevailing view is 
that common pathogenesis exists between allergic disease 
and SSNS rather than NS caused solely by allergic diseases 
[42]. Allergy-causing IgE is produced by B cells, and it is 
known that allergy is caused by Th2 activation due to Th2/
Th1 imbalance; this may coexist with the T cell and B cell 
theories described above. However, no clear, direct pathol-
ogy has been established.

Genetic aspects of SSNS

Variants in a single causative gene

Advances in genetics have played a major role in the patho-
genesis of NS. Approximately 30% of patients with SRNS 
have a single causative gene associated with podocytes 
[3–5]. SSNS and SRNS appear to be on the same spectrum 
and overlap because patients with SSNS may develop steroid 
resistance during the disease and may partially respond to 
immunosuppressant therapy, even if genetic abnormalities 
are identified [45, 46]. A combination of linkage analysis 
and whole-exome sequencing identified EMP2 mutations 
in SSNS [47]. Recently, six genes associated with Rho-
like small guanosine triphosphate–binding enzyme activity 
(MAGI2, TNS2, DLC1, CDK20, ITSN1, and ITSN2) were 
identified as causes of NS that can partially respond to ster-
oids [48]. However, such variants in a single causative gene 
account for only a few families in SSNS. Most SSNS cases 
are considered to be multifactorial, and several reports have 
clarified susceptibility genes in SSNS [49–53] (reviewed in 
[54]).

GWAS for clarifying susceptibility genes

GWAS is a research method for clarifying single-nucleo-
tide polymorphisms (SNPs) related to disease susceptibility 
genes by comprehensively examining and comparing SNPs 
as polymorphic markers between case and control groups 
[55]. Chromosomal recombination is repeated throughout a 
generation, resulting in genotypes similar to those of adja-
cent SNPs. Consequently, the genotypes of SNPs nearby 
tend to have a non-independent distribution in the popula-
tion, which is called linkage disequilibrium [56]. In GWASs, 
the use of this property to impute tens of millions of SNPs 
across the whole genome from hundreds of thousands of 
SNPs genotyped by microarrays is common [57].

HLA class II region

Gbadegesin et al., using hypothesis-free exome-wide study 
methods, first showed that the HLA-DQ region was sig-
nificantly associated with SSNS in children in a South 
Asian population (Table 1) [49]. The HLA-DR/DQ gene 
encodes an HLA class II molecule required for antigen 
presentation by antigen-presenting cells or B cells (Fig. 1). 
In 2018, Jia et al. showed that the most significant associa-
tion in the HLA-DR/DQ region was observed in Japanese 
childhood SSNS using GWAS methods (Table 1) [52]. In 
2018, Debiec et al. also found SSNS-associated SNPs in 
the HLA-DR/DQ region due to a trans-ethnic GWAS from 
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European cohorts (Table 1) [50]. HLA class II regions 
are highly polymorphic because of their natural selection 
against various pathogens [58]. Additionally, adaptation 
to infection has also been reported to contribute to the 
development of autoimmune diseases including multiple 
sclerosis and systemic lupus erythematosus [59]. A high 
polymorphism in the HLA class II region causes difficulty 
in imputation. Moreover, because HLA-DQ and HLA-DR 
regions have a strong linkage disequilibrium relationship, 
assessing which HLA-DQ and HLA-DR regions define true 
disease susceptibility is difficult. Using new HLA imputa-
tion methods [60] and genotyping, Jia et al. showed that 
HLA-DRB1*08:02-DQB1*03:02 was the most significant 
genetic susceptibility factor [52]. In addition to identifying 
the relevant SNPs, identifying the actual disease suscepti-
bility alleles may be essential for clarifying the subsequent 
pathophysiology.

Furthermore, expression quantitative trait loci (eQTL) 
analysis is a powerful tool to investigate the relationship 
between protein or mRNA expression levels and SNPs. 
For eQTL analysis, databases such as the international 
GTEx project and NephQTL specializing in kidney tis-
sue (glomerulus and tubulointerstitium) can be used [61, 
62]. Debiec et al. investigated the glomerular eQTL of 
identified SNPs and found that SSNS-associated SNPs 
(rs1063348) decreased the expression of HLA-DRB1, 
HLA-DRB5, and HLA-DQB1 [50].

Outside of the HLA class II region (immune‑related)

Dufek et al. reported that, in addition to the strongest asso-
ciation in the HLA-DR/DQ region, CALHM6/FAM26F and 
PARM1 were loci that achieved genome-wide significance 
(Table 1) [51]. In addition, BTNL2 and TNFSF15 were 
identified by Debiec et al. and Jia et al., respectively, as 
susceptibility genes for SSNS [50, 53]. CALHM6/FAM26F 
and PARM1 are related to immunity, even though they are 
outside the HLA class II region. BTNL2 encodes the HLA 
class II-associated transmembrane protein, butyrophilin-
like 2 (BTNL2), which is a member of the immunoglobulin 
superfamily and is implicated as a costimulatory molecule 
involved in T cell modulation, based on its homology with 
B7-1 (CD80) (Fig. 1) [63]. Signals mediated by BTNL2 
induce FoxP3 and expedite differentiation of naïve T cells 
into regulatory T cells [64]. BTNL2 is expressed at the high-
est levels in the intestine and is involved in intestinal immu-
nity [65]. Moreover, BTNL2 is a disease susceptibility gene 
for many autoimmune diseases, such as sarcoidosis, ulcera-
tive colitis, systemic lupus erythematosus, and rheumatoid 
arthritis [66] (reviewed in [63]).

CALHM6/FAM26F encodes calcium homeostasis modu-
lator family member 6 (CALHM6), previously called a fam-
ily with sequence similarity 26, member F (FAM26F) [67]. 
CALHM6 is a transmembrane protein expressed in various 
immune cells and plays an important role in diverse immune 

Table 1  Genetic aspects of SSNS

* Allele or haplotype with strongest association
$ Exome-wide association study

Discovery study 
(case)

Replication 
study

Trans-ethnic 
meta-analysis

HLA region HLA type* Out of HLA 
region

Functional 
analysis

Reference

South Asian 
(n = 214)

N/A N/A HLA-DQ N/A N/A N/A Gbadegesin et al.$ 
2015

Japanese 
(n = 224)

Japanese N/A HLA-DR/DQ HLA-
DRB1*08:02-
DQB1*03:02

N/A N/A Jia et al. 2018

European 
(n = 132), 
African 
(n = 56), 
Maghrebian 
(n = 85)

European European, Afri-
can, Maghre-
bian

HLA-DR/DQ HLA-
DRB1*07:01-
DQA1*02:01-
DQB1*02:02

BTNL2 eQTLs (HLA) Debiec et al. 2018

European 
(n = 422)

N/A N/A HLA-DR/DQ HLA-
DQA1*02:01

CALHM6/
FAM26F

eQTLs 
(CALHM6)

Dufek et al. 2019

PARM1
Japanese 

(n = 987)
Korean, South 

Asian, African
Japanese, 

Korean, South 
Asian, Afri-
can, European, 
Hispanic, 
Maghrebian

HLA-DR/DQ HLA-
DRB1*08:02-
DQB1*03:02

NPHS1-KIR-
REL2

Allele-specific 
expression 
(NPHS1)

Jia et al. 2020

TNFSF15 mRNA 
expression 
(TNFSF15)
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responses (Fig.  1) [68]. Specific cell–cell interactions 
and their roles remain unclear but likely to contribute to 
interferon-γ secretion [69]. The lead SNP (rs2637678) iden-
tified by Dufek et al. showed a strong eQTL for CALHM6, 
and the risk allele decreased the expression of CALHM6 
[51]. Although they did not conduct replication analysis, 
they identified the same SNP (rs2858829) as that identified 
by Debiec et al. as a marginal genome-wide significant SNP 
in a region near CALHM6 [50]. Therefore, the involvement 
of this region has been demonstrated in multiple datasets.

TNFSF15 encodes tumor necrosis factor superfamily 
member 15 (TNFSF15), which interacts with death receptor 
3, promotes inflammatory responses in human macrophages, 
and is associated with apoptosis, cell proliferation, and 
polarization to Th1 and Th17 cells [70]. Serum TNFSF15 
levels are significantly increased in inflammatory bowel dis-
ease and primary biliary cirrhosis [71, 72]. Jia et al. discov-
ered a genome-wide significant association in the TNFSF15 
region. One of its replicated SNPs (rs4979462) was also 
known to be associated with susceptibility to primary bil-
iary cirrhosis, which affected mRNA expression [73]. The 
mechanism by which these alterations cause NS is unclear, 
but the immune balance may be altered.

Outside of the HLA class II region (podocyte‑related)

In addition to the HLA-DR/DQ region, Jia et al. identified 
genome-wide significant variants in the NPHS1-KIRREL2 
region (rs56117924) in an extended GWAS in Japanese 
childhood SSNS [53]. Jia et al. also conducted a replication 
study, and significant associations were replicated in Korean, 
South Asian, and African populations [53]. Additionally, a 
trans-ethnic meta-analysis of Japanese, Korean, South Asian, 
African, Hispanic, European, and Maghrebian populations 
showed genome-wide significant associations of variants in 
the NPHS1-KIRREL2 region (rs2285450 and rs2073901) 
[53]. The SNPs rs2285450 (NPHS1 NM_004646.4: 
c.294C > T) and rs2073901 (NPHS1 NM_004646.4: 
c.2223C > T) are synonymous variants of the NPHS1 gene 
in exons 3 and 17, respectively. NPHS1 encodes nephrin, a 
molecule located in the slit diaphragm between the foot pro-
cesses of podocytes (Fig. 1) [74], and is the causative gene 
of congenital NS Finnish type and SRNS [3–5]. Although 
there is no evidence that these synonymous variants act 
as eQTLs, RNA sequencing data allowed the observation 
of significant allele-specific expression, resulting in lower 
NPHS1 expression in haplotypes with risk alleles [53]. 
Future studies must examine why such allele-specific expres-
sion occurs and how it causes SSNS. Findings reported by 
Jia et al. showed that the gene responsible for a monogenic 
rare disease (congenital NS Finnish type, SRNS) could be 

a susceptibility gene for a relatively common multifactorial 
disease (SSNS). Recently, such a wide range of mutations in 
a single gene has received much attention [75, 76].

Functional study

The next challenge is to clarify the significance of disease 
susceptibility variants detected by GWAS, that is, the direct 
mechanism causing the disease. For the development of 
disease-specific therapies, it is highly desirable to elucidate 
the mechanism. As mentioned above, eQTL analysis about 
candidate SNPs has become widely used, but an analysis 
of the relationship between the eQTL and the pathogenesis 
is needed. Potential methods for further functional analysis 
include in vitro analysis or  analysis using organoids con-
structed from iPS cells derived from patients  (reviewed in 
[77]). In addition to 3D organoid construction, 2D organoid 
construction (glomerulus on a chip) is also in progress and 
could be applied to various related research [77]. In particu-
lar, it is often difficult to obtain fresh samples (e.g., kidney 
biopsy samples) for RNA analysis, which can become an 
obstacle in clarifying pathogenesis. Therefore, combining 
such organoid construction technology and RNA-seq analy-
sis may help elucidate SSNS pathogenesis.

Perspectives

Although the pathogenesis of SSNS has not been clarified, 
the autoantibody hypothesis has recently been a focus. Many 
diseases in which HLA class II is identified as a disease 
susceptibility gene are autoimmune diseases associated 
with autoantibody [78–80]. In membranous nephropathy, 
associated with massive proteinuria and which is common 
in adults, PLA2R and HLA-DQA1 regions are disease sus-
ceptibility genes [81]. An autoantibody reactive with the 
M-type phospholipase A2 receptor encoded by the PLA2R 
gene is associated with membranous nephropathy [82]. As 
mentioned above, NPHS1 encoding nephrin is a susceptibil-
ity gene; therefore, anti-nephrin antibodies may be involved 
in some patients with SSNS. In animal models, anti-nephrin 
antibodies cause NS [83]. Recently, Watts et al. reported that 
circulating autoantibodies against nephrin were detected in 
approximately 30% of patients with minimal change disease. 
The anti-nephrin antibody titer was correlated with disease 
activity [84]. Moreover, autoantibodies against molecules 
related to podocytes other than nephrin have been identi-
fied in some patients with NS [85, 86]. Conclusively, future 
research to clarify the pathogenesis of SSNS is expected 
based on the knowledge derived from hypothesis-free 
genetic techniques.
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