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Abstract: Fragment-based drug discovery (FBDD) using NMR has become a central approach over
the last twenty years for development of small molecule inhibitors against biological macromolecules,
to control a variety of cellular processes. Yet, several considerations should be taken into account for
obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make
NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern
the competence of NMR in fragment based drug discovery are discussed, as well as later steps that
involve optimization of hits obtained by NMR-FBDD.

Keywords: fragment-based drug discovery; nuclear magnetic resonance; fragment based virtual screening

1. Introduction: Fragment Screening as a Central Approach in Lead Molecule

A lead molecule is usually defined as a small molecule with a molecular weight (MW) of
approximately 500 Da, which can bind its target through H-bonds with no more than five hydrogen
bond donors and no more than 10 hydrogen bond acceptors, is flexible enough with rotatable bonds
to allow functional binding to the target, and favorably lipophilic with partition coefficient (cLogP,
a measure of hydrophobicity) less than 5. All these properties form the basis to develop a lead molecule
into a promising drug candidate [1,2], an early step in the process of translating small molecules into
medicines. Subsequent steps in a lead-to-drug process usually involve optimization cycles by synthesis
of structurally related analogs and activity related measurements.

Lead molecules have been discovered mainly through identification of active compounds by
screening of large chemical databases. Along with high throughput screening (HTS) and virtual
screening, fragment based screening (FBS) has been established as a central approach in finding the
initial “Hits” that can readily be developed into “Leads” [3-8] (Figure 1). Most of the published data
related to drug discovery is originated from HTS, whereas FBS contributes only minor portion (3%) of
the published data (Figure 1a). Approved FDA drugs that were originated from FBDD where mainly
developed using crystallography or NMR (Figure 1b), however, in 2017 most of the development was
using NMR.

The idea behind FBS is to test fragment molecules that are small enough, thus covering a larger
chemical space [9,10]. FBS generally offers higher hit rates and binding efficiencies compared with
HTS [11,12]. Nevertheless, due to their small size, fragment hits are usually weak binders and must be
developed into higher affinity larger molecules in order to be ultimately developed into a lead molecule.
HTS and FBS have been considered as complementary approaches in drug discovery. Some of the
pharmaceutical and biotech industries used FBDD in conjunction with HTS that shorten the early
phase of the drug discovery process providing robust lead compound series [13]. Wu et al. described
the advantages of FBDD and HTS approaches in a screening strategy designated as HTS by NMR,
presenting ligand discovery by fragment-based approach. The approach combines basic combinatorial
chemistry principles with NMR spectroscopy to screen larger libraries of compound fragments [14].
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Figure 1. (a) Pie-chart representing contributions of different techniques in Drug Discovery. The numbers
obtained by a PubMed search of keywords containing terms referring to high-throughput screening,
fragment-screening, and virtual screening focusing only in research articles; (b) Approved FDA drugs
from 2017 and development methods. The information was collected from KEGG-DRUG website
(http:/ /www.genome.jp/kegg/drug/br08319.html1?id=D01441); (c) Values representing pubmed entries and
published for 2017. NMR, Nuclear magnetic resonance; MD, Molecular dynamics; MS, Mass Spectrometry;
SPR, surface plasmon resonance; DSF, differential scanning fluorimetry; BLI, biolayer interferometry;
X-ray, Crystallography.

Targets can be screened by HTS only if the inhibition they induce can produce an obvious readout.
Thus, biochemical and cell based assays used in HTS screening are usually not suitable to detect the
weak binding interactions of fragment molecules to their macromolecule target. Variety of biophysical
binding techniques were adapted to detect weak interactions between fragment molecules and their
targets [15]. Since the pioneering study published in 1996 by Shuker et al. [8], NMR has become the
most popular technique for application in FBS, as it can detect weak binding between the fragment
and target macromolecule, with a KD in the low mM-range [16].

Since the early 1990s, advances in data acquisition techniques, combinatorial chemistry,
high-throughput screening approaches, genome sequencing, short-interfering RNA (siRNA) tools
and gene expression profiling [17] have helped to design and optimize drugs for the pharmaceutical
industry [18]. In particular, high-throughput screening (HTS) became a dominant approach for the
discovery of hit molecules [19]. By the early 2000s, companies were building multimillion compound
libraries, which were the source for many current clinical candidates [20]. However, when screened
against novel or more difficult targets the vast majority compound libraries sometimes yielded few
hits (<1%) or, in more problematic cases, yielded hits that were false positives [21,22]. Examples for
difficult or novel targets can be protein-protein interactions [23] and range of targets outside the
ribosome, the cell wall synthesis and DNA gyrase that comprise clinical targets for the most successful
antibiotics [24]. In fact, an estimated number of combinations of the spatial arrangement of atoms in
a drug-like molecule (MW of 500 Da) in a standard HTS library is 10°°, and the chemical space each
molecule covers is therefore very limited [25,26] and thus results in a low hit rate for HTS. Compared
with small fragment molecules, drug-like molecules possess functional groups that may pose more
steric hindrance or electrostatic repulsion in a binding site [27,28].
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A variety of mechanism-based assays for HTS that are mechanism-based were described in the
literature. One such case for a broad mechanism to identify small molecules for cardiovascular disease
was described that can provide high content phenotypic screening [29]. Phenotypic high-throughput
drug screens, also called chemical genetic or in vivo screens, investigate the ability of individual
compounds from a small molecule collection to inhibit a biological process or disease model in living
cells or intact organisms. A protease cleavage assay would be another specific example for mechanism
based HTS assays [30]. This assay used cellular FRET based methods, developed using fluorescent
proteins or dyes linked by a protease. Cleavage of the probe is measured by a change in fluorescence
upon activation of proteases such as caspase-3 [31] and hepatitis virus (HCV) NS2/3 [32]. In addition,
HTS largely depends on the development of a good, usually one-step primary assay that yields
readout of a biochemical/cellular reaction. As a consequence, targets that don’t form a readout may be
considered mistakenly as non-druggable or may not gain proper recognition as a “bona fide” drug
target. Therefore, further improvements in drug discovery have directed researchers’ attention toward
defining druggable targets and developing a more rational and focused approaches, concentrating on
the quality, rather than the quantity of hits and leads.

Although combinatorial chemistry had struggles in its earlier days, there are few lead molecules
that came from the HTS compared to other approaches. However, a significant number of drugs
in clinical trials originated from HTS campaigns, validating HTS as a bona fide mechanism for hit
finding [33]. In the recent years FBDD has emerged as a major approach of hit to lead discovery in
research of human diseases, where conventional approaches in drug discovery have failed [34].

The concept of drug design has gained much attention, especially with the progression of the
fragment-based philosophy (Figure 2) over the past 20 years. Fragment linking is one of the powerful
ways to develop a fragment hit into a lead compound. The concept was first introduced by Jencks
in 1981, based on the theory of additivity of binding free energies with the idea that large molecules
can be considered as the combination of two or more fragments that contain all the features necessary
for binding to the target protein. Hence, linked molecules with micromolar affinities can be obtained
from fragments that bind in the millimolar range, a central principle presented in the onset of FBS
approach [35]. FBS is a rapid and economic alternative to HTS [36] and has been established as
a mainstream strategy to discover novel high-quality drug-like molecules in both industry and
academia [34,37-40]. FBS adds novelty and flexibility to lead molecule generation proficiencies
and increases the probability of success in lead molecule development [41]. FBS takes a different
approach to that of HTS and virtual screening; instead of screening libraries of million compounds to
find drug-sized hit molecules, FBS begins with limited collections of low MW compounds (150-300 Da).
Unlike HTS where the readout is usually based on a biochemical process of the target macromolecule
using a functional assay, FBS monitors the binding of small molecules with high binding energy
per atom to the its binding partner (ligand efficiency) [27]. Thus, development of a biochemical or
cell-based assay is not required in FBS; instead the direct binding of small molecules to the target
macromolecule is monitored.

Fragment molecules are usually defined as functional chemical groups with less than
20 non-hydrogen (or ‘heavy’) atoms. Such small molecules present low complexity, owing to their
low MW, which allows an efficient exploration of diversified chemical space [42]. The small molecule
size brings binding flexibility, as the fragment molecule can bind to various loci of a target in several
ways. Although the binding of additional fragment to the same site brings additional intrinsic binding
energy to the target [35], the transition from fragments into lead molecules constitutes the bottleneck in
FBS. Nevertheless, more and more options to overcome these time and resource consuming problems
are becoming available, and several molecules developed using this method have been approved by
the FDA (Figure 2) or are being studied in clinical trials [34].
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Figure 2. Timeline—selected landmarks which significantly influenced the development of FBDD.
The range of affinity describes detection of compound binding to macromolecular target. Solid
Red colored bars represent weak affinity in the range of 100 uM-10 mM and hollow red colored
bars represent strong affinity in the range of 1 uM-100 uM. The development of FBDD was started
in 1981 by Jencks W.P. [35] and then in 1996 ‘SAR by NMR’ by Shuker S.B. et al. [8]. Most of the
discoveries occurred in 2000 among which Erlanson D.A. et al. discovered Tethering techniques [43],
Maly D.J. et al. used combinatorial target guided ligand assembly [44], Boehm H.]. et al. discovered
needle screening [45] and Nienaber V.L. et al. discovered crystal leads [46]. In 2002 Ekstrom ].L. et al.
used fragment screening by SPR [47] and in 2005 Hartshorn M.J. et al. used fragment screening
by X-ray crystalloraphy [48]. Bollag G. et al. discovered the first approved drug Vemurafenib
in 2012 [49], Souers A J. et al. discovered ABT-199, a potent selective BCL-2 inhibitor in 2013 [50],
and Hortobagyi G.N. et al. discovered recently the third approved drug LEE011 in 2016 [51].

This review describes the identification of fragment molecules and their optimization steps into
lead-molecules, specifically focusing on NMR as a specialized tool adapted for FBS and optimization.
The principles behind the strategic approach of FBS are also discussed in comparison with other
available technologies for screening. A survey on the current design of small molecule libraries
adapted for NMR screening is presented. Finally, the impact of FBS on the development of candidate
molecules in the current drug development pipeline and future directions of FBS are discussed.

2. Detection Methods Used for FBS

The binding of fragments is often very weak, and therefore biophysical techniques with high
detection sensitivity such as NMR [52-54], SPR [55], microscale thermophoresis (MST) [56], capillary
electrophoresis [57], weak affinity chromatography [58], biolayer interferometry /ultra-filtration [59],
native mass spectrometry [60], isothermal titration calorimetry [61], and X-ray crystallography [62] are
used to monitor the binding interactions. Although X-ray crystallography offers the most detailed
delineation of protein-ligand binding modes, its application in primary FBS has been limited thus
far. Since high concentrations of fragments are necessary to compensate weak binding (high Kp) in
protein pockets, the concentration of the fragment molecules is limited by the aqueous solubility [63].
In addition, in X-ray crystallography the target macromolecule needs to be crystalizable alone and
with the fragment molecule. Although many new technologies have been developed over the past
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decade, NMR based screening of small molecules is advantageous, as it presents high sensitivity for
weakly-bound target-ligand complexes [64-66]. NMR measures in solution, does not require any
modification of the molecule and therefore is best suited for FBS [64-66].

Computer-aided techniques are also used for fragment screening, for example molecular docking.
Molecular docking is the generation of hypothetical computer-guided protein-ligand complexes as
a means for understanding the mechanism of action or as a starting point for structure-based ligand
optimization. The application of docking to predict binding of small molecules remains a challenge
due to the following reasons: (1) fragment molecules are small in size and have low MW, as a result,
a number of interaction sites on protein surfaces (closely related energy minima) might be found
to theoretically accommodate the fragment binding, which would lead to false docking positions.
Even if fragments are placed into the correct pocket, if the binding pocket is large, it still might result in
incorrect binding modes [67]; (2) fragments usually have weak target affinities than drug-like molecules
with higher Kp values of over than 3 orders of magnitude i.e., in a range of (WM-mM) [68], therefore
scoring functions are not always accurate enough to predict the binding modes of fragments [69].

However, instead of empirical scoring functions, Shoichet and co-workers used physics-based
scoring function to prioritize active fragments [70]. They employed in silico fragment screening to
find AmpC (-lactamase inhibitors [70] and used a total of 137,639 fragment molecules from the ZINC
database, docked into an apo AmpC crystal structure (PDB ID code 1KE4) using the docking software
DOCK3.5.54. Among the hits obtained, forty-eight top ranked fragments were subjected to an in vitro
enzyme inhibition assay and 23 molecules with K; values in the range of 0.7-9.2 mM were identified.
Although the K; values present low potency of inhibition, the inhibitors are presumed to be specific.
Moreover, this in silico FBS study yielded a higher hit rate (48%) than both virtual screening and HTS
of drug-sized molecules due to better coverage of chemotypes at the fragment level.

In another example, Caflisch and colleagues developed a fragment-based procedure, called
anchor-based library tailoring (ALTA) used for docking of large libraries of compounds to find
inhibitors for EphB4 tyrosine kinase [71]. ALTA starts by decomposition of the compound library
into rigid fragments followed by docking and ranking of the fragments. In addition, they have used
pharmacophore constraints to preselect compounds for docking which adeptly reduced the library
size. Optimization as a follow up step after FBS is therefore beneficial for bringing fragment molecules
into the desired size and efficacy.

Computational methods have been developed to identify and characterize hot spots for fragment
binding [72]. However, binding modes and computation of free energies by docking experiments are
not yet sufficiently accurate to correctly predict early structure-activity relationships (SAR) around
weak-affinity fragments [73]. Despite the success of many examples of docking in FBDD, applying
docking in FBDD remained challenging because of possible promiscuous binding modes, the lack of
handles to fit fragments into the pocket, and biases in docking scoring functions [74-77].

3. Design of Fragment Libraries

One important consideration for the screening setup is the choice of fragment libraries
designed for FBDD [78]. The most common fragment libraries, designed for screening against
an extensive variety of targets, are diverse sets of compounds with high pharmacophore diversity or
physicochemical properties such as molecular mass, lipophilicity etc. [79]. The molecules are filtered
to remove functional groups that may contribute to additional chemical reactivity, toxicity, and false
positives [22,80-83].

Molecules in HTS libraries fulfill Lipinski’s “rule of five” [84], which occasionally enforces
researchers to compromise on the disposition properties (absorption, distribution, metabolism,
and excretion, ADME) to obtain potent inhibitors. By analogy to the Lipinski’s “rule of five”, molecules
in libraries adapted for FBS obey the “rule of three” (Ro3) [85], in which a molecule has: (1) a molecular
weight <300 Da; (2) a hydrophilicity value, clogP < 3; (3) number of hydrogen bond donors and
acceptors <3; (4) number of rotatable bonds <3; and also, (5) to a lesser extent, a molecular polar
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surface area <60 A2. The Ro3 proposed by Astex [85] has been widely applied to design fragment
screening pools. Fragments that are screened in combination with X-ray crystallography or NMR are
usually well soluble (e.g., can reach to 25-200 mM) in aqueous buffer and structural information is
available for further optimization of the hits [48,86].

However, the simplicity of fragments of Ro3-compliant libraries limits the diversity and
can produce hits that are difficult to optimize due to a lack of synthetically more accessible
functionality [87,88] i.e., unavailability of structural information or lack of activity-determining
features (scaffold with suitable functional groups). Moreover, fragments with a MW range of
150-300 Da that bind to the same site in close proximity can be further optimized into larger molecules
with better binding affinities [89,90] by subsequent steps of linking, growing, and merging.

Since the number of theoretical compounds increases exponentially with MW, smaller compounds
enable a more efficient exploration of chemical space [91]. In addition, fragment molecules could easily
bind a particular subsite within a binding site in comparison to a larger molecule that fits in size to the
binding pocket [92].

Predesigned fragment libraries are becoming increasingly available directly from chemical
vendors and Table 1 lists some of the commercial suppliers. These libraries offer a diverse range of
collections which can be expanded with more targeted and novel sets of compounds. The commercial
libraries provide a reliable, high quality, and cost effective diverse selection of compounds.

Table 1. List of commercial suppliers of fragment libraries.

Commercial Supplier Library Name Number of Fragments Remarks
19F-NMR-oriented Fragment library 1280 Ro3 compliant
ACB Block -
Fragment Library for NMR 760 Ro3 compliant
Asinex Fragment library Building blocks >22,000 Modified Ro3
. FRGx: fragments from
Analyticon Fragments from natural products 5000
nature; Ro3 compliant
ASDI Fragment screening collection 1700 Ro3 compliant
Diversity fragment library 6800 Ro3 compliant
. . Ro3 compliant and substructure filtering
BIONET Fluorine Fragment Library 461 by PAINS
Modified Ro3
Biofocus BioFocus’ 3D-biased fragment sets 1500 Surface plasmon resonance (SPR)
screening used [93]
Fragment library >7000 Ro3 compliant
ChemBridge - 5 - 5
ChemBridge Microformat Library 20,000 Ro3 compliant
Core fragment library 1500 Modified Ro3 compliant
Charles River Kinase focused fragment library 500
19F labeled fragment library 500
ChemDiv 3D designed fragment library >4000 Ro3 compliant
“Simple” fragment library 126,597 Ro3 compliant .SZO heavy‘ atoms from
screening collection
Ro3 Fragment Library 44,600
sp3 Rich Fragment Libraries 14,000
PPI Fragment Library 3500
Fluorinated Fragment Library 2100
Enamine
Brominated Fragment Library 1200
Covalent Fragment Libraries 3000
Essential Fragment Library 190
Single Pharmacophore Fragments 3200
Carboxylic Acid Fragment Library 4300

Golden Fragment Library 1794
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Commercial Supplier

Library Name

Number of Fragments

Remarks

Consolidated library with different

InFarmatik subsets (diverse 3-D fragments, 1700 Ro3 compliant
GPCR, kinase)
IOTA Pharmaceuticals Fragment library 1500 mainly Ro3 compliant fragments
. multiple subsets with assured solubility
Fragment library 26,000 and Ro3 compliant
Ro3 compliant
2nd generation subsets 1166
assured aqueous solubility
Key Organics . o
Fragments from nature 183 Ro3 comph-ant, assured solubility and
high Fsp3 content
CNS fragment library 700
Brominated library 1656
Fluorinated fragments 1950
Brominated, covalent, Fsp3-enriched,
and covalent subsets.
Multiple subsets 31,000 14,000 of which are Ro3 compliant
Life Chemicals
Diversity Fragments set 3500
19F-Fluorine-Based Fragment Library 1300
Ro3 compliant
: Dedicated to NMR applications. A smaller
F t lib for NMR PP
ragment fibrary for >30,000 1000-fragment subset is also available,
probably to identify more hits [94]
Latest addition
Maybridge Ro3 compliant
(Thermo-Fischer) Diversity Fragment Library 2500
Guaranteed soluble at 200 mM in DMSO
and 1 mM in PBS
Maybridge Bromo-Fragment Collection 1500 Fragment library for X-.ray based
fragment screening
i 19F_
Maybridge Fluoro-Fragment Collection 5300 Fragment l1brary.for. F-NMR
based applications
General Ro3 compliant
Fragment library Total of 12,486
Otava Chelator Fragment Library 1023
Halogen-Enriched (Bromine)
Fragment Library 618 used for X-ray crystallography based
fragment screening
OTAVA’s F-NMR Fluorine-containing
. 1077
Fragment Library
Ro3 compliant
Prestwick Fragment Library 2230 Contains set of known drugs MW < 300,
together new 910 fragments derived from
drug molecules
Pyxis Fragment Library 317 Based on scaf.fo'lds that are found in
existing drugs
TimTec Structurally diverse fragment library 3200 Modified Ro3
Vitas-M Commercial fragment library 18,932 Ro3 compliant
Ro3 compliant
Commercial fragment library 968 Fragments derived from different design

Zenobia Therapeutics

paradigms, cores from drugs, higher Fsp3,
flexible cores

Note: Fragment library in bold can be used exclusively for NMR based applications.



Molecules 2018, 23, 233 8 of 27

4. NMR Techniques for Screening

NMR is a versatile technique that can be used for screening, optimization, and validation of
binding of a small molecule to its target macromolecule. Both ligand-based and target-based NMR
spectra are extensively used in FBDD [95], yield typical throughput of 1-1000 compounds per screen,
and require costly instrumentation [68]. Target-based methods, although very helpful, involve complex,
expensive and time-consuming two-dimensional (2D) experiments with an isotopically labelled protein.
Since structural information is usually required, a high level of backbone amide resonance assignment
is necessary. To identify the binding mechanism the peaks in the 1°"N-HSQC data are assigned to
every amino acid residue in the protein sequence. Ligand-based methods do not require structural
information and involve rapid acquisition of one dimensional (1D) data. Ligand-based methods
require much lower target molecule concentrations than target-based methods and work well for high
molecular weight proteins. Ligand-based methods, such as STD, perform poorly on smaller proteins
(<15-20 kDa) where target-based methods succeed [96]. Most ligand-based methods, however, provide
no information about the ligand-binding site, which must be obtained from additional experiments.
Target-based methods however, can actually be more informative than ligand based methods and
relatively fast when small proteins are used [97]. Solution protein NMR spectroscopy is valuable for
target-based drug discovery as it provides information on the target-ligand binding mechanism such
as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. In another
example of target based methods, solid-state magic angle-spinning (MAS) NMR procedure is widely
applicable to small membrane proteins expressed in bacteria [98]. Although numerous restrictions are
imposed by the high molecular weight of target (around 40 kDa), there are several relaxation-optimized
NMR techniques to tackle the relaxation and linewidth problems these days. Thus, making NMR
a high throughput approach in hit generation and characterization [99].

Though several other biophysical methods are utilized for FBDD, NMR was the first and remains
an important method for the discovery of new drugs. The first study on FBDD using NMR published
by Shuker et al. in 1996 made use of chemical shift changes in 2D HSQC spectra of a protein to
identify fragments that bind to the protein. Guided by NMR, relevant fragments were optimized,
their binding site relative to each other determined and then fragments were linked to yield a high
affinity ligand [8]. Using 2D spectra limits the method to relatively small biomolecules (<~40-60
kDa) at high concentrations, for obtaining high quality spectra in a reasonable amount of time.
However, NMR is very versatile and since this pioneering study, several approaches for different
stages of the drug discovery process have been applied for FBS. For the primary screen of a fragment
library, one-dimensional ligand-detecting NMR methods are most commonly used, for several reasons:
1D spectra of small molecules are faster and easier to detect than 1D or 2D spectra of the target
biomolecule. Using small molecules that yield uncrowded spectra avoids costly isotope labeling
and even allows measuring samples containing several fragments at once. A major advantage of
ligand-based detection methods is that these are not limited by the size of the target biomolecule and
do not require a high concentration of the target. These ligand-based detection methods (schematically
presented in Figure 3) exploit the differences in the physical properties of the ligand in its bound
and free state. Although the measured signal originates from the unbound fragment, it still contains
information from the bound state, in which the fragment behaves like a molecule of the size of the
target rather than a small molecule, if the dissociation of the fragment from the target is within the
timescale of the experiment.

The most widely used ligand-based method is the saturation transfer difference (STD)
experiment [100]. This experiment uses a train of selective pulses to saturate signals of the protein that
are in an area of the spectrum with no signals originating from the fragments (e.g., methyl protons of
the proteins below 0 ppm). The saturation is transferred throughout the protein and to any bound
fragments, causing a decrease in signal intensity. Comparing 1D spectra of the fragments with and
without the saturation pulses reveals those fragments that bind to the protein. WaterLOGSY utilizes
the sign inversion of the Nuclear Overhauser Effect of Water between the binary ligand bound state
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and the ternary state where the ligand is bound to the target protein [66,101]. This experiment also
uses selective excitation, like the STD, however, instead of the protein the water is excited. Recent
advances in NMR technology benefit from this experiment as well. The use of hyperpolarized water
significantly increases the sensitivity. As protein signals are enhanced as well, this method can also be
used to determine whether the protein is aggregated or intact and thus, eliminate false positives [102].

A ligand bound to a much larger target will adopt the relaxation properties of the large target in
its bound state. A large protein tumbles at a much slower pace than a small molecule, which leads
to much faster relaxation times. The Carr Purcell Maiboom Gill (CPMG) sequence can be used to
determine the relaxation time T2 of the fragments in their free form and in a sample containing the
target biomolecule. Fragments with reduced relaxation times are those that bind to the target [103,104].
The relaxation times is indirectly proportional to the line width at half height. Thus, shorter relaxation
times of larger molecules lead to line broadening. Since the peak consists of a large contribution from
the unbound state with a narrow line and a smaller contribution from the bound state with broad
a line, the main effect observed in the 1D spectrum is a reduction in intensity. The large difference in
relaxation times of the bound and unbound from can also be used to filter out resonances originating
from the protein and the complex, for example by using a long echo time in the CPMG experiment
or adding a filter to the STD experiment. Just as a ligand bound to a larger molecule will adopt the
relaxation properties of that molecule, the ligand will also adopt the diffusion properties of the target
and diffuse at a much slower pace than the free ligand. The diffusion rate of the free ligands and of the
ligand in a sample containing the target molecule can be measured by NMR in an experiment called
DOSY (Diffusion Ordered Spectroscopy) [104].

STD WaterLOGSY
Magnetization Tansfer Target -> Ligand Magnetization Transfer from Bulk Water
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Figure 3. Schematic representation of different ligand detected methods used in fragment based screening.
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Sometimes spectral crowding and background noise from the biomolecule can be a hindrance.
In this case, a ligand labeled with °F might be a solution. '°F has only a slightly lower sensitivity
than protons, but offers a much larger chemical shift range and eliminates the background from the
target. The relatively high speed, low background signal/interference and ability to probe diverse
pharmaceutical/environmental parameters in protein-observed F-NMR experiments helped to
discover and characterize selective ligands for bromodomain-containing proteins [96]. Measuring the
19F relaxation rates of the free ligands and ligands in a sample with the biomolecule will identify those
ligands that bind to the target by a shorter relaxation time, just like for the proton experiment [105].

Target-based methods require 2D experiments or even higher dimensionality and are thus
more time consuming. Often isotope labeling of the target is required (for example °N labeling
for HSQC spectra, plus ?H labeling for larger proteins) and larger concentrations are required, making
these experiments costlier. However, they do offer other advantages and are very useful for further
characterization after an initial 1D screen identifying promising fragments. Target-based experiments
can be utilized to obtain structural information at an atomic level, which is not available with any
other technique. Titrating a ligand into a sample of the target molecule and measuring 2D HSQC
spectra at each point allows the determination of the binding site of the ligand, as the chemical shift of
the resonances involved in binding will change [106]. It should be noted, that chemical shift changes
may also arise due to induced conformational changes at a site distant from the binding site or due
to dimerization. Thus, chemical shift changes must be analyzed carefully. Changes that cannot be
mapped to a single site, for example, are most likely due to conformational changes. Changes that
can be mapped to a single site but are accompanied by line broadening could be due to dimerization,
which could be confirmed by measuring relaxation properties. For more details see for example [106].
Depending on the binding affinity, the chemical shift of a protein resonance might gradually shift
with increasing ligand concentration (slow exchange, tight binding) or gradually disappear and then
reappear at the new position (slow exchange, tight binding). Titration experiments can also be used to
determine binding constants for the ligand target interaction.

5. Optimization: Growing, Merging, and Linking Fragments into Potent Inhibitors

Fragment optimization to obtain a drug-like lead compound is an important step in FBDD. Unless
the optimization of hits from a high throughput screen, which are larger in size and already have better
binding affinities, fragments require extensive optimization through growing, merging and/or linking.
Fragment growing is the easiest method of obtaining molecule with better binding properties by
starting from a single fragment and extending its pattern of interactions with the target molecule using
medicinal chemistry (Figure 4). However, atomic resolution structures obtained by crystallography
or high-field NMR are essential for growing the fragment into a lead compound. One example for
fragment growing is the drug AT7519 by Astex, an inhibitor of cyclin dependent kinase (CDK) [107].
Out of 500 fragments, 30 fragments possessing indazole moiety were identified that bind to the ATP
binding site of CDK. Figure 4 (Growing panel) shows the development steps from the fragment
indazole to the drug AT7519. In this case, fragment growing of the initial ‘indazole” hit 1 led to
a compound 2 with a 60-fold increase in potency. Removal of the phenyl ring of the indazole yielded
a compound with an IC50 of 47 nM with only a small decrease in ligand efficiency (AT7519). AT7519 is
currently in Phase II clinical trials and has shown good indications against a range of human tumor
cell lines.

Two fragments that have some common structural features and bind to overlapping sites on the
target but are otherwise different, can be merged to yield a more potent molecule. Figure 4 (Merging
panel, left) shows the example of the development of an inhibitor of the mycobacterial tuberculosis
cytochrome P450 CYP121 [108]. Two fragments with a similar phenylamine moiety were detected
using X-ray crystallography. These two overlapping fragments were merged to yield an efficient
inhibitor with 15-60-fold improvement of binding affinity comparing to the binding values of the two
separated fragments. A more recent example for merging is also presented in Figure 4 (Merging panel,
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right) where two fragments containing 5 or 6 aza-membered non-aromatic heterocyclic moiety were
systematically merged together using structural information from X-ray crystallography. The merged
fragments yielded small molecule inhibitors which have 100-fold improvement in potency over the
initial fragments [109].

Growing Cyclin Dependent Kinase (CDK)
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Figure 4. Different hit-to-lead optimization strategies (fragment growing, merging and linking
approach). Upper: growing of fragments into inhibitor for cyclin dependent kinase (CDK) [107].
Middle: merging of fragments for inhibitors for cytochrome P450 (CYP121) [108], and Mtb EthR
(Ethionamide boosters) [109]. Bottom: Linking of fragments into inhibitors for Bcl-XL [110] and
-secretase, BACE-1 [111]. KD, dissociation constant; LE, ligand efficiency; Ki, inhibition constant;
ICsp, concentration for 50% inhibition. Panel 1 (Growing) was adopted from Dan Erlanson’s blog

(http:/ / practicalfragments.blogspot.co.il/).
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If two fragments are identified that bind to slightly different sites of the target but are still close in
space, these fragments can be linked, for example, by attaching a “bridge” between them, to obtain
a larger molecule with better binding properties. Linking two fragments is a difficult task, as the
orientation of the two fragments must be maintained exactly. Fesik and coworkers reported one of
the first successful examples of fragment linking using NMR screening against apoptotic protein
Bcl-XL (Figure 4, Linking panel, top) where the initial fragment linking using an alkene as the linker
lead to a significant increase in potency [110]. Using a different linker led to the compound ABT263
with a Kj < 0.5 nM. This drug is currently tested in phase II clinical trials for the treatment of cancer.
Recently, Judd and coworkers reported an example of fragment linking using 'F-NMR against the
aspartic acid protease 3-secretase (BACE-1, Figure 4, Linking panel, bottom), where the initial fragment
linking with an alkyne gave a significant increase in potency [111]. Further elaboration led to the
development of a new molecule which ultimately exhibits a more than 360-fold increase in potency
while maintaining reasonable ligand efficiency. However, in several studies dockings has been utilized
following fragment screening to obtain drug-sized molecules [112,113].

5.1. Using NMR to Guide the Optimization of Fragments

NMR provides not only powerful methods for the screening stage, but can also be utilized for
the optimization of the fragments. Although it can be used at any stage and for any of the described
optimization methods, the use Structure-Activity relationships (SAR) by NMR is especially popular.
SAR by NMR was first described by Shuker et al. in 1996 [8] and is based on NMR-guided optimization
and linking of two fragments that bind to subsites of the target molecule. After identifying a first
fragment through screening, the library is screened again with saturating concentrations of the first
identified fragment to be able to identify fragments that bind near the binding site of the first fragment.
The scientists in the original study mainly used 2D N-HSQC target detected spectra to develop
an inhibitor for the immunosuppressant FK506. Target detected spectra are required to be able to
screen for fragments binding near each other, which would not be possible with 1D spectra. However,
target detected spectra are limited to proteins up to a certain size and require the assignment of the
protein resonances. NMR techniques that do not require the assignment of the target molecule are
often based on the Nuclear Overhauser Effect (NOE). One popular method is NOE matching, in which
the experimental NOE data is compared to NOE data of predicted binding positions of the small
molecule to the target to identify the actual binding position [114]. Another is SAR by ILOEs (Inter
ligand NOEs) in which NOE interactions between the bound fragments are detected directly [115].
ILOEs provide information about the orientation and distance of the fragments to each other, which is
important information for creating a linker. As SAR by NMR enables the development of highly potent
and specific compounds it continues to be one of the most popular and successful NMR techniques
for FBDD [116-120]. There have been other remarkable examples where SAR by NMR was used
as a primary optimization technique to find potent inhibitors such as Bcl-2 [121] and HSP90 [122]
inhibitors. Abbott laboratories developed an inhibitor of Bcl-2 family proteins using NMR-based
screening, parallel synthesis and structure-based design. ABT-737, a small-molecule inhibitor of the
apoptotic proteins Bcl-2, Bcl-XL and Bcl-w, with improved potency were shown to induce regression of
solid tumor. Hajduk and co-workers reported the discovery of novel HSP90 inhibitors using a multiple
fragment based design approaches for the treatment of cancer [122]. They developed two initial hits
which intriguingly linked together using a fragment linking approach, to yield novel inhibitors with
micromolar range activities. Design of linking chemistry is challenging as most fragments are expected
to bind into the same binding cavity. The linking, however, is expected to retain all chemical bonds of
the newly larger molecule with the target without altering or affecting the position, orientation, or the
bonding with the target of the two individual fragments.

Another option for target detected optimization is the use of fluorinated target proteins.
The introduction of selected '°F labels into the protein provides a probe with high sensitivity and
significantly reduces overlap and enables target detection of larger proteins. Although care must be
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taken that the modification of the protein does not alter the structure and function of the protein nor
the binding of the fragment to the binding site, this method offers a promising approach [114,123].

5.2. Virtual Screening and Virtual Filtration

Some important questions persist on the fundamental and the practical aspects of growing/
merging and linking of fragment hits. Two of these aspects regard the utility of molecular docking
for prioritizing fragments, and the specificity of fragment inhibitors towards potent molecules.
The low-throughput nature of FBS as well as the tedious optimization procedure that follows makes
computational docking of drug-sized molecules an attractive tool to prioritize fragments from the
much larger commercially available dataset. Only hundreds to thousands of fragments can be
screened using most fragment screening techniques in a single screening trial, whereas, more than
250,000 fragments are commercially available [124] leaving a large portion of fragment libraries
untested. Since commercially available fragments are too numerous to be screened experimentally,
complementary conventional tools can be advantageous. Computational chemistry tools are used to
explore larger commercially available fragment databases and can significantly improve the efficiency
of the individual steps of FBDD, such as fragment library design, active site categorization, fragment
hit discovery, and hit-to-lead-to-candidate optimization [125]. Moreover, many recent reviews are
available that discerningly and comprehensively compare docking methodologies, scoring functions
and their wide applications in drug discovery [126-128].

There are many databases used for virtual screening of drug-sized molecules (not fragments,
Table 2) some of which are collections of commercially available compounds, such as ZINC [124].
In addition, most pharmaceutical companies typically maintain their own internal database of
previously synthesized compounds. An alternative to the commercial collection is the open NCI
database [129], a set of compounds that have been screened for anticancer activity over the past few
decades and for research purposes subsets of this collection are available upon request for the virtual
screening (http://dtp.nci.nih.gov/branches/dscb/repo_open.html).

Table 2. Virtual Screening libraries.

Libraries Used for Virtual Screening Library Name Number of Compounds Remarks
Total purchasable 35,724,825 Free database of
ZINC Drug like 17,900,742 commercially-available compounds.
http:/ /blaster.docking.org/zinc/ Fragment like 847,909 Compounds available in
Lead like 6,053,287 ready-to-dock, 3D formats.
Paid library
ChemNavigator iResearch Library . . >160 million chemical Commercially accessible screening
. iResearch Library . .
(www.chemnavigator.com) samples compounds from international
chemistry suppliers
National Cancer Institute (NCI) NCI/Developmental

https://dtp.cancer.gov/organization/  Therapeutics program (DTP) >200,000 Compounds available free of charge

dscb/obtaining /default.html

Open Chemicals Repository

MDL Inc. http://www.iop.vast.ac.
vn/theor/conferences/smp/1st/
kaminuma/ChemDraw /acd.html

Available Chemicals
Directory (ACD)

351,600 3D models

Paid library
Compounds available in 3D models

CCDC’s Cambridge Structural
Database http:/ /www.ccdc.cam.ac.

Cambridge Structural

over 900,000 entries

Repository for small-molecule
organic and metal-organic
crystal structures

uk/products/csd/ Database Highly curated 'arld comprehenglve
resource of unique database with
accurate 3D structures
Pubchem substance 234,688,140 Threfz databa'ses. of PubCher’n are
PubChem linked within the NCBI's
http:/ /pubchem.ncbi.nlm.nih.gov/ Pubchem compound 93,553,459 Provides a fast-chemical structure
p: : : T PubChem BioAssay 1,252,796

similarity search tool

A report by Peach et al. [130] describes a combined approach of docking with pharmacophore
filtering for improved virtual screening. The relatively simple method for reducing the number
of false positives was developed in order to filter out the ligands with high rank order by virtual
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screening. In fact, this technique uses a docking program for pose generation only, irrespective of
scoring functions, followed by receptor-based pharmacophore filtering.

6. Successful Attempts of Molecules Derived from FBDD

In the past decade, FBS has become a successful approach for developing new inhibitors against
complex targets. The anti-melanoma drug vemurafenib, a selective inhibitor of B-Raf kinase was
the first FDA-approved drug discovered by employing high concentration screening (HCS) and FBS
using X-ray crystallography [131]. Thereafter, Bcl-2 inhibitor venetoclax has been approved for the
treatment of chronic lymphocytic leukemia [132], originated from NMR screening [110]. Recently,
LEEOQ11 (also known as Ribociclib or Kisqali), a selective cyclin dependent kinase inhibitor (CDK4/6)
that was developed by the Novartis Institutes for BioMedical Research (NIBR) in collaboration with
Astex Pharmaceuticals has been approved by the FDA. FBDD led to the development of LEE011 using
structure-guided drug discovery and the crystal structure of the cancer target CDK4 [133]. It received
the FDA approval in combination with an aromatase inhibitor letrozole [51] as a first-line treatment in
post-menopausal women with hormone receptor positive, human epidermal growth factor receptor-2
negative (HR+/HER2—) advanced (metastatic) breast cancer.

Concomitantly, the low throughput nature of fragment testing makes computational methods
such as docking, a suitable option to prioritize fragments from the large commercially available dataset.
Certainly, numerous groups have used docking to prioritize fragments for testing [112,113]. Recently,
Spiliotopoulos and co-workers presented high throughput docking of fragment molecules to the
N-terminal bromodomain of the Bromodomain containing protein 4 (BRD4) and the cAMP-response
element-binding protein (CREBBP) bromodomain using anchor-based library tailoring (ALTA,
mentioned in Section 2) [134]. Some examples using a combined approach of FBDD with virtual
screening which have led to the development of potent inhibitors based on optimized fragments are
summarized in Tables 3 and 4.
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Table 3. Fragment derived compounds in clinical stage of development representing method of detection.

Drug & Ref. Company Target Status Method of Detection
LEEO11 (ribociclib) [51] Novartis/ Astex Cyclic dependent kinase CDK4/6 (Breast cancer) ~ Approved X-ray Crystallography
Vemurafenib [131] Plexxikon B-Raf-V600E (metastatic melanoma) Approved HCS/X-ray
Venetoclax [50] AbbVie/Genentech Selective Bel-2 (r'eca1c1trant‘chron1c Approved Target-detected NMR
lymphocytic leukaemia)
PLX3397 [135] Plexxikon FMS, KIT, and FLT-3-ITD (Cancer) Phaselll ~ Functional assays/X-ray Crystallography
Verubecestat (MK-8931) [136,137] Merck BACE1 (Alzheimer’s disease) Phaselll NMR/Crystallography
AZD3293 (lanabecestat) [138] AstraZeneca/Astex/Lilly BACEL1 (Alzheimer’s disease) Phaselll ~ X-ray crystallography/NMR/ calorimetry
AT7519 [139] Astex CDK1,2,4,5,9 (Multiple myeloma) Phasell X-ray Crystallography
AT9283 [140] Astex Aurora, JAK2 (Multiple myeloma) Phasell X-ray Crystallography
AT13387 [141] Astex HSP90 (gastrointestinal stromal tumours) Phasell Ligand-detected NMR/Crystallography
NVP-AUY922 [142] Vernalis HSP90 (cancer) Phase II Ligand-observed NMR screening
AZD5363 [143] AstraZeneca/Astex/CR-UK AKT Serine threonine protein kinase (Cancer) Phasell X-ray Crystallography
Erdafitinib (JNJ-42756493) [144] ] & J/ Astex FGFR1-4 (Cancer) Phasell X-ray Crystallography
Indeglitazar [145] Plexxikon pan-PPAR agonist (Type II Diabetes melitus) Phasell HCS/X-ray Crystallography
LY2886721 [146] Lilly BACEL1 (Alzheimer’s disease) Phasell Co-crystallization
LY517717 [147] Lilly /Protherics FXa (thrombotic) Phasell X-ray Crystallography
Navitoclax (ABT-263) [148] Abbott Bcl-2/Bcl-xL (Cancer) Phasell NMR
NVP-AUY922 [149] Vernalis/Novartis HSP90 (Breast cancer) Phasell X-ray Crystallography
Onalespib (AT13387) [141] Astex HSP90 (Cancer) Phasell NMR/X-ray Crystallography
AT9283 [140] Astex Aurora (Cancer) Phasell X-ray Crystallography
ABLO001 [150] Novartis BCR-ABL 1 (Chronic myeloid leukaemia) Phasel X-ray Crystallography
ABT-518 [151] Abbott MMP-2 & 9 (Cancer) Phasel SAR by NMR/ LCMS/Mass spectrometry
DG-051 [152] deCODE LTA4H (cardiovascular and inflammatory) Phasel X-ray Crystallography
IC-776 [153] Lilly /ICOS LFA-1 (autoimmune diseases) Phasel NMR
PLX-4032 [131] Plexxikon B-RafV600E (metastatic melanoma) Phasel HCS/X-ray
PLX5568 [154] Plexxikon Raf kinase (Polycystic Kidney Disease) Phasel HCS/X-ray
SGX-523 [155] SGX Met tyrosine kinase (Tumour) Phasel X-ray/HCS
SNS-314 [156] Sunesis Aurora kinase (Cancer) Phasel Mass Spectrometry

Note: Some of the information of the Table 3 was adopted from Dan Erlanson’s blog (http:/ /practicalfragments.blogspot.co.il/).
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Entry & Ref. Target Methods Library Fragment Lead Lead IC5p (nM)
ChemBridge 0 o) plml, 10,000
* . . . 4 7
10157] Plim* I, II and IV of Pla§mod1um NMR containing 97§ Astex N/\Lo> N/\LO)‘Ph plmlI, 3200
parasites (malaria) STD Ro3 compliant PN PY
compounds N~ NH, R N~ "NH, plmlIII, 130
9 F
@ ik e
2[114] BACE1 * 19F.NMR SPR 19F fragment library o OO DS 0.8
0, O &S u
C|—<:\>—NH C F N NH,
Global Fragment \0( | o’\§p
3[158] IRAK4 * autoimmune diseases .STD N.MR and Initiative library HAN ° i 55
biochemical assays 2 HaN J °
2592 fragment o )

* Plm-plasmepsin, BACE1-3-secretase, IRAK4- Interleukin-1 Receptor Associated Kinase 4.
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7. Recent Improvements: Fragment Based Virtual Screening (FBVS)

The basis for FBS is that binding of functional chemical groups to the target can build up
a drug-like molecule [159,160]. T7 primase, an essential protein domain encoded by the bacteriophage
T7 gene 4-helicase-primase [161], was chosen as a drug target to select small-molecule inhibitors of DNA
replication using FBS. T7 DNA primase is a slow enzyme displaying a rate constant of ~4 s~ [162].
The weak catalytic activity of DNA primase renders a formidable challenge of adapting a functional
assay to HTS, and therefore was an ideal candidate for FBS. T7 primase is also an excellent model for
bacterial primases [161] that serve as novel targets for a new class of antibiotics [163-165]. We have
combined FBS and virtual screening (FBVS, Figure 5) to select small molecules that target the bacterial
primase. Specifically, by using the Maybridge Ro3 fragment library, composed of 1000 fragments,
we have prepared 100 NMR samples containing a mix of 10 fragments and 50 uM T7 primase each.
The 1D Saturation Transfer Difference (STD) spectra of these samples were measured and fragments
showing saturation transfer were identified by a decrease in the peak intensity at specific chemical
shift values. The hits were ranked based on the number of peaks affected and by the percentage of
intensity change. The indole and methyl quinoline-6-carboxylate fragments were the highest-ranking
ones. We then shortened the lengthy optimization process by searching the ZINC database [166],
which contains the structures of tens of millions of compounds. In this virtual filtration step, drug-like
molecules containing fragment molecules found at first by NMR-FBS were selected. This search
yielded a few hundred to a few thousand molecules per fragment-molecule. The computer program
Autodock [167] was then used to perform in-silico docking of those compounds to the active site
of the T7 primase by using its crystal structure [168] (PDB ID 1nui). The drug-like molecules were
ranked based on their relative binding energies and the top 18 small molecules from this list were
purchased. Five of the drug-like molecules were found to inhibit T7 DNA replisome through specific
inhibition of DNA primase. The binding of the small molecules identified using FBVS was validated
using ['°N, 'H] TROSY HSQC spectra of 1°N, D labeled T7 primase in the absence and upon binding
of selected small molecules and a mechanism of binding was proposed [161].

(a) (b)

P Protein Overexpression A
Fragment Library l and Purification i i i
NMR Screening -~

Hit Optimization I ij ,‘ A
NMR Virtual Screening o AN
Medicinal Chemistry | Based on Fragment Hits | |

i and

Structural Assays YT
A A \'V“,,l“w'»‘,\ M
Further 0. topm)

Figure 5. NMR Fragment-based virtual screening. (a) Schematic representation of FBVS. The approach

combines NMR-FBS with optimization steps using virtual screening; (b) Using NMR (STD) and
a fragment library, fragment molecules that bind a protein target are identified. Every experiment
involves mixing of 10 fragment molecules and T7 primase (off/on resonance indicate spectra of
fragments mixture). The difference between the off to the on-resonance spectra is the STD. The fragment
molecules represent scaffolds for the next step of virtual filtration, i.e., using virtual filter to select larger
compounds containing the fragment molecules from a database of multimillion drug-like molecules;
(c) Thousands of drug-like molecules for each scaffold are then, using docking software, inserted into
a targeted binding site using the atomic resolution structure of the target macromolecule. Hits are
ranked on the basis of the binding energy. Ten to twenty candidate compounds are then selected and
tested for their ability to inhibit the biochemical target.
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8. Summary and Future Directions

In the last few years fragment based screening has becoming a main stream approach in drug
discovery, and has thus far yielded ~30 drug in various stages in the clinical pipeline.

The combination of FBS with computational techniques such as virtual screening and docking
allows to benefit from these different approaches. Each contributes specialized advantages and
together bring genuine complementation that can build a better inhibitor. FBVS is one example for
utilizing NMR-fragment based screening with virtual screening to gain a high success rate in a rapid,
inexpensive manner, without the need for intervention of medicinal chemistry in the early stage to
grow the fragment molecules into larger, more potent drug-sized inhibitors. The proof-of-concept
study of FBVS on T7 primase serves as a basis for the development of lead molecules against other
drug targets. Target selection should not be limited to proteins but can direct the search of fragments
toward other macromolecules such as nucleic-acids, depends on the NMR method used for screening
of the fragment molecules in the first step of FBVS. The modular arrangement of FBVS not only allows
to change the first step of fragment screening but also to modify the later steps of virtual filtration and
docking based on available improved resources.

We envision that in the future, FBS-NMR will become more popular in drug discovery and
will yield potent inhibitors for popular drug targets including G-protein coupled receptors, nuclear
receptors, ion channels or enzymes (e.g., kinases, ATPase, proteases, deacetylases, etc.). With the
advance of computer aided-techniques in drug design and enlargement of small molecule libraries,
the modular nature of FBVS will be updated with any technological advancement. Specifically,
we believe that analysis of FBS can become automatic to yield novel lead molecules for drug target even
those that were traditionally considered as “non-druggable” or challenging such as protein-protein
interactions. The use in NMR as a tool for screening but also for optimization and validation can
provide detailed plan for SAR cycles that will allow to add onto the pre-existing small molecule
inhibitors improvements to design larger spectrum medicines or alternatively inhibitors with larger
selectivity. The ability of NMR to provide detailed knowledge of the binding site and mode can then be
used to build up a better drug-like molecule on the basis of the fragment hit. The use of NMR technique
for screening is not limited to size of the macromolecular target, however, in the optimization and
validation steps (after fragment molecules were found in the initial screening) protein target size is
limited up to 40 kDa and in turn requires the assignment of backbone and side-chain resonances to
elucidate the complete binding information of the small molecule. For example, NMR was used to
identify novel allosteric ‘hot spots’ on traditionally targeted proteins such as those present in protein
kinases and intrinsically disordered proteins [54].

Large molecular weight targets comprising multi-subunit protein complexes pose a major
limitation mainly for NMR spectroscopy but also to X-ray spectroscopy. In the hit-to-lead optimization
phase structural data is the rate limiting step to monitor rationality for compound expansion and
introduce new chemical alterations. Prior information of the target structure doesn’t mean that small
molecule hit binding will be easily validated structurally. In order to use NMR as a complementary
technique to provide means for structural information at atomic resolution for these types of targets,
NMR active isotope labelling and multidimensional experiments is necessary. Size remains the main
limitation, however multiple labelling schemes and experiments are readily available, making it now
possible to handle assemblies as big as the 1 mega Dalton proteasome complex [169,170].
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