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Hand, foot and lip representations 
in primary sensorimotor 
cortex: a high-density 
electroencephalography study
Mingqi Zhao1, Marco Marino1,2, Jessica Samogin1, Stephan p. Swinnen1,3 & Dante Mantini  1,2*

the primary sensorimotor cortex plays a major role in the execution of movements of the contralateral 
side of the body. The topographic representation of different body parts within this brain region 
is commonly investigated through functional magnetic resonance imaging (fMRi). However, fMRi 
does not provide direct information about neuronal activity. in this study, we used high-density 
electroencephalography (hdeeG) to map the representations of hand, foot, and lip movements in the 
primary sensorimotor cortex, and to study their neural signatures. Specifically, we assessed the event-
related desynchronization (eRD) in the cortical space. We found that the performance of hand, foot, 
and lip movements elicited an eRD in beta and gamma frequency bands. the primary regions showing 
significant beta- and gamma-band ERD for hand and foot movements, respectively, were consistent 
with previously reported using fMRi. We observed relatively weaker eRD for lip movements, which may 
be explained by the fact that less fine movement control was required. Overall, our study demonstrated 
that eRD based on hdeeG data can support the study of motor-related neural processes, with relatively 
high spatial resolution. An interesting avenue may be the use of hdeeG for deeper investigations into 
the pathophysiology of neuromotor disorders.

The performance of any simple or complex movement requires the coordination of highly specialized brain 
regions, which dynamically exchange information to support motor planning and execution. The primary soma-
tosensory and motor regions span the precentral and postcentral gyri of the brain, respectively. The primary 
somatosensory cortex receives neural pulses from the spinal cord, which code somatic stimuli from the contralat-
eral side of the body. In turn, the primary motor cortex generates neural pulses that are sent through the spinal 
cord to produce contralateral body movements. Somatosensory and motor regions are functionally interdepend-
ent, and both crucial for the performance of motor tasks1. They are indeed often considered together, and in this 
case they are referred to as primary sensorimotor cortex. Despite their opposite localization with respect to the 
central gyrus, both somatosensory and motor representations of different body parts in the primary sensorimotor 
cortex are orderly arranged from the toe (at the top of the cortex) to mouth (at the bottom)2. The amount of sen-
sorimotor cortex devoted to a body part is not proportional to the size of the body part itself, but is rather related 
to the precision required for somatic sensation and/or movement control.

To investigate the functional organization of the primary sensorimotor cortex, early studies used direct electri-
cal stimulation through implanted electrodes2. Although this technique is still used for mapping brain function, 
the focus of neuroscientific research has shifted toward the use of noninvasive methods. For instance, transcranial 
magnetic stimulation (TMS) has been used to examine the functional organization of the primary motor cortex3,4; 
however, its spatial specificity may not be sufficient to disentangle the representation of different body parts. 
Functional magnetic resonance imaging (fMRI) is nowadays the most commonly used noninvasive technique 
for studying the functional organization of the human brain. By measuring the blood-oxygen-level-dependent 
(BOLD) signal5, fMRI allowed observing changes in brain activity during movement of different body parts, 
as for instance hand, foot and lips6,7. fMRI has shown large reproducibility in mapping of primary motor cor-
tex, as assessed by test-retest analyses8,9. Although this technique can provide spatial maps with relatively high 
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resolution, the measured signal is mediated by a slow hemodynamic response. As such, it is not suited to directly 
investigate motor-related neural processes in the cortex at high temporal resolution.

The two main techniques that can be used for the noninvasive study of neural activity in the human brain are 
magnetoencephalography (MEG) and electroencephalography (EEG). Through sensors positioned outside the 
head, MEG and EEG record changes in magnetic fields and electric potentials, respectively, directly produced by 
neural activity. Different neuronal oscillations can be identified from MEG/EEG signals, based on their frequency. 
In particular, the power of neural oscillations in the frequency band between 13 and 30 Hz, typically referred to 
as β rhythm, has been often reported to be modulated by motor performance10. Other important neural oscilla-
tions are the δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz) and γ (>30 Hz) rhythms. The task-related power modulation of 
these rhythms can be quantified in terms of event-related desynchronization/synchronization (ERD/ERS)11. ERD 
is a transient decrease of oscillatory power, typically observed after the onset of an internally or externally paced 
event, whereas ERS is an increase of oscillatory power, which often occurs after the offset of the event. Neural power 
changes are typically confined to specific frequency bands, and can be interpreted as changes of local interactions 
between main neurons and interneurons. Several MEG/EEG studies have been conducted to investigate ERD/ERS in 
the sensor space, both for real movements11–13 and for motor imagery13–15. MEG has also been used in combination 
with source localization techniques for the motor cortex mapping using ERD/ERS16. On the contrary, the number 
of studies using EEG for studying motor-related activity in the source space is very limited17–19, possibly due to the 
intrinsic difficulty in achieving precise EEG source localization20. The use of EEG can be of added value as compared 
to MEG, primarily due to its higher sensitivity to deep sources21, the possibility of combining it with brain stimula-
tion and other brain imaging techniques22,23, and its suitability for mobile applications (e.g. walking conditions)24.

In the last years, novel technical developments have opened the way to the use of EEG as a brain imaging 
tool25. This primarily relates to the introduction of high-density EEG (hdEEG) systems, which yield a higher spa-
tial sampling of scalp potentials26,27. Also, novel tools for the removal of artefacts from hdEEG data, the construc-
tion of a head model incorporating multiple tissue conductivity and the accurate reconstruction of brain activity 
in the cortical space have been recently introduced27. We used these tools for the analysis of resting state hdEEG 
data. This permitted us to detect multiple brain networks that were spatially similar to corresponding networks 
obtained from fMRI data28.

The goal of this study is to map the representations of hand, foot, and lip movements in the primary sensorimotor 
cortex using hdEEG. We aim to demonstrate that source localizations of hdEEG data can yield a spatial accuracy 
comparable to that of fMRI results, at least for cortical regions. Moreover, by means of hdEEG, we examine the spec-
tral signatures of hand, foot, and lip movement in the primary sensorimotor cortex. In this regard, our hypothesis is 
that the ERD map in the β band for the different movements spatially matches previously reported fMRI activation 
patterns. We also expect that oscillations in other frequency bands are differentially expressed during the movement 
of hand, foot, and lip. This investigation may clarify whether and to what extent hdEEG can be used for detailed anal-
yses of motor-related neural activity in the space and frequency domains. Our findings may support a better under-
standing of the functional architecture of the motor control system, possibly opening the way for the use of hdEEG 
in the study of neuromotor disorders and in the definition of targeted/personalized motor rehabilitation protocols.

Methods
experimental design. Sixteen healthy individuals (8 females and 8 males, age 23–39 years) were recruited 
to participate in the experiment. All the participants were right-handed, and none of them suffered from any 
brain-related disease/injury or serious medical condition. The experiment procedures were approved by the 
Ethics Committee Research UZ/KU Leuven (EC Research, reference number s58333), and conducted in accord-
ance with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all indi-
vidual participants included in the study.

The participants were asked to sit on a chair, and to perform specific movements as indicated through 
a screen in front of them, by using Psychtoolbox-329. The experiment was composed of three runs, in which 
one of the following movements had to be performed: wrist flexion-extension, foot flexion-extension and lip 
protrusion-contraction8,9,30. Each run contained 30 blocks, with each block consisting of a resting period (6 sec-
onds) and a movement period (6 seconds, self-paced paced at around 2 Hz). The order of the runs was counter-
balanced across subjects. Before each run, task instructions were given to the participant. The total duration of the 
experiment was about 20 minutes for each participant.

Data collection. We collected 128-channel hdEEG data at 1 KHz sampling rate using an ActiCHamp ampli-
fier (Brain Products GmbH, Germany). With the same amplifier, we also collected 2 electrooculographic (EOG) 
signals to monitor horizontal and vertical eye movements, and 6 electromyographic (EMG) signals. Three bipolar 
EMG sensors were positioned to measure the activity of the following muscles: masseter (right), trapezius (right) 
and splenius capitis (right). Together with the EOG signals, these EMG signals were subsequently used for EEG 
artefact removal. The remaining three bipolar EMG sensors were placed in correspondence with the extensor 
carpi radialis longus (right), tibialis anterior (right) and orbicularis oris (right) muscles. These EMG signals were 
used to extract specific onset triggers for the hand, foot and lip movements, respectively. After EEG/EOG/EMG 
data collection, we used a Xensor digitizer (ANT Neuro, The Netherlands) to record EEG electrode positions, 
which were defined according to an equidistant system31.

In a separate session, a structural magnetic resonance image of the participant’s head was collected with 
a 3T Philips Achieva MR scanner (Philips Medical Systems, Best, the Netherlands) using a T1-weighted 
magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE) sequence. The scanning parameters were 
TR = 9.6 ms, TE = 4.6 ms, 160 coronal slices, 250 × 250 matrix, voxel size 0.98 × 0.98 × 1.2 mm3. The images were 
later used to generate a volume conduction model for EEG source localization.
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Data analysis. We used a workflow for hdEEG analysis that was previously developed and validated with 
resting state data27,28,32,33 and was extended in the present study to task-related data. The workflow was divided 
into four mains steps: data preprocessing, head model creation, source-space activity reconstruction, and ERD/
ERS analysis.

Data preprocessing. The main goal of the data preprocessing step was to correct bad EEG channels, to attenuate 
artefacts, and to re-reference the EEG signals. To detect bad channels, we used an automated procedure based on 
two parameters: minimum Pearson correlation of each channel against the other channels in frequency band 
1–50 Hz and noise variance in frequency band 200–250 Hz27. The bad channels were reconstructed using neigh-
boring channels, as implemented in the FieldTrip toolbox (http://www.fieldtriptoolbox.org)34. The EEG signals 
were then band-pass filtered between 1 and 80 Hz, and artefacts were attenuated by an ICA-based method35. In 
detail, independent components (ICs) were extracted using the fast fixed-point ICA (FastICA) algorithm; then, 
artefactual ICs were automatically detected based on three parameters: 1) correlation Cp between the ICs and 
EOG and EMG signals; 2) the coefficient of determination r2 obtained by fitting the IC power spectrum with a 

f
1  

function; and 3) the kurtosis k of the IC time-course27. In the last stage of data preprocessing, the EEG signals 
were re-referenced to average reference, which was found to be robust and accurate for hdEEG applications36.

Head model creation. The use of a realistic head volume conductor model is necessary for accurately estimating the 
neural sources from EEG data. To create this model from the individual MR image, three steps were followed: elec-
trodes position coregistration, head tissue segmentation, and leadfield matrix calculation27. Electrode positions were 
coregistered to the individual MR space by extracting the headshape from the individual MR image, and using the 
Iterative Closest Point registration algorithm37 for the alignment to the individual scalp profile. The electrode posi-
tions were then orthogonally projected over the headshape. Afterwards, we segmented the MR image into 12 tissue 
classes (skin, eyes, muscle, fat, spongy bone, compact bone, cortical/subcortical gray matter, cerebellar gray matter, 
cortical/subcortical white matter, cerebellar white matter, cerebrospinal fluid, and brain stem), each characterized by 
a specific conductivity value set based on previous relevant studies38,39. This segmentation step was performed using 
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) by registering a template image, on which the 12 tissue 
classes were already defined, to the individual MR space27,28. After electrode position coregistration and head tissue 
segmentation, we calculated the leadfield matrix, which translates the activation of each assumed brain source to 
scalp electrical potentials, by using a whole-head finite element method (FEM). In detail, hexahedral meshes were 
generated from the warped 12-layer tissue template. The elements of the mesh corresponding to the gray matter 
were set to represent possible brain sources. The leadfield matrix was calculated using the Simbio FEM method 
implemented in the FieldTrip toolbox34. The results were finally interpolated into a 6-mm isotropic volumetric grid.

Source-space activity reconstruction. Starting from the preprocessed hdEEG signals and the realistic head vol-
ume conduction model, brain activity in the source space (encompassing the gray matter) was reconstructed via 
the exact low-resolution brain electromagnetic tomography (eLORETA) method40. Since the activity of each voxel 
in the source space had three dimensions (x, y, z), we obtained a single time-course by selecting the first principal 
component, calculated using singular value decomposition.

The ROIs chosen for time-frequency ERD/ERS analysis were defined based on the activations reported in 
relevant fMRI studies8,9. These corresponded to the hand (HMA), foot (FMA) and lip movement (LMA) areas 
in the primary sensorimotor cortex, for both hemispheres. A thalamic ROI was included as well, to test for the 
sensitivity of hdEEG in detecting the activity of subcortical sources during movement41 (Fig. 1). For each ROI, 
the MNI coordinates were transformed to individual space, and the voxels within a sphere with 6 mm radius 
were selected. A representative ROI signal was obtained by calculating the first principal component of the time 
courses from the ROI voxels.

Corticomuscular coherence analysis. Corticomuscular coherence analysis42 was performed using the EMG sig-
nal x(t) recorded during movement performance, in combination with neural activity y(t) reconstructed for cor-
tical ROIs. In particular, we calculated global corticomuscular coherence C in the band between fmin = 1 Hz and 
fmax = 80 Hz using the following formula:
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where Gxy(f) is the cross-spectral density between x(t) and y(t), and Cxx(f) and Cyy(f) are the autospectral densities 
of x(t) and y(t), respectively.

ERD/ERS analysis. Frequency-dependent modulations of brain regions were assessed by conducting an ERD/
ERS analysis on reconstructed neural signals. We first performed an ERD/ERS analysis for selected ROIs, and we 
then calculated ERD/ERS maps.

For each signal, corresponding either to a single voxel or to a ROI, a time-frequency analysis was performed 
by means of short-time Fourier transform, with a moving window of 1 second. Specifically, we generated a spec-
trogram for the frequency range 1–50 Hz, at steps of 1 Hz, and with temporal resolution equal to 10 ms. The spec-
trogram was epoched with a time window [−3s, +3 s] centered over the movement onsets time. For each of the 
three movement conditions, the spectrogram epochs were averaged. As the last step, the ERD/ERS intensity was 
calculated, for each frequency and time, using the following formula:
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where P(f, t) is the power at a given frequency and time, and PB(f) is the average power in the pre-movement 
period (baseline, [−3s, 0 s]). ERD/ERS was quantified for the θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz) and γ 
(30–50 Hz) bands. These frequency bands were defined based on previous studies43. The δ band (1–4 Hz) 
was not considered for this analysis, as it might be contaminated by low-frequency movement artefacts. The 
post-stimulus interval for the calculation of ERD was in the interval [0 s, +2 s] with respect to movement onset. A 
repeated-measure two-way analysis of variance (ANOVA) was run to test the influence on the ERD/ERS intensi-
ties of motor task and cortical ROI as main factors, as well as of their interaction.

Using the same procedure used for the ROIs, we performed a time-frequency analysis on all voxels in the 
source space. By averaging the time-frequency maps in the time/frequency intervals used for the ROI analysis, 
we generated ERD spatial maps for hand, foot and lip movements, respectively. The volumetric images, obtained 
in individual space, were transformed to MNI space by applying a non-rigid deformation calculated using the 
T1-weighted MR image of the participant’s head.

Group-level analyses were performed on the ERD spatial maps by using a random-effect analysis. Specifically, 
a t-test across participants was calculated for each of the three movement conditions in each frequency band. The 
threshold for statistical significance was set to p < 0.05, corrected for multiple comparisons using false discovery 
rate (FDR). We also compared the ERD maps across motor tasks and frequency bands. This analysis was con-
ducted by calculating the spatial correlations between unthresholded maps.

Results
We expected to observe modulations of neuronal activity in motor-related brain regions during task perfor-
mance. To test for that, we first conducted a corticomuscular coherence analysis for HMA, FMA and LMA in both 
hemispheres. We found that the coherence between neural and muscular activity was modulated by the specific 
movement that was performed (Fig. 2). During movement of the right hand, coherence was much stronger in the 
left than the right hemisphere, and maximum in left HMA. Likewise, coherence during foot movement showed 
the strongest value in left FMA, but was relatively large also in the adjacent areas left HMA and right FMA. 
Coherence during movement of the lips was not strongly lateralized, and with largest values in bilateral HMA 
rather than in bilateral LMA. To examine frequency-specific neural power modulations, we then conducted an 
ERD/ERS analysis for HMA, FMA and LMA, respectively (Fig. 3). We first focused on ROIs in the left cerebral 

Figure 1. Position of the ROIs for the analysis of motor-related brain activity. The ROIs that were used to assess 
ERD/ERS during hand, foot and lip movements, are indicated in light blue, green, and red, respectively. The 
ROIs for the left hemisphere are shown over a cortical representation, both in lateral and dorsal views. The ROIs 
in the right hemisphere are symmetrically to the ones in the left hemisphere. HMA: hand movement area (MNI 
coordinates [+/−44, −17,49]); FMA: foot movement area (MNI coordinates [+/−24, −34, 62]); LMA: lip 
movement area (MNI coordinates [+/−39, 1, 56]; Thalamus (MNI coordinates [−9, −12, 10])).
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hemisphere, as the participants were required to move the right hand and the right foot. For all the three kinds of 
movements, we observed an ERD in α and β frequency bands, and to a lesser extent in the γ band (Fig. 3). These 
modulations of neural power started around the movement onset, and remained relatively stable during motor 
task execution. On the other hand, we also found a strong but transient ERS in the δ band at movement onset. 
This δ-ERS was not investigated further, as the frequency and timing of the response may be consistent with 
movement artefacts. We observed a clear, but much less intense α- and β-ERD for the lip than for the hand and 
foot movements. A slight power increase was also found in the γ band, specifically between 40 Hz and 50 Hz. This 
ERS could be partially related to residual muscular artefacts in the EEG data.

We extended our analysis to the ROIs related to hand, foot and lip movements, but in the right hemisphere. 
We then statistically evaluated the modulations of ERD intensity values for each motor task and each ROI by 
using a repeated-measure two-way ANOVA (Table 1). Such an analysis allowed us to examine not only the effects 
of motor task and ROI as main factors to explain ERD intensity, but also their interaction. The ANOVA revealed 
that the ERD intensity differed significantly from task to task in the α (p = 4.852e-06), β (p = 7.367e-06) and γ 
(p = 0.002) bands. The ERD intensity was significantly different across ROIs in α (p = 2.628e-4) and β (p = 0.009) 
bands. Interestingly, we also found an interaction between tasks and ROIs for the β (p = 1.318e-06), γ (p = 0.003) 
and α (p = 0.046) bands. When we examined more in detail the ERD values across motor tasks and ROIs (Fig. 4), 
we observed that: 1) there was no significant ERD in the θ band; 2) a similar pattern of α-ERD values across ROIs 
was found for hand and foot movements. 3) there was a significant β-ERD for all the three motor tasks. For the 
hand movement, the left HMA and the left FMA had the largest ERD; the foot movement induced the largest 
ERD in the left FMA; for the lip movement, the strongest ERD was observed in the right LMA, but an ERD was 
also found in the left LMA 4) for the γ band, there was a similar pattern of results as for the β band, but the ERD 
intensities were relatively lower.

The detection of motor-related power modulations in cortical ROIs for different frequency bands brought 
us to investigate if it was possible to detect a similar pattern of results also in the thalamus. ERS/ERD results for 
the thalamic ROI were in line with that of the cortical ROIs, although less prominent (Fig. 5). In particular, clear 
β-ERD and γ-ERD were observed in the thalamus for the hand and foot movements, but not for the lip movement.

Figure 2. Patterns of corticomuscular coherence during movement performance. Coherence was evaluated 
for cortical ROIs in both hemispheres during the (a) hand, (b) foot and (c) lip movement tasks, respectively. 
For each panel, the vertical axis indicates the EMG channel analyzed, and the horizontal axis indicates the ROI 
for which coherence was measured. lHMA: left hand movement area; lFMA: left foot movement area; lLMA: 
left lip movement area; rHMA: right hand movement area; rFMA: right foot movement area; rLMA: right lip 
movement area.
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After examining motor-related modulations of neural power in predefined ROIs, we also investigated ERD 
during hand, foot and lip movements at the whole-brain level. More specifically, we calculated ERD maps for 
θ, α, β and γ bands, respectively (Fig. 6). In general, ERD in the β and γ band had relatively larger task-related 
spatial specificity in the primary sensorimotor cortex compared to θ and α bands. The α-ERD map for the hand 
movement covered most of the primary motor area in the left hemisphere and peaked close to the cortical loca-
tion putatively related to hand movements. On the other hand, the peak locations of α-ERD maps for foot and lip 
movements were relatively far from the expected locations. The β-ERD maps for the three motor tasks showed 
spatial patterns more similar to those that could be expected based on fMRI studies. However, the β-ERD map 

Figure 3. Group-level ERD/ERS analysis for selected ROIs. Time-frequency analyses were conducted for 
hand movements in left HMA, foot movements in left FMA and lip movements in LMA, respectively. The 
corresponding plots obtained from individual subjects were averaged, to obtain group-level results.

Factor\band DF θ band α band β band γ band

Motor task 2
F 2.012 18.913 17.982 7.900

P 0.151 **4.852e-06 **7.367e-06 **0.002

ROI 5
F 1.062 5.416 3.290 0.494

P 0.388 **2.628e-04 **0.009 0.780

Motor task x ROI 10
F 1.363 1.925 5.303 2.813

P 0.203 *0.046 **1.318e-06 **0.003

Table 1. Two-way ANOVA of ERD/ERS intensity across motor tasks, ROIs, calculated for different frequency 
bands. F-scores and P-values of the main factors (Motor task and ROI) and their interaction are displayed for 
each of the frequency bands. P-values with p < 0.05 and p < 0.01 are marked by “ *” and “ **”, respectively.
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for the lip movement contained regions that are more dorsal as compared to fMRI maps. The γ-ERD maps of the 
three motor tasks appeared to be more spatially specific than those of β-ERD maps. Overall, ERD maps showed 
only a minimal contribution of the thalamus, probably due to the lower signal intensity in subcortical regions.

To further compare the spatial pattern of ERD across motor tasks and frequency bands, we calculated spatial 
correlations on unthresholded maps (Fig. 7). In general, relatively high correlation values were found between 
ERD maps for neighboring frequency bands (e.g., θ and α bands). Interestingly, we observed very low correlation 
values between ERD maps for θ and β bands, and even negative values between ERD maps for θ and γ bands. 
Overall, the spatial correlation between different tasks with corresponding bands was significantly larger than 
that between different frequency bands with corresponding motor tasks (unpaired t-test, p = 0.042). When we 
examined the correlations between motor tasks separately for each frequency band, we found that the γ band had 
the lowest values.

Discussion
The main goal of this study was to map the representations of hand, foot, and lip movements in primary sensori-
motor cortex using hdEEG, and to investigate their spectral signatures. To this end, we relied on our recent devel-
opments for obtaining accurate reconstructions of neural activity in the cortex from hdEEG recordings27,28. We 
generated ERD maps for different frequency bands, ranging from θ to γ11. Our results showed that motor-related 
ERD/ERS activity could be mapped in the primary sensorimotor cortex, as previously done with fMRI7,8,44. 
Particularly, the β- and γ-ERD maps for hand and foot movements were found to be spatially specific. The acti-
vated regions covered a large part of the primary sensorimotor cortex, but the peak locations were consistent with 

Figure 4. Analysis of ERD intensity across cortical ROIs and motor tasks. The box plots show the ERD intensity 
for different ROIs and motor tasks in (a) θ, (b) α, (c) β and (d) γ bands, respectively. A one-sample t-test 
was performed on the ERD/ERS intensity for each ROI and task, to test the significance of ERD (*p < 0.05; 
**p < 0.01). For each motor task, a strong ERD appeared on corresponding ROIs in α, β, and γ bands, which 
explains the high interaction between motor task and ROI in these bands.
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those previously reported in TMS and fMRI studies8,9,30. The ERD maps for the lip movement task, however, were 
not fully consistent with previous studies8,45. It may be argued that further methodological work is necessary to 
increase the sensitivity and accuracy of hdEEG-based analyses when neural sources are relatively less strong. We 
will more extensively comment on the points mentioned above in the following sections.

Recent technological developments have led to an increased interest of the neuroscientific community in the 
use of EEG as a brain imaging tool25. Critically, combining high-density electrode montages with accurate head 
models has permitted more precise source localizations in the cortex27,28. ERD/ERS has been considered a prom-
ising functional brain imaging approach for years46. However, ERD/ERS studies often analyzed time-frequency 
features of single channels or relied on topography maps in the sensor space. Accordingly, the spatial character-
istics of ERD/ERS were either neglected or underestimated. The finer spatial specificity brought by the use of 
hdEEG-specific methods is critical for an accurate mapping of motor-related modulations of neural activity. In 
this respect, our results support the idea that hdEEG can be used for resolving brain dynamics with relatively high 
spatial resolution. As such, hdEEG could be used as an alternative to fMRI for functional brain imaging, with the 
additional benefit of directly measuring brain activity. A possible downside, however, is the more limited sensitiv-
ity than fMRI to brain activity in subcortical regions.

Notably, the use of hdEEG permits, as is also the case for MEG, to investigate the contribution of differ-
ent neural oscillations across brain regions. For instance, we found in our study that the β- and γ-ERD maps, 
and much more than the θ- and α-ERD maps, showed a topology compatible with the representations of hand, 
foot and lip movements in the primary sensorimotor cortex. Particularly, our analyses revealed that the spatial 
correspondence between bands for the same motor task was substantially lower than that observed between 
different tasks for the same band. This suggests that rich information about motor processes can be disclosed by 
frequency-based analyses. We found that ERD maps for neighboring bands were similar. ERD maps for different 

Figure 5. Group-level ERD/ERS analysis for the thalamic ROI. Time-frequency analyses were conducted 
for (a) hand, (b) foot and (c) lip movements, respectively. The corresponding plots obtained from individual 
subjects were averaged, to obtain group-level results.
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frequency bands, such as θ and γ, even had negative spatial correlation. This result may not be fully surprising, 
since different neuronal oscillations are unevenly distributed across the cortex43.

A large body of studies indicated that motor-related brain activity is primarily represented by neural oscil-
lations in the β band. For instance, electrocorticography studies showed that β-ERD was more spatially specific 
than that of α-ERD47. Also, sensor-based EEG studies supported this idea that β-ERD/ERS reflects an increase/

Figure 6. Source-space ERD maps for different frequency bands and motor tasks. The ERD maps, which are 
represented over a cortical surface in lateral, medial and dorsal views, are thresholded at p < 0.05, corrected 
for multiple comparisons using FDR. ERD maps in the β and γ band have relatively larger task-related spatial 
specificity compared to θ and α bands. In β band, ERD maps for the hand and foot movements peaked around 
left HMA and left FMA respectively, whereas the ERD map for the lips movement showed less reliable results.

Figure 7. Spatial correlations between ERD maps, calculated for different motor tasks and frequency bands.
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decrease of excitability during movement46. We found the β-ERD to be stronger in the contralateral hand and foot 
region of the primary sensorimotor cortex while the participants were moving the hand or foot, respectively11. 
This is consistent with previous findings obtained using TMS and fMRI8,9. Among the three motor tasks used in 
the study, the symmetrical lip protrusion-contraction is the one that does not require fine movement control, and 
is therefore expected to produce weaker ERD/ERS. In turn, the lower signal-to-noise ratio (SNR) might explain 
the difficulty in identifying lip movement representations in the primary sensorimotor cortex. Interestingly, we 
also observed that the γ-ERD map was spatially similar to the β-ERD map. This finding is however not consist-
ent with other studies reporting a γ-ERS rather than a γ-ERD during movement, with primary frequency being 
typically around 40 Hz11,47. A possible reason for this contradictory finding could be in the choice of the specific 
time interval and frequency range for the calculation of the ERD. Overall, the finding that both β- and γ-ERD 
contain information about the specific motor task being performed is particularly interesting in the context of 
brain computer interface (BCI) research. We suggest that the comparison and/or potential integration of β- and 
γ-band activity in the source space may enhance the decoding of motor tasks48–50.

There are some limitations in the present study, which need to be mentioned. First, EEG source localization is 
influenced by the choice of the methods used for the solution of forward and inverse problems. Further investiga-
tions should be conducted to ensure that the most suitable solutions for analyzing motor-related EEG data are used. 
Second, the number of participants included in the study limits the generalizability of our results. It should be consid-
ered, for instance, that the ERD results for the lip movement may be influenced not only by the possibly weak neural 
modulations, but also by the limited sensitivity associated with a relatively small sample size. Third, we did not directly 
compare the ERD results from hdEEG data with fMRI activation results obtained in the same participants. In future 
studies, simultaneous EEG-fMRI data may be acquired during performance of motor tasks, such that it would be pos-
sible to conduct cross-modal comparisons not only at the group- but also at the single-subject level. Fourth, we exam-
ined corticomuscular coherence and neural power modulations during task performance. It would also be interesting 
to examine patterns of task-related connectivity in the brain, by using more complex experimental paradigms51,52.

To summarize, we investigated the spatial and spectral features of neural activity elicited by the performance of 
hand, foot, and lip movements by using hdEEG. Modulations of motor-related neural oscillations were observed 
in multiple bands. ERD in β and γ bands showed relatively high spatial specificity, with spatial maps well aligned 
with previous fMRI results. As for lip movements, we had less reliable ERD results. In this case, the neural power 
modulations might be weaker than for hand and foot movements, given that less fine movement control was 
required. Overall, our results confirm that hdEEG is a suitable technique to resolve motor-related brain activity 
with relatively high spatial and spectral resolution. Our future work will focus on methodological developments 
necessary for the use of hdEEG in clinical settings, and to enable a better understanding of the physiopathological 
mechanisms underlying neuromotor disorders53. This may also contribute to the definition of targeted/personal-
ized motor rehabilitation protocols in the future.
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