
Using Activity-Related Behavioural Features towards
More Effective Automatic Stress Detection
Dimitris Giakoumis1,2*, Anastasios Drosou3, Pietro Cipresso4, Dimitrios Tzovaras1, George Hassapis2,

Andrea Gaggioli4,5, Giuseppe Riva4,5

1 Informatics and Telematics Institute, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece, 2 Department of Electrical and Computer Engineering,

Aristotle University of Thessaloniki, Thessaloniki, Greece, 3 Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom,

4 Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy, 5 Psychology Department, Catholic University of Milan, Milan, Italy

Abstract

This paper introduces activity-related behavioural features that can be automatically extracted from a computer system,
with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of
appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study,
an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video,
accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen
participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal
descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural
features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed
that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use
of the proposed features can significantly enhance the performance of typical automatic stress detection systems,
commonly based on biosignal processing.
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Introduction

Growing interest has surrounded the roles of technology in

emotions, and in particular, in psychological stress. As such,

automatic stress detection has become a challenging issue, for both

research and the clinical practice. At the moment, physiological

measurements and self-report questionnaires are the most

common methods used to automatically detect stress [1,2].

Although questionnaires are affected by personal convictions [3]

and biosensors are often too obtrusive [4], last decades’ research

has demonstrated an increasing quality of these methods and

related technologies. In this line, effort has been made to improve

the performance, and also to reduce the obtrusiveness of the

adopted systems. However it still remains partially unclear how

stress can be effectively detected with the help of systems that

retain an increased degree of unobtrusiveness.

According to Cohen, Janicki-Deverts, and Miller [5], psycho-

logical stress occurs when an individual perceives that the

environmental demands exceed his or her adaptive ability to

meet them. This gap gives rise to the labeling of oneself as stressed

and elicits a concomitant negative emotional response. In

physiological measures, such a response can lead to increased

stress hormone levels, blood pressure [6], heart rate, pupil dilation,

and skin conductivity [7,8]. In activity-related behavior such an

emotional response can lead to a wide range of ‘‘behavioural

symptoms’’; for example, hands and foot trembling [9], body

hyperactivity [2,10], compulsive movement [11], and faster eye

gaze [12].

Over the last few decades, many factors, such as the lower

technology price and its higher availability, portability, and

usability, have allowed a closer connection and interaction

between automatic detection systems and affective models. A

vivid example of such joining is the promising field of Affective

Computing [13,14], which has among others, the aim to identify

emotions during human-computer interaction, by examining

biological signals [15,16], facial expressions [17], speech [18],

hands [19], and further parameters.

Several studies have shown interesting results that support the

feasibility of detecting affective states through psychophysiological

data acquisition and analysis [20]. For example, the affective

computing group at MIT, led by Rosalind W. Picard (the pioneer

in the field who also coined the term), conducted several research

studies that highlighted the use of psychophysiological measures

towards deducing and classifying emotional states. In particular,

researchers have highlighted the usefulness of wearable biosensors

that detect changes in physiological and subsequently, affective

states [7,14,15].

However, considering the practical applicability of such

methodologies, a major problem with wearable biosensors is

related to obtrusiveness. In fact, the regularly utilized biosensors

are not transparent to subjects, something that may even affect the
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study goals, i.e. in studying stress, there can be cases where subjects

become stressed as a consequence of the biosensors themselves [4].

Nevertheless, until now, the common tactic has been to decrease

the obtrusiveness of such devices, sometimes also making them

almost invisible, i.e. by using an electrocardiogram under a t-shirt

that transmits data to a smart phone [4] or a skin conductance

recorder to wear on the wrist [21].

In an effort to augment automatic affect detection with less

obtrusive monitoring methods, the applicability of automatically

extracted activity-related parameters has been recently examined

[22]. Activity-related behaviours suggest a clear aspect of

continuous regulatory actions, observable in movement qualities,

contours, expressions, and also perceived in vocal tonality [23]. In

this respect, the body attitude is related to the constant shape of

the body, its general pose and the distinct location of its parts

[24,25]. This concept recalls the so called ‘‘background emotion’’

[23] or ‘‘state of mind’’ that considers how one perceives oneself

and how this affects others.

In a more general view, gesture and posture are considered as

parts of a wider semiotic system that underlies human commu-

nication. Along this line, it has been reported that attitude,

intention, and, in general, meaning, are expressed only in part by

verbal content, and as much or even more so through nonverbal

channels [17,23,26,27,28]. In this perspective, nonverbal behav-

iours could be interpreted to indicate the ‘‘unsaid’’ elements

representing our internal states.

Human gestural parameters have recently been extracted from

monitoring video sequences, and it was shown that they have

interesting potential towards automatic affect recognition [22].

The latter work drew inspiration from [29], where the degree of

dependence between body movements and postures and certain

emotions, like joy, happiness, anger, etc had been investigated.

However, it has to be noted that, to our knowledge, no study has

explored until now the potential of activity-related behavioral

features, in respect to the practical problem of automatic stress

detection. These features could be collected at distance through

the use of appropriate sensors or cameras, being this way totally

unobtrusive. This consideration needs to be reviewed in further

studies, in order to understand the implications of such features for

the research and for the health care practice. Following this line, a

study aiming to automatically detect the stress level of participants

has been conducted herein. Psychological self-reports and

common physiological measures were used, and the latter were

compared to a less obtrusive technology, mainly based on a low

cost, single view depth imaging camera (Microsoft Kinect [30]). In

the context of our study, the following research questions are put

forth:

RQ1: Is there a relationship between behavioural features that

can be automatically extracted from a computer system, and the

self-reported stress levels of subjects?

RQ2: Is it possible to enhance stress detection effectiveness by

adding automatically detected behavioural information to stan-

dard systems?

The present work tries to answer both these research questions

by comparing standard psychological questionnaires, common

psychophysiological measures, and activity-related behavioural

indexes. An experiment was deployed with the aim to collect

appropriate video and accelerometer data from participants who

followed a stress induction protocol. Galvanic Skin Response

(GSR) and Electrocardiogram (ECG) biosignals were also record-

ed during the experiment. An explorative study was then

conducted, to identify whether behavioural features extracted

from video and accelerometer recordings can improve the

effectiveness of automatic stress detection. At this purpose, a large

set of behavioural features were extracted from the collected data,

and their relation to self-reported stress was examined. Many

mixed linear hierarchical regressions were computed, to take into

consideration the nested structure of the data. Moreover, utilizing

a linear classifier, it was found that the proposed behavioural

features were capable to significantly enhance effectiveness of

automatic stress detection, compared to the results obtained when

only common physiological features, extracted from the monitored

biosignals, were used.

Materials and Methods

In order to collect appropriate data, a stress-induction

experiment was conducted, as explained in the following.

Participants
Twenty one right-handed subjects (4 women, 17 men,

Mean = 30.4 years, SD = 3.7) participated in the experiment,

which was conducted in the premises of Informatics and

Telematics Institute, Centre for Research and Technology Hellas

(CERTH-ITI) in Thessaloniki, Greece. All subjects gave written

informed consent to the experimental procedure, which was

approved by the local ethics committee of Centre for Research

and Technology Hellas.

Hardware Setup
Video data was collected through a Microsoft Kinect [30]

camera placed opposite to the participant, at a distance of around

2 1/2 meters. Accelerometer data was collected from two tri-axial

accelerometer sensors developed by Phidget Corp. [31] that were

placed at the participant’s knees, with the aim to detect foot

trembling. Moreover, physiological (GSR and ECG) data was

collected using a Procomp5 [32] Infinity device. For GSR signal

acquisition, one two-electrode GSR sensor was placed at the

subject’s index and middle fingers of the non-dominant hand.

Also, one three-electrode ECG sensor was placed at the subject’s

chest, covering Eindhoven’s triangle. The overall sensor setup of

the study and a sample screenshot taken from the video recordings

are shown in Figure 1.a and Figure 1.b, respectively.

Stimuli and Procedure
Stimuli. The stress-induction stimuli of the experiment was

based on a custom stroop colour word test [33] application

(Figure 1). The stroop test has been commonly utilized in the past

so as to examine attention and cognitive flexibility [34], emotion

perception [35], as well as the effect of stress manipulation on

cognitive performance [36]. However, due to the fact that it is as a

mental task whose difficulty may substantially increase (through

manipulation of task pacing etc), it has also been considered during

the recent years as capable to form the basis for stress-induction

stimuli [20,37,38]. Following this line, the stroop test was used in

our work, so as to provide a mental task of increased difficulty,

within a stressor framework that was also based on time pressure.

Eventually, the stressor of our experiment was mainly based on

two parameters, i.e. time pressure and increased task difficulty,

commonly known as capable to induce stress [39,40]. As explained

in the following, these two factors were manipulated throughout

the different conditions of our experiment, during the participants’

interaction with our custom Stroop-based application.

In our specific stroop test, five colours were utilized, namely red,

green, blue, yellow and pink. Two versions of the test were

implemented: In Version A, the subject was presented with five

buttons labelled after the specific colours. For each question, the

subject had to press the correct button. In Version B, speech

Behavioural Features for Stress Detection
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recognition was utilized; the subject had to speak out the name of

the correct colour.

Experimental Protocol. During the experiment, the subject

was initially briefed and asked to sign the consent form. Then, the

sensors were installed. All experiments lasted for about one hour in

total, including the sensors setup phase. The stress induction aim

of the experiment was kept hidden from participants throughout

its duration. This way, it was ensured that stress induction would

occur naturally through the stressor and self reports would have

not been biased from subjects’ prior knowledge over the fact that

they ‘‘should get stressed’’. Moreover, subjects were unaware of

the processing methods that would have subsequently been

applied over their video and accelerometer recordings. It was

thus also ensured, that collected data would have not been biased

from manipulations of subjects that might have been aware of

their body language.

The experimental procedure consisted of the following eight

conditions:

Rest: The subject was asked to relax for two minutes with eyes

closed. GSR and ECG baseline data were recorded during this

period.

Condition 0: The subject watched a relaxing video, compiled

from pictures of Greek islands. GSR, ECG, video and acceler-

ometer data were recorded during this period, which lasted for one

and a half minutes. Data from the same sensors/devices was also

recorded during the rest of the conditions (1–6). At the end of

condition 0, the subject answered the post-condition question-

naire, which is explained below.

Condition 1: The subject played an easy (congruent) version of the

Stroop colour word test (Version A), where the font colour was

always same as the colour name displayed. The time limit for each

question was five seconds. The condition ended when sixty

questions had been answered, and then, the subject filled in the

post-condition questionnaire.

Condition 2: The same specifics as in condition 1 were followed,

only this time, Version B of the stroop test was used, and thus the

subject had to speak out the font colour instead of clicking the

colour buttons.

Condition 3: The subject played the typical Stroop colour word

test (Version A), where the font colour was always different than

the colour name displayed (Figure 2). The time limit for each

question was three seconds. After two minutes of playing, the game

automatically paused for one minute and automatically resumed,

so as for the subject to play for another two minutes. At the end,

the subject completed the post-condition questionnaire.

Condition 4: The same specifics as in condition 3 were followed,

only this time, Version B of the Stroop test was used.

Condition 5: The same specifics as in condition 3 were followed,

however, this time the subject played a Stroop colour word test of

increased difficulty (Version A); the font colour was always

different than the colour name displayed, and also after each of the

subject’s answer, the order of buttons changed in a random

manner. The time limit for each question was two seconds.

Condition 6: The same specifics as in condition 5 were followed,

however this time, the subject played a Stroop test of increased

difficulty (Version B), where three colour words were presented in

each question instead of the typical one. Two out of the three

words had always the same colour. The subject had to identify the

dominant font colour and speak it out loud.

Summarizing, the experiment consisted of eight different

conditions, one for recording of baseline biosignals data (as

typically done in biosignals-based affect detection studies, e.g.

[37,41,42]) and seven (condition 0–condition 6) for collecting both

physiological and behavioural measurements during periods with

presence and absence of stress.

From each participant, we needed as many recordings of

subjects as possible, taken both during not-stressed and stressed

Figure 1. Illustration of the sensors attached on a Subject (a) and screenshot (from Kinect camera) of the Subject during the
experiment (b).
doi:10.1371/journal.pone.0043571.g001

Figure 2. Screenshot of the experiment stimuli.
doi:10.1371/journal.pone.0043571.g002
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states. For this purpose, the initial, Rest condition, was followed

from condition 0, from which physiological and behavioural

measurements were to be collected, during a period with

potentially complete absence of stress. Then, the interaction with

the Stroop-based application involved three different levels of

difficulty; a very easy level (conditions 1 and 2), a moderately

difficult level (conditions 3 and 4) and a very difficult one

(conditions 5 and 6). Whereas the first two levels had a strong

resemblance to (congruent-incongruent) stroop tests that have

been used in the past [37], our third level involved a stroop test

variation of very high task difficulty and time pressure. As such,

conditions 5 and 6 were expected to prove particularly stressful.

Each of the above difficulty levels consisted of two conditions,

one of which employed the version of our Stroop-based

application with button-press (Version A, used in the odd-

numbered conditions) and the other, the version with speech

recognition (Version B, used in the even-numbered conditions).

This way, within each difficulty level, the participant faced two

different versions of the application. As a result, we were capable

to obtain double the measurements from each difficulty level, by

simultaneously avoiding boredom, which might have appeared if

the participant played twice in each level, the exactly same version

of the test.

Questionnaires. Stress self-assessment was conducted at the

end of each condition (post-condition questionnaire), using two

different question types. The first was a Likert-scaled (1–5)

question directly asking subjects whether they were feeling stressed

during the condition, following the rationale of the free-scale

question used in [41]. The second was a subset of the Stress-

Appraisal-Measure (SAM) questionnaire [43], consisting of the

four questions related to stress (questions 2, 16, 24 and 26). Based

on the two question types, two different variables were formed, to

be thereafter used as ground truth (subjects’ self-reported stress

levels) in our analysis: 1) The answers that the subjects had given to

the Likert-scaled question directly assessing stress (Stress_1–5) and

2) The average value of the subjects’ answers to the four SAM

questions (Stress_SAM).

Acquired Dataset. The acquired dataset consisted of 126

(2166) trials that were recorded during subjects’ playing the

different versions of the stroop colour word test, 21 recorded

during subjects’ watching the relaxing video (condition 0), and also

21 rest sessions. Apart from the 21 rest sessions, in total, 147 trials

were recorded. From all these relaxation and stroop-playing

conditions, various features were extracted from each monitoring

modality (GSR, ECG, video, accelerometer) and analyzed.

Behavioural Features Extraction Procedure
In the current section, the extraction procedure of a plethora of

activity-related features is described. Initially, the features that are

solely based on visual information are presented, while the

accelerometer-based behavioural features follow right after.

Video-based Feature Extraction
The vision based features examined in the current work are

mainly based on spatiotemporal information of the subject’s

movements:

The proposed method for stress-related analysis of the user’s

movement is mainly based on Motion History Images (MHIs)

[44], vision-based spatiotemporal descriptors that can be extracted

from video sequences depicting the monitored subject (Figure 3). A

MHI is a spatio-temporal template, where the intensity value

(MHIT) at each point is a function of the motion properties at the

corresponding spatial location in an image sequence, according to

the following equation:

MHIT (x,y,t)~
t , if D(x,y,t)~1

max(0,MHIT (x,y,t{1){1) , otherwise

�

where t is the number of frames contributing to the MHI

generation and D(x,y,t) equals to 1 if there is a difference in the

intensity of a pixel between two successive frame. The older a

change is, the darker its depiction on the MHI will be, while

changes older than t frames faint completely out.

Before presenting each extracted feature, a short description of

the MHI properties should be given. In this respect, it can be

noticed in the equation above that the value of t provides a notion

about the history information that is taken into account. As such,

large values of t form an MHI that extends deep in the past, while

small values refer only to the very recent past. Moreover, it is

obvious that the bigger the differences between two successive

frames, the larger the non-black area (Anon-black;Anb) on the

MHI. Similarly, identical successive frames would produce a

completely black MHI. This would be valid for any arbitrary

number t of utilized frames. Based on these observations,

significant motion-related information can be extracted from an

MHI, by properly adjusting parameter t.
Given the specifications of our system (Intel i5–2500k processor,

4 GB RAM), an experimentally detected average frame rate value

was 10 frames per second (fps) for online processing. Moreover, it

was noticed that that human’s small movements typically do not

last longer than 1 sec. In this respect, the extracted (Long term -)

MHIs are generated within the time period of 1 sec (,10 frames)

and updated accordingly. However, since a minimum duration for

such movements cannot be trivially defined, and given the fact that

fast and sudden movements may form a strong stress indicator, a

second (Short term -) MHI is also produced in parallel, by

processing only two successive frames (t= 2).

In order to preserve a common reference for all subjects, the

head’s position is constantly tracked and updated by the system.

The robust detection of the head’s position is a vital prerequisite

for the extraction of a series of stress related features, as it will be

shown in the following. As such, in the current work the head

detection algorithm was implemented as the combination of a face

detection algorithm [45] and a tracking mean-shift based

algorithm [46]. This enhancement is used, as the Haar-based

detector utilised in Viola & Jones algorithm fails to detect a face,

when the latter is significantly diverged from the frontal (camera)

view.

Specifically, within our method, the face –and thus the head–

centre is initially detected at each frame via the Viola & Jones’s

algorithm. If this algorithm fails, the last successfully detected face-

rectangle with pixels fP�i gi~1,:::,n and centre P0 is passed to the

mean-shift algorithm, and handled as follows:

First, a function b is defined: R2R1,…,m, which associates the

pixel at location q̂q~(q̂q1,q̂q2,:::,q̂qm) to the index b(P�i ) of the

histogram bin corresponding to the colour of that pixel. The

probability of a colour u in the target model is derived by

employing a convex and monotonically decreasing kernel profile k,

which assigns a smaller weight to the locations that are further

away from the centre of the target. Therefore, it can be written as

q̂q~C
Pn
i~1

k(DDP�i DD)d(b(P�i ){u), whereby C is computed by impos-

ing the condition
Pn

u~1

q̂qu~1, i.e. the summation of delta functions

for u = 1,…,m is equal to one. Further, when the target model is

passed on to the next frame, the probability pu of colour u in the

target candidate with a centre P0 and a radius h is calculated as:

Behavioural Features for Stress Detection
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p̂pu(P0)~Ck

Xnk

i~1

k(DD
P0{Pi

h
DD)d(b(Pi){u)

The most probable location P0 of the target pixel area in the

current frame is obtained by minimizing the distance d(P9) at a

given location y,

d(P0)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r(p(P̂P0),q̂q)

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

Xm

u~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pu(P0)q̂qu

ps
,

for p̂p(y)~(p̂p1(y),p̂p2(y),:::,p̂pm(y)) and q̂q~(q̂q1,q̂q2,:::,q̂qm), or by

simply maximizing r(P9), the Bhattacharyya coefficient,

r(P0):r½p̂p(P0),q̂q�~
Xm

u~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pu(P0)q̂qu

p

Based on the outcome of the aforedescribed MHI extraction

and head detection algorithms, a series of behavioural features

(V1, V2, V3,…) were defined and extracted from the video

sequences that were recorded during the experiment. For better

notation, these behavioural features can be regarded to form the

video-based feature vector of our study: Fv = {V1, V2,…}. The

features that were extracted from the video modality belong to the

following categories:

Global Activity Level. First of all, the Average and Standard

Deviation (SD) of global upper-body Activity Level within a time

period were examined as potentially useful behavioural features

towards automatic stress detection. The specific features followed

the rationale of [22], where the overall energy spent by a subject,

approximated by the total amount of displacement in her/his

hands and head, was examined as an expressive feature useful for

automatic affect recognition. Also, in [29], it was found that

dynamics/energy/power of movements can show significant

differences among different emotional states.

Hence, the amount of non-black areas in the MHIs of a given

time period was expected to provide a powerful clue of stress

indication, given that stressed persons would probably move

nervously (and arbitrarily), more frequently than calm ones. In this

respect, a MHI regarding the last ten captured frames was

constantly updated, and given this, the proportion k of the non-

black area Anb over the whole area A of an MHI was calculated as:

k~
Anb(t)

A
~

P
x

P
y

MHIT (x,y,t)

W �H

where W and H stand for the width and height of the MHI,

respectively.

Based on the mean (Avg) and standard deviation (SD) of k

within a condition’s MHIs, various stress-related features were

extracted: V1: Avg(k), V2: Avg(k), for k.0, V3: SD(k), for k.0.

Moreover, each time the parameter k of a certain MHI exceeded

the experimentally set threshold l (k.l), a signal ‘‘Increased

Movement Detected’’ was triggered. This way, a new subset of the

original MHIs was also preserved, that consisted only of executed

movements above an energy threshold, so as to discard small-scale

movements of the hands or head. Thus, the following features

were extracted similarly to the above: V4: Avg(k) for MHIs with

k.l and V5: SD(k) for MHIs with k.l. Moreover, similar features

like V4 and V5 were extracted, by considering only the MHIs

where the activity level exceeded a threshold smaller than the one

used for ‘‘Increased Movement’’ detection (k.ls, 0,ls%l). With

this threshold, only micro-movements of extremely small scale (e.g.

movement of the mouse of a PC) were discarded: V6: Avg(k) for

k.ls, and V7: SD(k) for k.ls.

Finally, the frequency of the detected ‘‘Increased Activity Level’’

movements within the given time period was extracted as a further

potentially stress-related feature with V8: The proportion of

seconds with ‘‘Increased Movement’’ detected to the total number

of seconds of the condition. The nominator used in feature V8
calculation was taken as the number of non-overlapping seconds

within the time period considered, for which at least an MHI with

k.l existed. Feature V8 aimed to provide a further indicator of the

subject’s activity level, by taking into account activities that

produced MHIs denoting increased activation, and finally

expressing their frequency within the examined time period.

Sharp Activities Energy. A sharp activity is defined within

our proposed system as activity occurring between two consecutive

recorded frames. Taking into account the definition of the MHIs,

by restricting the analysis window (threshold t) to the value of 2,

MHIs can be extracted on the basis of only two consecutive frames

(Short-term MHIs). Thus, the main difference of the features

explained in the following of this section, compared to features V1,

V3–V5,is the selection of parameter t, which defines the

inspection time for the generation of a single MHI; contrary to

above, where t had been set to 10 frames, a value of t= 2 is hereby

used for the current features.

Practically, this means that only the movement captured within

two successive frames is taken into account. In this respect, rather

Figure 3. Samples of Motion History Images (MHIs) regarding activities ‘‘right hand to left shoulder’’ and ‘‘left hand to right
shoulder’’.
doi:10.1371/journal.pone.0043571.g003
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rapid movements are expected to be detected, and from the MHIs,

features expressing several qualitative characteristics (e.g. energy)

of these rapid movements can be extracted. The larger the area of

Anb, the faster can be considered the performed movement. Thus,

the correlation between rapid, nervous movements and stress is

attempted to be studied through the average of the proportion ks

of the non-black area (Anb) over the whole area A of the Short-

term MHIs: V9: Avg(ks). Also, by considering only the short-term

MHIs (t= 2) corresponding to time periods where movement was

detected (k.0) in the long-term (t= 10) MHIs (as defined in

feature V2), features V10: Avg(ks), for k.0 and V11: SD(ks), for

k.0 were extracted. Finally, taking into account only the Short-

term MHIs (t= 2) that correspond to the Long-term ones (t= 10)

for which ‘‘Increased Movement’’ was detected (k.l), features

V12: Avg(ks), for k.l and V13: SD(ks), for k.l, were extracted.

Activity Symmetry. The relevance of gestural symmetry as

behavioural and affective features has been recently studied [22].

Although in [22], no significant differentiation was found between

several symmetry-related features and the quarters of the valence-

arousal space, in [47], it was shown that that arm-position

asymmetry was a relevant behavioral feature to identify a

‘‘relaxed’’ attitude and relative high social status of a person

within a group. Following this line, activity symmetry-related

features were extracted in our work from the MHIs of the

recorded video sequences. In particular, the symmetry of the

human gesture was defined as the divergence of the vector sv,

drawn between the user’s head and the MHI’s centre of gravity

from the upright position (Figure 4). Specifically, given that the

head’s location is detected as described above, its movements can

be ‘‘subtracted’’ from the MHI. Then by estimating the centre of

gravity (CoG) on the remaining MHI,

CoGx~

P
x

P
y

Ixyx

Itot

; CoGy~

P
x

P
y

Ixyy

Itot

where Ixy stands for the image intensity at position (x, y) and

Itot~
P
x

P
y

Ixy. Following this, one can draw the symmetry vector

of the gesture (Figure 4):

~ssv~(CoGx{Px,CoGy{Py)

From the symmetry vectors of the MHIs taken within a time

period of interest (i.e., a given condition of the experimental

session), several features were extracted, by taking into account

either all MHIs of the time period, or only those MHIs where k

was larger than l, or ls, as shown in Table 1.

From Table 1, it is clear that the extracted symmetry-related

features mainly encode the average and standard deviation of the

Euclidian, horizontal, and vertical size of Sv, as well as its

divergence from the upright position.

Position and movement of subject’s head and MHI

barycenters. According to the relevant literature [22,29,48],

head position (sometimes indicative of pose) and movement can be

considered as important features for distinguishing between

various emotional expressions. Along this line, a set of features

were extracted, expressing the position and movement of the

subject’s head during each condition. First of all, the Average

(V38) and Standard Deviation (V39) of the head’s distance from

the image centre (IC) were calculated from:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P xð Þ{IC xð Þð Þ2z P yð Þ{IC yð Þð Þ2

q
. Additionally, the features

shown in Table 2 were extracted by taking into account the initial

position (IP) of the head within the same condition, the initial

position of the head within the specific subject’s condition 0 (IP_0),

or the average position of the head within the specific subject’s

condition 0 (AP_0).

Also, the Average and SD of the head’s velocity (V58, V61
respectively), acceleration (V59, V62) and jerk (V60, V63) were

calculated. Within our explorative study, these parameters were

also examined in respect of the MHI barycenters (Centre of

Gravity - CoG), since in [22], gestural smoothness/jerkiness were

examined as behavioural parameters related to emotions. As a

Figure 4. Non symmetric (left) and symmetric (right) action samples.
doi:10.1371/journal.pone.0043571.g004

Table 1. Features extracted on the basis of the symmetry
vector.

Formula Feature Name

All MHIs MHIs with k.l MHIs with k.ls

Avg{Sv(x)} V14 V22 V30

Avg{Sv(y)} V15 V23 V31

Avg{Sv(x)/|Sv(y)|} V16 V24 V32

Avg{Sqrt(Sv
2(x)+Sv

2(y))} V17 V25 V33

SD{Sv(x)} V18 V26 V34

SD{Sv(y)} V19 V27 V35

SD{Sv(x)/|Sv(y)|} V20 V28 V36

SD{Sqrt( Sv
2(x)+Sv

2(y))} V21 V29 V37

doi:10.1371/journal.pone.0043571.t001
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result, further features expressing qualitative aspects of the MHI

barycenters’ movement were extracted, as shown in Table 3.

Frequency of specific gesture occurrence. From the

MHIs, specific gestures made by the subject can also be detected.

For this purpose, each recorded MHI was initially transformed

according to the Radial Integration Transform (RIT) and the

Circular Integration Transform (CIT), which were used due to

their aptitude to represent meaningful shape characteristics.

The RIT transform of a function f(..,..) is defined as the integral

of f(..,..) along a line starting from a centre (x0, y0), which forms

angle h with the horizontal axis, (Figure 5, Left picture). In the

proposed feature extraction method, the discrete form of the RIT

transform was applied, which computes the transform in steps of

Dh and is given by equation:

RIT(tDh)~
1

J

XJ

j~1

MHI(r0zjDu(tDh),y0zjDu(tDh))

for t = 1,…,T with T = 360u/Dh, where Dh and Du are the

constant step sizes of angle h and distance u, respectively. J is the

number of pixels that coincide with the line of orientation R and

are positioned between the centre of the head and the end of the

MHI in that direction (Figure 5, Right).

In a similar manner, the CIT is defined as the integral of a

function along a circle curve with centre (x0, y0) and radius r
(Figure 5, Right). Similarly to the RIT transform, the discrete form

of the CIT transform was used, as given by the following equation:

CIT(tDr)~
1

T

XT

t~1

MHI(x0zkDr(tDh),y0zkDr(tDh))

for k = 1,…,K with T = 360u/Dh, where Dr, and Dh are the

constant step sizes of the radius r and angle h variables. Finally,

kDr is the radius of the smallest circle that encloses the gray scaled

MHI.

Thus, each MHI can be represented by two 1 Dimensional

vectors, which are simpler to process (Figure 6). It should be noted

that the origin point (x0, y0) for the aforementioned transforms was

taken in our case as the centre of the head, which was detected by

the aforedescribed head detection algorithm.

Via the RIT- and CIT- based MHI transformations, specific

gestures of the subject were detected, by applying a threshold-

based template matching algorithm to pre-defined templates of

gestures of interest. For this purpose, we created a gallery of pre-

defined template MHIs, where one MHI existed for each gesture

of interest. As gestures of interest we selected the ‘‘Right hand on

head’’ and ‘‘Left hand on head’’ activities. These specific gestures

were used due to the fact that activities like nail biting, scratching

of head, smoothing of (already smooth or even long gone) hair etc.

are known to occur as behavioural symptoms of stress [1].

In order to detect the gestures of interest, two matching scores

between the probe and the gallery templates were simultaneously

produced so as to increase both the robustness and the

performance of the algorithm. These matching scores were a)

the L1-Norm distance and b) the correlation factor between each

of the RIT and CIT transformed vectors, as shown below:

DL1{Norm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{y)2

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1
(xi{yi)

2
q

corr(x,y)~rx,y~
cov(x,y)

sxsy

~
E((x{mx)(y{my))

sxsy

An event was detected, when only the returned scores from both

classifiers exceeded experimentally selected thresholds, so as to

diminish false positives. The final decision about which activity

was occurring, was taken according to the most matches with the

prototype MHIs within a predefined time-period (majority voting

rule); in our case, this period was one second, and the analysis was

performed in non-overlapping intervals.

Once the specific gestures had been detected within each non-

overlapping one-second interval of the whole time period

considered (i.e. the time period of a recorded condition), the

following features were extracted, expressing the frequency of each

Table 2. Features extracted for expressing position and
movement of subject’s head.

Formula Feature name

P0 = IP P0 = IP_0 P0 = AP_0

Avg{P(x)2P0(x)} V40 V46 V52

Avg{P(y)2P0 (y)} V41 V47 V53

Avg{Sqrt( (P(x)2P0(x))2+(P(y)2P0 (y) )2) )} V42 V48 V54

SD{ P(x)2P0 (x) } V43 V49 V55

SD{ P(y)2P0 (y) } V44 V50 V56

SD{ Sqrt( (P(x)2P0(x))2+(P(y)2P0 (y) )2) )} V45 V51 V57

doi:10.1371/journal.pone.0043571.t002

Table 3. Features extracted for expressing position and
movement of MHI barycenters.

Formula Feature name

MHIs with k.l MHIs with k.ls

Avg{Velocity(CoG)} V64 V70

Avg{Acceleration(CoG)} V65 V71

Avg{Jerk(CoG)} V66 V72

SD{Velocity(CoG)} V67 V73

SD{Acceleration(CoG)} V68 V74

SD{Jerk(CoG)} V69 V75

doi:10.1371/journal.pone.0043571.t003

Figure 5. Illustration of the Activity detection algorithm using
MHIs. Application of the RIT (left) and CIT (right) algorithms.
doi:10.1371/journal.pone.0043571.g005
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specific gesture occurrence: v76_RHH: The ratio of the number

of seconds with right hand raised towards head detected to the

total duration (in seconds) of the condition, and v77_LHH: The

ratio of the number of seconds with Left Hand raised towards head

detected to the total condition’s duration.

Accelerometer-based Feature Extraction
Two tri-axial accelerometers were used in our framework, one

at each knee of the participant. The aim was to monitor the

occurrence of ‘‘foot trembling’’, a behaviour known to often

accompany stress. Each accelerometer provided a triplet of values

denoting the acceleration in the three axes. Accelerometer data

was collected with 60 Hz sampling rate and was processed in one

second long, non-overlapping intervals.

Initially, within each interval, the total Power Spectral Density

(PSD) of the accelerometer output was calculated, as the average

PSD of the three axes. Following a rationale similar to [49], foot

trembling was detected only when a) the proportion of signal

power that existed in the experimentally set range [flow, fhigh] Hz to

the total signal power and also b) the total signal power were both

above experimentally selected thresholds. Each second of the

recording where foot trembling was detected was annotated as

such. Then, in order to diminish false positives, intervals were

treated as pairs of consecutive ones; only when foot trembling was

detected in both two consecutive intervals, these intervals were

finally marked as having foot trembling occurrence. This

processing was done for each of the two accelerometers separately,

and eventually, the outcomes of the two accelerometers were fused

by using an ‘‘OR’’ rule for each interval.

Following this processing, one feature was finally calculated

from the accelerometer modality, which regarded the frequency of

foot trembling occurrences within the time period of each

condition: A1: The number of seconds with foot trembling

detected to the total Nr of seconds.

Physiological features extraction
A further set of features were also extracted from the biosignals

(GSR, ECG) that were monitored throughout the experiment.

This set consisted of features commonly used in the literature

towards automatic stress, or in more general, affect detection.

Given the acknowledged effectiveness of these biosignal features in

our context, they were used to provide the basis for assessing

whether the examined behavioural features are capable to

enhance the accuracy of a typical automatic stress detection

system. In the following, the features extracted from the GSR and

ECG signals recorded during each trial (trials 0–6) of the

experiment are described. GSR and ECG data were collected

with 16 Hz and 256 Hz sampling rates, respectively. From the

ECG data, Inter - Beat - Intervals (IBIs) were calculated directly

from the monitoring device software. In order to treat between-

subject variability in physiological measurements, all extracted

biosignal features were normalized by division to their baseline

values, recorded during each subject’s rest session.

From both the GSR and IBI time series, the following typical features

were extracted for each trial: Average (Avg) and Standard

Deviation (SD) [18], Minimum (Min) and Maximum (Max).

Moreover, following [15], the mean of the absolute values of the

first differences of the raw and normalized signals were calculated:

d(x)~
1

N{1

XN{1

i~1

Dxiz1{xi D dnorm(x)~
1

N{1

XN{1

i~1

Dxiz1{xi D

Also, the mean of the convoluted with a Hanning window GSR

and IBI signal first differences were given by:

fd (x)~
1

N{1

XN{1

i~1

(siz1{si)~
1

N{1
(sN{s1)

In the above three equations, x is the IBI or GSR signal, si is the ith

sample of the resulting time series of the raw signal, sub-sampled at

16 Hz and convoluted with a 3-second Hanning window. As in

[15], the normalized signal xi used in dnorm(x) calculation, was

given by (xi2xmean)/xsd, where xi is a signal value recorded during

a trial, xmean and xsd are the signal’s average and standard deviation

during the trial, respectively. Moreover, the Skewness and

Kurtosis [50] of the GSR and IBI signals were calculated by:

Skew(x)~
1

N

XN{1

i~0

xi{�xx

s

� �3

, Kurt(x)~
1

N

XN{1

i~0

xi{�xx

s

� �4

{3

where x is the IBI or GSR signal, xi is the ith sample of the raw

signal, �xx and s are the signal’s average and standard deviation,

respectively.

Furthermore, the following features were extracted only from the

GSR signals recorded during the trials: Average, RMS (Root Mean

Square), and proportion of negative samples of the 1st Derivative

(Avg1, RMS1, prop1) and the smoothed (convoluted with

Bartlett window) 1st Derivative (Avg1s, RMS1s, prop1s)
following [51]. Skin Conductance Responses (SCRs) were detected

similarly to [51], and their Average Amplitude and Duration

Figure 6. 1D RIT Transform of the left image of Figure 5 (left) and 1D CIT Transform of the right image of Figure 5 (right).
doi:10.1371/journal.pone.0043571.g006
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(SCR_Amp, SCR_Dur) were calculated for each trial. Also, the

Rate of SCR occurrences (number of SCRs divided to the

intermediate duration, SCR_Rate), as well as Quantile thresholds

at 25%, 50%, 75%, 85%, and 95% for Amplitude

(SCR_AmpQ25, …, SCR_AmpQ95) and Duration

(SCR_DurQ25, …, SCR_DurQ25) of SCRs were calculated

similarly to [42]. Furthermore, the average area under the rising

half of each GSR response (SCR_arUnder) was calculated.

From the ECG modality and the IBI time series of each trial, the

following features, typically used in the literature towards

biosignals-based stress and affect detection were extracted:

RMSSD, pNN50, average LF/HF power ratio (LF/HF). Also,

the standard deviations SD1 and SD2 were calculated from the

IBI Poincare’ plot geometry similarly to [52]. Finally, following

[15], the mean of the absolute values of the second differences of

the raw normalized signals were calculated by:

cnorm(IBI)~
1

N{2

XN{2

i~1

Dibiiz2{ibii D

Data Analysis and Results

Stressor Effectiveness
Figure 7 shows the mean values of all participants’ answers to

the stress self-assessment questions (Stress_1–5 and Stress_SAM

variables, as defined in section ‘‘Questionnaires’’), in respect of the

different conditions of our experiment (specific values are given in

Table 4 below). A linear regression showed an increase of self-

reported stress (Stress_1–5) with the condition (b= 0.376,

S.E. = 0.036, p,.001, Adjusted R Square = 0.429) and an increase

of SAM Questionnaire index (Stress_SAM) with the condition

(b= 0.347, S.E. = 0.034, p,.001, Adjusted R Square = 0.419). As

can be seen from Figure 7, the stressor employed in our

experiment was eventually found to be effective (especially in

condition 5), leading to average stress self-reporting values close to

relevant ones that have been reported in the literature [41].

Correlations between behavioural features and stress
The hierarchical structure of the experiment data makes

traditional forms of analysis less resilient to the different levels

considered. Subjects are measured repeatedly, at many time

points. Traditional repeated-measures designs require the same

number of observations for each subject and no missing data,

being thus suitable for our case. However multilevel models are

appropriate to analyze such data, above all, because the existent

dependencies due to repeated measurements are included in the

parameter estimates. Moreover, further dependencies existing in

the data can be taken into account.

Since in our case, the entries were nested within the conditions

and within participants, physiological and behavioural indexes

were estimated on stress level extracted through the free scale

(Stress_1–5) questionnaire, with hierarchical linear analysis, an

alternative to multiple regression, suitable for our nested data. We

referred to two levels in the model: condition-level and subject-

level.

Selection of the models was done on the basis of three criteria:

1. significance levels of involved variables;

2. Quasi Likelihood under Independence Model Criterion (QIC)

in the smaller-is-better form;

3. Corrected Quasi Likelihood under Independence Model

Criterion (QICC) in the smaller-is-better form.

The usual goodness of fit statistics, like R-square, could not be

computed. Instead, the above information criteria, based on a

generalization of the likelihood were computed.

In particular, using self-reported stress as our dependent

variable, analyses consisted of:

1. A mixed linear hierarchical regression for each variable in the

dataset, namely 78 behavioural features, 29 GSR and 15 ECG

features.

2. Selection on the basis of Step 1 results, using significance levels,

QIC and QICC.

3. A mixed linear hierarchical regression for ECG features: d(IBI),

fd(IBI), Min(IBI)

4. A mixed linear hierarchical regression for GSR features:

SD(GSR), SCR_DurQ25

Figure 7. Average per condition self-reported stress values showing that stress increased at increasing task difficulties.
doi:10.1371/journal.pone.0043571.g007
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5. A mixed linear hierarchical regression for behavioural features:

V5, V16, V31, V46

6. A mixed linear hierarchical regression for all features at points

3–5

7. Selection on the basis of Step 6 results, using significance levels,

QIC and QICC.

8. A mixed linear hierarchical regression for all consistent

variables: V5, V16, V31, V46, SCR_DurQ25, fd(IBI).

Table 5 shows the mixed linear hierarchical regressions

conducted per each feature (independent variable) using self-

reported stress as the dependent variable; in particular, results for

features selected from Step 2 of the aforementioned analysis are

presented. From Table 5, it is evident that significant effect of

stress was found for several physiological, as well as behavioural

features. As concerns behavioural parameters, a positive relation

was found between stress and features expressing aspects of the

Global Activity Energy (V1, V2, V4, V5, V7, V8) and the Sharp

Activities Energy (V9, V10 and V11). Significant stress effect was also

found for features focusing on Activity Symmetry (V14, V16, V31,

V33), as well as ones related to the Position and movement of the head

(V41, V46, V52, V54, V58, V59, V60) and the MHI barycenters

(V70). Interestingly, increased self-reported stress was also found

to be accompanied with increase in the frequency of occurrence of

Right Hand on Head movements (V76) and foot trembling (A1).

Table 6 shows the four mixed linear hierarchical multiple

regression models, conducted per different combinations of

multiple independent variables, using again self-reported stress as

the dependent (Steps 3, 4, 5 and 8). Features V5, V16, V31 and

V46 were found to have significant effect within the final, full

model that consisted of both behavioural and physiological

features (Table 6). It was thus found that features expressing the

SD of the global activity level (V5), our proposed activity

symmetry vector’s divergence from the upright position (V16)

and vertical length (V31), as well as the horizontal difference

between the head’s position during the trial and its position during

relaxation (V46), had significant effect in modelling stress, even

when used in conjunction to physiological features derived from

the GSR and ECG modalities.

Finally, Figure 8 (specific values are given in Table 4) depicts the

variation of several of the examined variables among the different

conditions. As shown from Table 6 and Figure 8, the results

obtained can be regarded to confirm a relationship between

physiological, behavioral and psychological data of our experi-

ment.

Efficiency of behavioural features towards automatic
stress detection

From the analysis presented above, it is clear that some of the

behavioural features showed significant relation to self-reported

stress, similarly to physiological (GSR and IBI) features commonly

used in the relevant literature (e.g. [41,42]) towards automatic

stress detection. Following these findings, it was examined whether

the proposed behavioural features can be used in conjunction with

Table 4. Average per-condition values of a) responses to stress self assessment questions, b) physiological features and c)
behavioural features.

Mean (St. Error)

Condition 0 1 2 3 4 5 6

Stress_1–5 1.286 (0.101) 1.667 (0.174) 1.952 (0.146) 2.524 (0.225) 2.762 (0.206) 3.524 (0.203) 3.286 (0.23)

Stress_SAM 1.131 (0.051) 1.81 (0.175) 2.06 (0.151) 2.524 (0.189) 2.512 (0.18) 3.238 (0.202) 3.262 (0.237)

Avg(GSR) 1.253 (0.091) 1.854 (0.194) 2.528 (0.468) 2.679 (0.273) 3.356 (0.396) 3.65 (0.42) 3.922 (0.511)

SD(GSR) 1.288 (0.274) 1.302 (0.385) 1.795 (0.477) 2.839 (0.747) 3.064 (0.701) 3.276 (0.73) 3.443 (0.786)

SCR_DurQ25 0.266 (0.142) 0.352 (0.253) 0.368 (0.151) 0.548 (0.338) 0.901 (0.33) 1.779 (0.934) 1.512 (0.857)

Avg(IBI) 0.994 (0.007) 0.954 (0.015) 0.96 (0.013) 0.914 (0.017) 0.915 (0.02) 0.919 (0.018) 0.943 (0.018)

SD(IBI) 1.334 (0.223) 0.596 (0.046) 0.71 (0.121) 0.895 (0.136) 0.772 (0.068) 0.991 (0.145) 0.9 (0.073)

RMSSD 1.681 (0.321) 0.501 (0.053) 0.81 (0.287) 1.069 (0.335) 0.54 (0.09) 0.995 (0.204) 0.963 (0.198)

pNN50 1.304 (0.225) 0.686 (0.123) 0.41 (0.086) 0.783 (0.133) 0.884 (0.244) 1.716 (0.878) 0.888 (0.142)

LF/HF 1.462 (0.259) 2.005 (0.394) 2.264 (0.469) 1.572 (0.37) 2.404 (0.433) 1.836 (0.406) 2.539 (0.634)

d(IBI) 1.465 (0.287) 0.773 (0.052) 0.769 (0.102) 0.854 (0.084) 0.714 (0.051) 1.163 (0.247) 0.871 (0.071)

fd(IBI) 0.792 (0.074) 0.007 (0.117) 0.124 (0.072) 0.159 (0.043) 0.143 (0.049) 0.149 (0.034) 0.146 (0.058)

Min(IBI) 0.817 (0.066) 0.972 (0.034) 0.929 (0.044) 0.816 (0.043) 0.796 (0.054) 0.728 (0.063) 0.72 (0.058)

V1 0.001 (0) 0.001 (0) 0.002 (0) 0.002 (0) 0.002 (0) 0.002 (0) 0.003 (0.001)

V5 0.006 (0.001) 0.005 (0.002) 0.006 (0.001) 0.024 (0.002) 0.024 (0.001) 0.026 (0.001) 0.025 (0.001)

V7 0.007 (0.001) 0.007 (0.002) 0.007 (0.001) 0.016 (0.001) 0.015 (0.001) 0.016 (0.001) 0.015 (0.001)

V8 0.038 (0.008) 0.026 (0.006) 0.059 (0.011) 0.045 (0.005) 0.068 (0.009) 0.07 (0.01) 0.109 (0.023)

V16 20.054 (0.193) 0.576 (0.081) 0.525 (0.228) 0.685 (0.08) 0.301 (0.133) 0.703 (0.069) 0.361 (0.168)

V31 0.142 (0.023) 0.1 (0.018) 0.096 (0.018) 0.081 (0.012) 0.054 (0.009) 0.071 (0.008) 0.06 (0.013)

V46 0.074 (0.037) 0.056 (0.037) 0.06 (0.037) 0.045 (0.038) 0.055 (0.038) 0.045 (0.037) 0.053 (0.038)

V52 0 (0) 20.019 (0.005) 20.015 (0.005) 20.029 (0.009) 20.019 (0.005) 20.03 (0.005) 20.021 (0.005)

V54 0 (0) 0.048 (0.008) 0.051 (0.009) 0.06 (0.014) 0.055 (0.009) 0.06 (0.008) 0.068 (0.01)

A1 0.004 (0.003) 0.011 (0.011) 0.037 (0.033) 0.013 (0.008) 0.052 (0.034) 0.107 (0.048) 0.068 (0.038)

doi:10.1371/journal.pone.0043571.t004
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(or even instead of) the typical physiological features, to enhance

the effectiveness of automatic stress detection.

For this purpose, an LDA-based classifier [52] was used over the

multi-subject data set of our experiment. In Fisher’s LDA, the

optimum projection for a given data set is realized through the

transformation matrix W, which is calculated so as to maximize

the formula:

J(W)~
WT :Sb

:W

WT :Sw
:W

where Sb is the ‘‘between class scatter matrix’’ and Sw is the

‘‘within class scatter matrix’’ of the train data set. In two-class

LDA, data from the initial feature space is projected on a single

projection axis, which best discriminates training data among the

available classes. Thus, once the optimum transformation vector

W is calculated from the train data set, it can be used to calculate

the projection of each class Centroid and each new (test) case to

the transformation axis. Classification is then performed in the

transformed space by assigning the new case to its less distant class

found over the projection axis using:

min((F(case)WT-m0WT),(F(case)WT-m1WT))

where F(case) is the feature vector of the test case, m0 and m1 are

the centroids of the two classes under consideration, calculated

using the training data, and W is the transformation matrix.

Leave-one-out cross validation (LOOCV) was employed as in

[52], and the final Correct Classification Ratio (CCR) of the

classifier was calculated by CCR = Nc/N, where Nc is the number

of cases correctly classified and N is the total number of cases

constituting the full data set.

In order to assess whether behavioural features are useful

towards automatic stress detection, various different feature sets

consisting of physiological features and/or behavioural ones were

used as the input of the classifier, in an effort to identify:

– The effectiveness of well-known physiological features towards

stress detection in the given dataset (used thereafter as a basis

for comparison).

– The effectiveness of the behavioural features towards stress

detection, compared to the physiological features.

– Whether there would be an increase (or decrease) in stress

detection accuracy, using behavioural features auxiliary to

physiological ones, compared to the initial stress detection

accuracy achieved using only physiological features.

For each different feature set considered, an SBS (Sequential

Backward Search) feature selection procedure was employed as in

Table 5. Mixed hierarchical regression per index (dependent variable: Stress_1–5).

Parameter Estimates

Physiological
Parameter B Std. Error Hypothesis Test

Behavioural
Parameter B Std. Error Hypothesis Test

Wald Chi-
Square Sig.

Wald Chi-
Square Sig.

V1 261.958 61.5407 18.119 .000

GSR V2 119.459 45.4592 6.906 .009

Avg .423 .1227 11.887 .001 V4 38.370 14.6119 6.896 .009

SD .209 .0443 22.195 .000 V5 58.610 8.6949 45.437 .000

SCR_Amp .004 .0016 6.746 .009 V7 80.222 24.9997 10.297 .001

SCR_arUnder .0004 .0001 17.612 .000 V8 7.091 2.0560 11.897 .001

d(GSR) 4.541 .9431 23.187 .000 V9 1147.67 312.81 13.461 .000

dnorm(GSR) 2.178 .0733 5.874 .015 V10 608.184 219.02 7.711 .005

Min .444 .0895 24.612 .000 V11 330.460 152.77 4.679 .031

Max .433 .1106 15.308 .000 V14 .005 .0020 6.969 .008

Skew 2.816 .3603 5.135 .023 V16 .336 .1075 9.739 .002

SCR_AmpQ95 2.160 .8487 6.477 .011 V31 23.755 1.0641 12.453 .000

SCR_DurQ25 .171 .0410 17.410 .000 V33 24.824 1.1179 18.625 .000

RMS1s .024 .0053 20.052 .000 V41 21.601 .7294 4.819 .028

V46 21.574 .4363 13.021 .000

ECG V52 216.233 2.7698 34.347 .000

pNN50 2.053 .0247 4.537 .033 V54 9.644 1.7730 29.587 .000

d(IBI) 2.213 .0768 7.713 .005 V58 49.051 8.3143 34.806 .000

dnorm(IBI) 2.681 .3138 4.715 .030 V59 3.643 .539 45.686 .000

cnorm(IBI) 2.504 .2440 4.259 .039 V60 .179 .0338 28.097 .000

fd(IBI) 2.605 .1953 9.585 .002 V70 28.999 3.8656 5.419 .020

Min 2.674 .2762 5.959 .015 V76 16.625 5.2868 9.888 .002

A1 2.177 .8195 7.055 .008

doi:10.1371/journal.pone.0043571.t005
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[52], to retain the subset of features that would yield in each case

the best stress detection accuracy. By starting with a full, initial

feature set, SBS initially calculated a criterion value, in our case,

the classifier’s performance. An iterative feature removal process

was then employed, and within each iteration, the feature whose

removal increased more the criterion value was definitely removed

from the feature set. As a result, the features that produced the best

CCR were finally selected from the initial feature set.

Data Annotation. The LDA-SBS classification schema was

applied over two different two-class stress detection problems,

which were formulated by following a different annotation

procedure over the full dataset, which consisted of 147 cases in

total (i.e., all recordings of all subjects regarding trials 0–6).

For the annotation of the first dataset (Dataset1), the subjects’

answers to the Likert-scaled direct stress self-assessment question

(Stress_1–5) were taken into account. In particular, trials for which

the answer to this question was ‘‘1’’ or ‘‘2’’ were annotated as ‘‘Not

Stressed’’ (NS), whereas trials for which this answer was ‘‘4’’ or ‘‘5’’

were annotated as ‘‘Stressed’’ (S) ones. Trials for which the specific

answer was ‘‘3’’ were excluded. As a result, Dataset1 consisted of

108 trials in total, 82 labelled as NS, and 26 as S.

For the annotation of the second dataset (Dataset2), the

average of the subjects’ answers to the four SAM-questions

(Stress_SAM) was taken into account. In particular, trials for

which the average value of the answers to these questions was

higher than 2.5 were annotated as ‘‘Stressed’’ (S), and the rest of

trials were annotated as ‘‘Not Stressed’’ (NS). As a result, Dataset2

consisted of 147 trials in total, 93 labelled as NS, and 54 as S.

The purpose of using these two datasets was to evaluate the

LDA-based classification schema on stress detection applied over:

– A portion of the full dataset of this study, containing only the

more extreme cases of not stressed trials and stressed ones

(Dataset1)

– The full dataset of this study (Dataset2)

For each dataset, three different feature sets were used as the

initial feature set of the SBS procedure, consisting of:

– All physiological features (feature set: FS1)

– All behavioural features (feature set: FS2)

– All physiological and all behavioural features (feature set: FS3)

From each feature set, SBS selected the features that provided

the best CCR for each of the two different stress detection

problems. In the following, the confusion matrices of the best stress

detection results obtained from the various feature sets in respect

of Dataset1 and Dataset2 are provided, along with the features

that were finally selected from SBS and yielded the best results in

each feature set case.

Classification Results. In respect of Dataset 1, as shown

from a comparison between Tables 7 and 8, the behavioural

features extracted proved equally effective to the physiological

features in the stress detection problem concerning the more

extreme cases of stress and no stress that existed in this dataset.

Furthermore, when behavioural features were combined with the

physiological ones, the best average CCR significantly increased

(by 7.41%), achieving the maximum correct classification rate of

100% (Table 9).

Regarding Dataset 2, by comparing Tables 10 and 11, it is clear

that the proposed behavioural features appeared more effective

than the physiological ones in the stress detection problem

concerning all stress/no stress cases that existed in our dataset; a

significant increase of 7.49% in the CCR was achieved from the

behavioural features. The significance of this increase in perfor-

mance was proved as in [53], by a two-tailed pair-wise t-test,

applied over the classification results of FS1 and FS2 (t = 1.996,

df = 146, p,.05). Moreover, when behavioural features were used

together with the physiological ones as the initial feature set of

SBS, the best average CCR again significantly (t = 3.964, df = 146,

p,.001) increased (Table 12); by 13.61%, compared to the best

average CCR achieved with physiological features.

Furthermore, instead of using all features of our work, SBS and

the LDA classifier was also applied only over the features for which

significant regressions to self-reported stress levels were found,

from the aforedescribed regression analysis (Table 5). The

classification results obtained in respect of Dataset1 were:

88.89% for physiological (8 selected) features and 96.30% for

physiological and behavioural features (13 selected features, 4

physiological and 9 behavioural). The respective results for

Dataset2 were 73.47% with 6 features and 86.40% with 26

features (10 physiological and 16 behavioural). Behavioural

features were thus again found effective in both datasets, even

when the initial feature space of the SBS procedure was already

limited through the regression analysis.

As said, all above classification analyses were based on

LOOCV. Furthermore, in order to examine our approach over

a completely independent validation sample than the training one,

we randomly split the full dataset (consisting of data taken from 21

Table 6. Models of mixed hierarchical regression (dependent
variable: Stress_1–5).

Parameter Estimates

Hypothesis Test

Parameter B Std. Error
Wald Chi-
Square Sig.

Model GSRs (Intercept) 1.731 .2790 38.472 .000

SD(GSR) .235 .0475 24.381 .000

SCR_DurQ25 .185 .0402 21.147 .000

(Scale) 1.134

Model ECGs (Intercept) 3.913 .3471 127.137 .000

d(IBI) 2.360 .0944 14.507 .000

fd(IBI) 2.522 .1938 7.249 .007

Min(IBI) 21.250 .3063 16.649 .000

(Scale) 1.195

Model Gestures (Intercept) 1.698 .1914 78.699 .000

V5 52.964 9.0746 34.066 .000

V16 .284 .1037 7.475 .006

V31 21.899 .9076 4.379 .036

V46 21.892 .4072 21.582 .000

(Scale) .777

Full Model (Intercept) 1.815 .2301 62.204 .000

V5 56.123 8.4553 44.058 .000

V16 .288 .1125 6.549 .010

V31 22.382 1.0186 5.470 .019

V46 21.740 .4281 16.516 .000

SCR_DurQ25 .059 .0348 2.855 .091

fd(IBI) 2.660 .1622 16.545 .000

(Scale) .758

doi:10.1371/journal.pone.0043571.t006
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participants) into a training set, consisting of data taken from 9

participants and a validating one, consisting of data taken from the

rest 12 participants. Using validation samples of subjects whose

data was absolutely absent during training, simulates the hardest

affect detection scenario, where the system tries to identify

emotions of unknown persons, on the basis of knowledge it has

taken from a limited training set. Overall stress detection accuracy

was therefore expected to decrease in this case, however, the

purpose of this analysis was to examine whether behavioural

features would again lead to increase in automatic stress detection

performance.

In respect of Dataset1, by applying SBS and training the LDA-

based classifier with the training set, the physiological features

provided stress detection accuracy of 72.88% (43/59; NS:39/46,

S:4/13), whereas the joint use of physiological and behavioural

features (FS3) achieved a CCR of 83.05% (49/59; NS:41/46, S:8/

13). In Dataset2, the respective results were 66.67% (56/84;

NS:44/56, S:12/28) and 78.57% (66/84; NS:47/56, S:19/28). As

was expected, these results were in general inferior to the

respective ones that had been obtained with LOOCV. However,

the behavioural features were again found to significantly

(t = 2.562, df = 58, p,.014 for Dataset1 and t = 3.349, df = 83,

p,.002 for Dataset2) increase the performance that was achieved

by using only physiological features, further underlining our

proposed features’ effectiveness and potential for future practical

use.

Using behavioural features to predict stress-related
increase in the GSR

The analysis of the previous section focused on the automatic

detection of stress, using self reports as the ground truth for the

classification. It could however be argued that physiological

responses (such as the increase in the average GSR level) could

provide a more objective and reliable measure of stress than self

reports. From this perspective, it would be interesting to also

examine whether our proposed behavioural features could also be

used so as to effectively predict stress-related alterations of

physiological signals. Therefore, following the correlates that were

Figure 8. Variation of physiological and behavioural features among conditions.
doi:10.1371/journal.pone.0043571.g008

Table 7. Confusion Matrix of the best feature set selected
from FS1 (physiological features) in Dataset1.

Classified as NS Classified as S total class CCR

NS 80 2 82 97.56%

S 6 20 26 76.92%

Best Average CCR = 92.59% (100/108).
Features Selected from FS1: SD(GSR), Avg1(GSR), RMS1(GSR), SCR_Rate,
SCR_Amp, Min(GSR), Max(GSR), SCR_AmpQ75, SCR_AmpQ85, RMS1s(GSR),
Avg(IBI), SD(IBI), d(IBI), dnorm(IBI), fd(IBI), Max(IBI), Kurt(IBI), SD2(IBI).
doi:10.1371/journal.pone.0043571.t007

Table 8. Confusion Matrix of the best feature set selected
from FS2 (behavioural features) in Dataset1.

Classified as NS Classified as S total class CCR

NS 78 4 82 95.12%

S 4 22 26 84.62%

Best Average CCR = 92.59% (100/108).
Features Selected from FS2: A1, V1, V2, V4, V10, V12, V16, V17, V22, V24, V29,
V15, V27, V30, V34, V37, V36, V6, V41, V44, V47, V48, V51, V53, V57, V58, V61,
V63, V70, V71.
doi:10.1371/journal.pone.0043571.t008
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found between behavioural features and physiological ones, a

further analysis was conducted over the present dataset, towards

assessing whether the increase in the average GSR level (a well-

known, reliable index of stress [41]) could be predicted through the

proposed features.

For this purpose, a further dataset was formed (Dataset3), by

annotating the recorded conditions on the basis of the GSR

average value (Avg(GSR)). In order to do so, a normalized value for

the Avg(GSR) value of each recorded condition was calculated as:

Avg(GSR)norm,ij~
Avg(GSR)ij{Avg(GSR)min ,j

Avg(GSR)max ,j{Avg(GSR)min ,j

,

where Avg(GSR)norm,ij is the normalized GSR value of condition i of

participant j, Avg(GSR)ij is the actual value of the Avg(GSR) feature

for the same condition, Avg(GSR)min,j and Avg(GSR)max,j are the

minimum and maximum values of the Avg(GSR) feature, found in

all conditions of participant j. The result of the above equation was

a value in the range [0–1], expressing the increase in GSR level

that was observed within each subject’s recorded conditions. Then,

considering the average value of the GSR as the ground truth,

annotation took place on the basis of Avg(GSR)norm, with the rule: If

Avg(GSR)norm,0.5, the condition was labelled as ‘‘Not Stressed’’

(NS). Otherwise, the condition was labelled as ‘‘Stressed’’ (S). As a

result, Dataset3 consisted of 147 cases in total, 57 annotated as NS

and 90 as S.

Following this labelling process, Dataset3 had as ground truth,

each participant’s increase in GSR, instead of the answers given to

stress self-reports. Thus, the purpose was in fact to examine

whether the behavioural features can predict the increase in GSR,

which can in turn be regarded as a reliable measure of stress. By

applying LOOCV over the behavioural features (selected from

FS2 feature set after SBS), stress (GSR increase) detection

accuracy at the level of 93.88% (138/147; NS:54/57, S:84/90)

was obtained. This result further underlines the correlation that

exists between the behavioural features of our work and the level

of GSR, a well-known physiological stress metric.

In the same context, a further analysis followed, using this time

self-reported stress, so as to predict stress as measured by the

increase in GSR. In this case, we considered two further features,

the Stress_1–5 and the Stress_SAM, which regarded the respective

self-reports that were obtained after the end of each recorded

condition. When these two features were used in the LDA-based

classifier, stress (increase in GSR) was predicted in Dataset3 with

accuracy of 75.51% (111/147; NS:47/57, S:64/90). Thereafter,

these two features formed together with the behavioural ones a

further feature set (FS4), from which the best features (selected

after SBS) provided stress detection accuracy in Dataset3, at the

level of 94.56% (139/147; NS:55/57, S:84/90). From a perspec-

tive that takes as reference the subject’s increase in stress level, as

depicted from the increase in GSR, the latter two results indicate

that our behavioural features, used together with self-reports, can

lead to significant (t = 5.039, df = 146, p,.001) increase in the

performance of a stress detection system that is solely based on self-

reports.

Discussion

In this work, a large set of seventy eight behavioural features

were extracted from video and accelerometer data collected in the

conducted experiment, and analysed with the aim to answer the

two research questions of the present study.

Our first research question (RQ1) aimed to understand the

relationship between automatically extracted behavioural features

and self-reported stress levels of subjects. Analyses based on mixed

linear hierarchical regression models appeared to confirm that

relationships between the proposed behavioural features and self-

reported stress exist. We defined statistical models of self-perceived

stress, explained by the calibrated mixing of physiological and

behavioural measures. This showed in an even more clear way, the

subtle relationships among different changes in subjects’ behaviour

due to increased stress level. Interestingly, several behavioural

features were found to have significant effect in modelling self-

reported stress, even when used in conjunction to physiological

features.

Our second research question (RQ2) aimed to investigate

whether more robust stress detection is feasible by adding

automatically detected behavioural information. Results showed

that when the behavioural features were used together with

common physiological measures (FS3), stress detection accuracy

significantly increased, compared to the case when only the latter

were utilized (FS1). It was even observed that in the full dataset of

Table 9. Confusion Matrix of the best feature set selected
from FS3 (physiological and behavioural features) in Dataset1.

Classified as NS Classified as S total class CCR

NS 82 0 82 100%

S 0 26 26 100%

Best Average CCR = 100% (108/108).
Features Selected from FS3: A1, V8, V5, V12, V13, V14, V17, V21, V25, V28, V15,
V19, V23, V27, V30, V32, V33, V31, V35, V38, V39, V40, V42, V51, V52, V53, V54,
V57, V58, V59, V62, V71, V72, V75, V65, V68, V69, Avg(GSR), Avg1(GSR),
RMS1(GSR), SCR_Dur, SCR_arUnder, d(GSR), prop1(GSR), Min(GSR), Max(GSR),
SCR_AmpQ75, SCR_AmpQ85, SCR_AmpQ95, SCR_DurQ75, SCR_DurQ95,
RMS1s(GSR), prop1s(GSR), Avg(IBI), RMSSD, pNN50, LF/HF, cnorm (IBI), fd(IBI),
Max(IBI), Kurt(IBI), Skew(IBI), SD1(IBI).
doi:10.1371/journal.pone.0043571.t009

Table 10. Confusion Matrix of the best feature set selected
from FS1 in Dataset2.

Classified as NS Classified as S total class CCR

NS 76 17 93 81.17%

S 8 46 54 85.19%

Best Average CCR = 82.99% (122/147).
Features Selected from FS1: SCR_Dur, dnorm(GSR), prop1(GSR), Max(GSR),
Skew(GSR), SCR_DurQ75, SCR_DurQ85, SCR_DurQ95, prop1s(GSR), RMSSD, LF/
HF, fd(IBI), SD1(IBI).
doi:10.1371/journal.pone.0043571.t010

Table 11. Confusion Matrix of the best feature set selected
from FS2 in Dataset2.

Classified as NS Classified as S total class CCR

NS 86 7 93 92.47%

S 7 47 54 87.04%

Best Average CCR = 90.48% (133/147).
Features Selected from FS2: A1, V8, V76_RHH, V77_LHH, V1, V2, V4, V5, V13, V14,
V16, V17, V24, V29, V19, V23, V27, V33, V31, V34, V35, V37, V36, V38, V39, V43,
V44, V46, V47, V48, V51, V52, V58, V62, V63, V70, V71, V72, V74, V70, V71, V67,
V68, V69.
doi:10.1371/journal.pone.0043571.t011
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the present study (Dataset2), the total replacement of the

physiological features from the proposed behavioural ones (i.e.

using feature set FS2 instead of FS1), led again to increase in

performance. Moreover, behavioural features appeared to also

enhance automatic stress detection within a harder classification

scenario, where limited training data, taken from different persons

than the validating ones exists. These results suggest that the

proposed behavioural features provide an appropriate basis

towards implementing an efficient real affective computing system.

They can either be used to replace conventional, more obtrusive

physiological measures, or in conjunction to them. In both cases,

the results of the present study show that stress detection

effectiveness can increase.

Moreover, considering future practical applications of automat-

ic stress detection, it should be noted that the proposed features

extracted from the video modality, form an unobtrusive activity-

related behaviour monitoring framework that is based on a low-

cost camera. Additionally, their extraction is based only on the

silhouette of the subject depicted through the MHIs, together with

the head’s position. Both the MHIs and head position can be

calculated in real-time. As a result, even for applying post-

processing on the recorded data, the original video sequences that

fully depict the subject are not required, and thus, these are not

needed to be stored. Compared to typical facial expression

recognition methods, it is thus clear that the proposed framework

has higher chance for ethical acceptance in future practical

applications.

Nevertheless, the accelerometer modality used in our study can

not be regarded as unobtrusive as the video modality, and it can be

considered rather obtrusive, similar to the typical physiological

modalities. However, two comments should be made in this

respect. First, our proposed framework is mainly based on video

processing, since only one out of the seventy eight features

examined was extracted from the accelerometers. Thus, the

accelerometer modality could be omitted in a future practical

system in order to make it as unobtrusive as possible, having a

possible small degrade in performance. Second, different (e.g.,

vision-based) methodologies could be developed in the future so as

to detect foot trembling, thus making the use of accelerometers

unnecessary.

In the present analysis, behavioural features were extracted in

off-line mode from video and accelerometer recordings, something

that can also be done in practical clinical settings, where subjects

can be monitored for a time period, and subsequently, behavioural

features will be extracted, as soon as the monitoring period ends.

However, considering further future practical applications that

may be in need of real-time extraction of the proposed behavioural

features, it has to be noted that by using multi-threading

techniques, the proposed features can also be extracted in real-

time, similarly to the procedure that should be followed for

common physiological features. This way, our proposed param-

eters can provide further input also to a practical on-line stress

detection system, so as to enhance its effectiveness.

Our analysis involved data collected during a situation that

required sustained attention to a visual display. Such situations are

typically addressed in various daily settings, including a typical day

at the office, the monitoring of a safety critical system etc., where

stress is highly likely to appear. Moreover, our behavioural

features can also be extracted in further settings, which do not

necessarily involve sustained attention over visual displays,

however require for the subject to be sit in front of the monitoring

camera. For instance, our proposed system could be applied at a

psychologist’s office, so as to monitor the patient’s activity during

the treatment session. It can be argued that physiological responses

could be utilized for stress monitoring in further situations of

diverse daily settings. However, where applicable, our proposed

behavioural feature extraction system provides less obtrusive stress

monitoring, which, as indicated from the results of our work, can

significantly increase the effectiveness of conventional methods

based on physiological responses. In any case, the proposed

behavioural features can provide effective automatic stress

detection in situations that constitute a rather fertile ground for

the future application of automatic stress monitoring systems.

For instance, we came to realize that behavioural parameters

can improve a stress detection system based on objectively

measurable features, making it appropriate also for clinical

settings.

Based on the idea that bodies are specific as word, some

researchers began to speak of a ‘‘kinetic text,’’ defining the set of

subjects’ movements as ‘‘thick and specific as the words we speak’’

[54]. Our study emphasizes the role of automatic behavioural

feature detection as a way, in conjunction to physiological

measures, to objectifying the subjectivity.

‘‘Even patients lying on the couch move as they speak and convey their

own rhythm and shape patterns. The patient’s body position, movements

of limbs, have an impact on the analyst whose movements, though

perhaps unseen by the patient, are felt and heard so that both together

form a kinetic, as well as verbal text.’’ [54]

The sentence above highlights the importance to understand

activity-related behavioural features also for a therapist. In a

laboratory setting, such analyses can provide further information

to the researcher for detecting situations hardly conveyable

otherwise. To our knowledge this study represents one of the first

attempts towards a system for activity-related automatic stress

detection. We believe that the relevance of activity in the

understanding of human behaviour is a cutting-edge and relevant

theme in science and for future technological development. Our

results are a preliminary step towards a complete and effective

development, while more studies are needed in this direction.
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Table 12. Confusion Matrix of the best feature set selected
from FS3 in Dataset2.

Classified as NS Classified as S total class CCR

NS 92 1 93 98.92%

S 4 50 54 92.59%

Best Average CCR = 96.60% (142/147).
Features Selected from FS3: V8, V76_RHH, V77_LHH, V1, V2, V4, V3, V5, V14, V17,
V18, V20, V22, V26, V15, V23, V32, V33, V31, V37, V36, V6, V38, V39, V41, V43,
V45, V46, V47, V54, V57, V61, V70, V71, V66, V67, SCR_arUnder, dnorm(GSR),
prop1(GSR), Max(GSR), SCR_DurQ95, prop1s(GSR), RMSSD, LF/HF, d(IBI), fd(IBI),
Max(IBI).
doi:10.1371/journal.pone.0043571.t012

Behavioural Features for Stress Detection

PLOS ONE | www.plosone.org 15 September 2012 | Volume 7 | Issue 9 | e43571



References

1. Witkin G, Hirschowitz J (2002) The Male Stress Survival Guide: Everything

Men Need to Know: Newmarket Press.
2. Hickey L (1996) Counselling for stress problems - Palmer,S, Dryden,W. Journal

of Psychosomatic Research 40: 553–553.
3. Gillham B (2008) Developing a questionnaire. 2nd ed. ed. London, UK:

Continuum International Publishing Group Ltd.

4. Gaggioli A, Pioggia G, Tartarisco G, Baldus G, Corda D, et al. (in press) A
mobile data collection platform for mental health research. Personal and

Ubiquitus Computing 13:1–11 DOI: 10.1007/s00779-011-0465-2
5. Cohen S, Janicki-Deverts D, Miller GE (2007) Psychological stress and disease.

Jama-Journal of the American Medical Association 298: 1685–1687.

6. Cohen S, Manuck SB (1995) Stress, Reactivity, and Disease. Psychosomatic
Medicine 57: 423–426.

7. Mauri M, Magagnin V, Cipresso P, Mainardi L, Brown EN, et al.
Psychophysiological signals associated with affective states. 2010 Annual

International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBC’10, art. no. 5627465, pp. 3563–3566. DOI: 10.1109/

IEMBS.2010.5627465

8. Goldberger L, Breznitz S, editors (1993) The Handbook of Stress. Seconded ed.
New York, NY.: The Free Press.

9. Liang WC, Yuan J, Sun DC, Lin MH (2007) Variation in Physiological
Parameters Before and After an Indoor Simulated Driving Task: Effect of

Exercise Break. 2007 International Conference on Gerontic Technology and

Service Management (ICGTSM). Nantou County, Taiwan.
10. Chrousos GP, Gold PW (1998) A healthy body in a healthy mind - and vice

versa - The damaging power of ‘‘uncontrollable’’ stress. Journal of Clinical
Endocrinology & Metabolism 83: 1842–1845.

11. Levy DM (1944) On the Problem of Movement Restraint Tics, Stereotyped
Movements, Hyperactivity. American Journal of Orthopsychiatry 14: 644–671.

12. Cipresso P, Meriggi P, Carelli L, Solca F, Meazzi D, et al. (2011) The combined

use of Brain Computer Interface and Eye-Tracking technology for cognitive
assessment in Amyotrophic Lateral Sclerosis. 5th International Conference on

Pervasive Computing Technologies for Healthcare and Workshops, Pervasive-
Health 2011, art. no. 6038823, pp. 320–324. DOI: 10.4108/icst.pervasivehealth.

2011.246018

13. Picard RW, Cosier G (1997) Affective intelligence - the missing link? Bt
Technology Journal 15: 150–161.

14. Picard RW, Healey J (1997) Affective wearables. First International Symposium
on Wearable Computers - Digest of Papers: 90–97.

15. Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence:
Analysis of affective physiological state. IEEE Transactions on Pattern Analysis

and Machine Intelligence 23: 1175–1191.

16. Picard RW, Klein J (2002) Computers that recognise and respond to user
emotion: theoretical and practical implications. Interacting with Computers 14:

141–169.
17. Ekman P, Oster H (1979) Facial Expressions of Emotion. Annual Review of

Psychology 30: 527–554.

18. Zeng ZH, Pantic M, Roisman GI, Huang TS (2009) A Survey of Affect
Recognition Methods: Audio, Visual, and Spontaneous Expressions. IEEE

Transactions on Pattern Analysis and Machine Intelligence 31: 39–58.
19. Friesen WV, Ekman P, Wallbott H (1979) Measuring Hand Movements. Journal

of Nonverbal Behavior 4: 97–112.
20. Magagnin V, Mauri M, Cipresso P, Mainardi L, Brown EN, et al. (2010) Heart

Rate Variability and Respiratory Sinus Arrhythmia Assessment of Affective

States by Bivariate Autoregressive Spectral Analysis. Computing in Cardiology
37, art. no. 5737930, pp. 145–148.

21. Picard RW (2010) Emotion Research by the People, for the People. Emotion
Review 2: 250–254.

22. Glowinski D, Dael N, Camurri A, Volpe G, Mortillaro M, et al. (2011) Toward a

Minimal Representation of Affective Gestures. Affective Computing, IEEE
Transactions on 2: 106–118.

23. Damasio AR (2003) Looking for Spinoza : joy, sorrow, and the feeling brain.
Orlando, Fla.: Harcourt. x, 355 p. p.

24. Amighi-Kestenberg J, Loman S, Lewis P, Sossin KM, editors 1999) The

meaning of movement, developmental and clinical perspectives of the kestenberg
movement profile. Amsterdam, The Netherlands: Gordon & Breach.

25. Kestenberg J, Sossin KM (1979) The role of movement patterns in development.
New York: Dance Notation Bureau Press.

26. Mehrabian A (1969) Significance of posture and position in the communication
of attitude and status relationships. Psychology Bulletin 71: 359–372.

27. Kendon A (1972) Kinesics and Context - Essays on Body Motion Communi-

cation - Birdwhistell,Rl. American Journal of Psychology 85: 441–453.

28. McNeill D (2005) Gesture and thought. Chicago: University of Chicago Press.
xii, 318 p. p.

29. Wallbott HG (1998) Bodily expression of emotion. European Journal of Social

Psychology 28: 879–896.

30. Microsoft Kinect official website. Available: http://www.xbox.com/en-US/
Kinect. Accessed 2012 Aug 24.

31. Phidget Accelerometer 3-Axis. Available: http://www.phidgets.com/products.

php?product_id = 1059. Accessed 2012 Aug 24.

32. Procomp5 Infinity official site. Available: http://www.thoughttechnology.com/
pro5.htm. Accessed 2012 Aug 24.

33. Jensen AR (1981) - the Stroop Color-Word Test - a Review. Current Contents/

Social & Behavioral Sciences: 20–20.

34. MacLeod CM, MacDonald PA (2000) Interdimensional interference in the
Stroop effect: uncovering the cognitive and neural anatomy of attention, Trends

in Cognitive Sciences, Volume 4, Issue 10, Pages 383–391.

35. Chechko N, Wehrle R, Erhardt A, Holsboer F, Czisch M, et al. (2009) Unstable
Prefrontal Response to Emotional Conflict and Activation of Lower Limbic

Structures and Brainstem in Remitted Panic Disorder. Plos One 4.

36. Chajut E, Algom D (2003). Selective attention improves under stress:
Implications for theories of social cognition. Journal of Personality and Social

Psychology, 85, 231–248.

37. Barreto A, Zhai J, Adjouadi M (2007) Non-intrusive Physiological Monitoring
for Automated Stress Detection in Human-Computer Interaction. In: Lew, M.,

Sebe, N., Huang, T.S., Bakker, E.M. (eds.) HCI 2007. LNCS, vol. 4796, pp. 29–
38. Springer, Heidelberg (2007)

38. Karthikeyan P, Murugappan M, Yaacob S (2011) A review on stress inducement

stimuli for assessing human stress using physiological signals, Signal Processing

and its Applications (CSPA), IEEE 7th International Colloquium on, vol., no.,
pp. 420–425, 4–6 March 2011

39. Lupien S, Maheu F, Tu M, Fiocco A, Schramek T (2007) The effects of stress

and stress hormones on human cognition: Implications for the field of brain and
cognition. Brain and Cognition 65 (3), 209–237.

40. Hobfoll SE (1989) Conservation of resources: A new attempt at conceptualizing

stress. American Psychologist 44 (3), 513–524.

41. Healey JA, Picard RW (2005) Detecting stress during real-world driving tasks
using physiological sensors. IEEE Transactions on Intelligent Transportation

Systems 6: 156–166.

42. Setz C, Arnrich B, Schumm J, La Marca R, Troster G, et al. (2010)
Discriminating Stress From Cognitive Load Using a Wearable EDA Device.

IEEE Transactions on Information Technology in Biomedicine 14: 410–417.

43. Peacock EJ, Wong PTP (1990) The Stress Appraisal Measure (SAM) - a
Multidimensional Approach to Cognitive Appraisal. Stress Medicine 6: 227–

236.

44. Bobick AF, Davis JW (2001) The recognition of human movement using
temporal templates. IEEE Transactions on Pattern Analysis and Machine

Intelligence 23: 257–267.

45. Viola P, Jones MJ (2004) Robust real-time face detection. International Journal
of Computer Vision 57: 137–154.

46. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects

using mean shift. IEEE Conference on Computer Vision and Pattern
Recognition, Proceedings, Vol Ii: 142–149.

47. Mehrabian A (2007) Nonverbal Communication, Aldine.

48. Kapoor A, Burleson W, Picard RW (2007) Automatic prediction of frustration.

International Journal of Human-Computer Studies 65: 724–736.

49. Rigas G, Tzallas AT, Tsalikakis DG, Konitsiotis S, Fotiadis DI (2009) Real-
Time Quantification of Resting Tremor in the Parkinson’s Disease. Embc: 2009

Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Vols 1–20: 1306–1309.

50. van den Broek EL, Westerink JHDM (2009) Considerations for emotion-aware

consumer products. Applied Ergonomics 40: 1055–1064.

51. Giakoumis D, Tzovaras D, Moustakas K, Hassapis G (2011) Automatic
Recognition of Boredom in Video Games Using Novel Biosignal Moment-Based

Features. Affective Computing, IEEE Transactions on 2: 119–133.

52. Kim J, Andre E (2008) Emotion Recognition Based on Physiological Changes in
Music Listening. IEEE Transactions on Pattern Analysis and Machine

Intelligence 30: 2067–2083.

53. Martinez HP, Yannakakis GN (2010) ‘‘Genetic Search Feature Selection for
Affective Modelling: a Case Study on Reported Preferences’’. AFFINE ’10,

ACM, USA, 15–20.

54. La Barre F (2011) Figures of Motion: Integrating Movement Theories in Clinical
Practice. Clinical Social Work Journal 39: 180–190.

Behavioural Features for Stress Detection

PLOS ONE | www.plosone.org 16 September 2012 | Volume 7 | Issue 9 | e43571


