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Integration of multi-omics data revealed
the orphan CpG islands and enhancer-dominated
cis-regulatory network in glioma

Jiawei Yao,1,6 Penglei Yao,1,6 Yang Li,1 Ke He,1 Xinqi Ma,1 Qingsong Yang,1 Junming Jia,1 Zeren Chen,1 Shan Yu,2

Shuqing Gu,3 Kunliang Chen,4 Yan Zhao,1 Weihua Li,5,* Guangzhi Wang,1,* and Mian Guo1,7,*
SUMMARY

The complex transcriptional regulatory network leads to the poor prognosis of glioma. The role of orphan
CpG islands (oCGIs) in the transcriptional regulatory network has been overlooked. We conducted a
comprehensive exploration of the cis-regulatory roles of oCGIs and enhancers by integrating multi-omics
data. Direct regulation of target genes by oCGIs or enhancers is of great importance in the cis-regulatory
network. Furthermore, based on single-cell multi-omics data, we found that the highly activated cis-reg-
ulatory network in cluster 2 (C2) sustains the high proliferative potential of glioma cells. The upregulation
of oCGIs and enhancers related genes in C2 results in glioma patients exhibiting resistance to radio-
therapy and chemotherapy. These findings were further validated through glioma cell line related exper-
iments. Our study offers insight into the pathogenesis of glioma and provides a strategy to treat this chal-
lenging disease.

INTRODUCTION

Glioma is themost prevalent primary tumor of the brain and spinal cord, with glioblastomamultiforme (GBM) being themost frequent primary

malignant tumor of the brain and central nervous system. It accounts for 14.2% of all tumors and 50.9% of malignant tumors. Despite signif-

icant efforts from both basic and clinical researchers, the five-year relative survival rate of glioma patients remains only 35.7%.1 The underlying

cause of this poor prognosis is the intricate regulatory network of glioma, endowing it with the capacity to adapt to various hostile environ-

ments. Elucidating the role of a single target is considerably constrained in this scenario.2,3 With the advancement of sequencing technolo-

gies, high-resolution insights have gradually emerged into the development of glioma, paving theway for understanding transcriptional regu-

lation in glioma.4,5

Epigenetic modifications, as a regulatory layer, play a key role in both the upstream and downstream components of the transcriptional

network.6,7 Methylation is one of the most prevalent mechanisms regulating transcription.8 CpG islands (CGIs) are found in various DNA el-

ements involved in the transcriptional regulatory network, with more than half of promoter regions hosting clustered CGIs.9,10 Furthermore,

the presence of CGIs significantly enhances the transcription-activating capacity of enhancers.11 Enhancers, as distal cis-regulatory elements,

are different from proximal regulatory elements such as promoters. They rely on the 3D structure of chromosomes to achieve long-range

regulation, thereby playing a pivotal role in the intricate regulatory network of glioma.12,13 Compared to the high density of CGIs in the pro-

moter regions, CGIs are relatively sparse within enhancers. Nevertheless, the function of both is markedly regulated by themethylation levels

within their respective CGIs. Increased methylation reduces chromatin accessibility, consequently affecting the binding of enhancers to tran-

scription factors (TFs).14,15 Aberrant epigenetic modifications of CGIs result in transcriptional dysregulation. Abnormal CGIs methylation is

closely associated with various diseases, including glioma.16,17 Excluding CGIs located in the classical regulatory regions, the genome still

harbors nearly half of orphan CpG islands (oCGIs).18 These isolated oCGIs have long been overlooked, and few studies indicated that

some oCGIs play an indispensable role in the positive regulatory effect of enhancers located within the same topologically associating do-

mains (TADs).19 Not all oCGIs necessarily serve as bridges for enhancer function, and the independent regulatory potential of oCGIs remains

uncertain. These aspects remain unknown in the intricate regulatory network of glioma.

In this study, we found that oCGIs act as atypical enhancers, exerting cis-regulatory effects and collaboratively regulating target genes in

coordination with enhancers, establishing a complex cis-transcriptional regulatory network in glioma. Furthermore, single-cell multi-omics
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data revealed that the cis-regulatory role of oCGIs, in conjunction with enhancers, is crucial for maintaining the stemness of glioma cells and is

closely associated with various biological processes, such as necrosis and invasion. Additionally, it plays a crucial role in treatment resistance,

leading to an adverse prognosis for patients. The cis-regulatory role of oCGIs was validated in glioma cell lines.We comprehensively explored

potential mechanisms underlying the interaction between oCGIs and enhancers, providing a perspective for unraveling the intricate regula-

tory network in glioma.
RESULTS
Methylation characteristics of oCGIs and enhancers in glioma

We initially identifiedCGIs in different DNA elements. Consistent with previous findings, themajority of CGIs (78.99%) overlapped with genes

or promoter regions, but approximately 20% of oCGIs were dispersed throughout the genome (Figure S1A). These dispersed oCGIs have

long been ignored.We performed consensus clustering based on themethylation of oCGIs and enhancers to illuminate themethylation char-

acteristics of oCGIs and classical enhancers. We found that glioma can be broadly classified into two subtypes under various clustering sce-

narios (Figures S2 and S3). Furthermore, the clustering results based on oCGIs or enhancers divided the glioma samples into two major sub-

types, and the twomajor subtypes obtained from clustering based on oCGIs correspond to the twomajor subtypes from clustering based on

enhancers (Figure S1B). Cluster 1 (C1) was predominantly composed of low-grade glioma (LGG), whereas cluster 2 (C2) primarily included

GBM (Figure S1C). Additionally, the isocitrate dehydrogenase (IDH) mutant samples are almost entirely distributed in C1 (Figure S1C;

Table S1). We utilized the clustering results based on oCGIs to further explore the role of oCGIs.
Identifying the cis-regulatory network in which oCGIs or enhancers play a dominant role

To elucidate the regulatory patterns amongoCGIs, enhancers, and genes, we initially screened combinations with potential regulatory effects

based on interactions between oCGI-gene/enhancer-gene pairs in the same TAD. Furthermore, we proposed 9 regulatory models of oCGI-

enhancer-gene triplets (Figure 1A). These 9 models elucidated all potential regulatory possibilities, including 4 models where oCGI or

enhancer individually played a predominant role (direct, cased, co-responsive, and composite), and 1 model where they were co-dominated

(co-dominated). For instance, in the oCGI-dominated directmodel, themethylation level of oCGI affected its binding capacity to TFs, thereby

affecting the binding of TFs to target gene promoter regions and regulating transcription.14,15 Subsequently, based on Bayesian networks, we

determined themost suitablemodel for each oCGI-enhancer-gene triplet. In addition, models were selected based on themethylation levels

of oCGIs and enhancers in conjunction with gene expression. In the end, only 7 models were validated in our dataset (oCGI_Direct,

Enhancer_Direct, oCGI_responsive, Enhancer_responsive, oCGI_Cased, Enhancer_Cased, and Coordinate). In both glioma subtypes, the

oCGI direct and enhancer direct model predominated, indicating that despite the presence of more complex indirect regulation, oCGIs

and enhancers played a dominant role in the direct regulation of target genes. Moreover, among all triplets, the number of triplets with up-

regulated target genes in C2 is among the highest (Figures 1B and 1C). Furthermore, 1,114 upregulated genes were associated with positive

regulation of the tumor (positive regulation of cytokine production and cell migration) (Figure S1D).

oCGIs exhibited similar regulatory characteristics to classical enhancers. Both oCGIs and enhancers can regulate more than one target

gene, but the predominant mode of regulation is one-to-one. Secondly, the regulatory effect of oCGIs or enhancers on target genes within

the same TAD is not often limited to adjacent loci. On the contrary, non-adjacent regulation models accounted for the majority of the model

count. In a significant number of models, oCGIs or enhancers were separated from their target genes by more than 10 genes. Thirdly, the

long-range regulatory characteristics of enhancers were also evident in oCGIs. Similar to enhancers, the regulatory distance of oCGIs typically

exceeded 500 kb and even surpassed 1,000 kb in some cases. These characteristics were observed in both glioma subtypes (Figures 2A

and 2B).
States of oCGIs and enhancers in the cis-regulatory models

Different modes of histonemodifications by enhancers serve as markers of their activity. H3K27ac is a marker of active enhancers with positive

transcriptional regulatory activity, whereas H3K27me3 is a marker of silenced enhancers. Co-expression of H3K4me1 and H3K27ac indicates

enhancers withmoderate activity. Promoters also have similar activation and silencingmarkers. H3K4me3 is significantly enriched in promoter

regions as an additional marker.20,21 Due to the lack of chromatinmodification data corresponding to TheCancer GenomeAtlas (TCGA) sam-

ples, we used external samples to determine the mode of chromatin modification of the two glioma subtypes. We first determined to which

subtype the external samples belonged. We initially identified the subtypes of 24 glioma samples (GSE121720, GSE121721, GSE189859, and

GSE189860) based on distance metrics (Figure S1E). Next, we constructed classifiers for TCGA glioma samples based on oCGI methylation

features and gene RNA expression features using 11 machine-learning algorithms. Except for featureless, log_reg, and debug algorithms,

other algorithms exhibited excellent discriminatory capabilities for glioma samples in TCGA (Figure S4A). We trained 10 models for each

of the eight algorithms based on different resampling results. These models were then applied to the test set samples. Model performance

was evaluated using classification error rate and receiver operating characteristic curve (ROC), with cv_glmnet showing excellent performance

across all 10 models on both oCGI methylation and RNA expression data. It correctly distinguished the subtypes of all samples when utilizing

both types of data (Figures S4A, S4B, and S5).

Next, we analyzed the distribution of different histone modifications across the genome. Both subtypes exhibited similar distribution pat-

terns, with peaks of different histonemodifications significantly enriched in gene-related regions (Figure S4C). Furthermore, we characterized
2 iScience 27, 110946, October 18, 2024



Figure 1. Epigenetic regulatory models in glioma

(A) Pattern diagrams for 9 oCGI- and enhancer-dominated cis-regulatory models.

(B) Composition of epigenetic regulatory models for the two glioma subtypes.

(C) Methylation and gene expression levels of components of the epigenetic regulatory model in the two glioma subtypes. In the bar charts in the up and right

corner, red represents cluster 1, and blue represents cluster 2. (C1_UP indicates genes upregulated in cluster 1 compared to cluster 2, and C2_UP indicates the

opposite).
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the histonemodification features in the 3,000 kb regions around all transcription start site (TSS), oCGIs, and enhancers in the two subtypes. C2

exhibited lower methylation levels, higher chromatin accessibility, and higher levels of active promoter and enhancer featuremarkers, such as

H3K27ac peaks, across all regions. All oCGIs displayed histonemodification features similar to enhancers (Figure S6A). These findings support

their role as ‘‘atypical enhancers’’ with similar functions. Consistent with the dominance of triplets with upregulated target genes in C2, C2

exhibited higher overall transcriptional regulatory activity. Therefore, we focused on genes activated in C2 and repressed in C1 in the

follow-up analyses. These genes displayed similar histone modification features between C1 and C2 (Figures S6B and S6C), confirming

our previous findings. Finally, combining the regulatory modes obtained from the triplet analysis, the predominant model characteristics
iScience 27, 110946, October 18, 2024 3



Figure 2. Regulatory characteristics of oCGIs and enhancers

(A and B) The number, locations, and distances of target genes were regulated by oCGIs and enhancers in the two glioma subtypes.
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in C1 were oCGIs and enhancers with lower activity and higher methylation levels, suppressing gene transcription. In contrast, the dominant

regulatory mode in C2 was characterized by active oCGIs and enhancers with lowermethylation levels, enabling positive transcriptional regu-

lation (Figures S4D and S4E).
The cis-network in which oCGIs or enhancers play a dominant role in glioma cells

Although we have constructed a cis-regulatory network based on glioma subtypes, the specific manner in which these regulatory modes

function and whether they directly impact tumor cell life cycle remain elusive. Thus, we investigated the regulatory models in which

oCGIs or enhancers play a dominant role in tumor cells utilizing single-cell RNA sequencing (scRNA-seq). Our initial approach involved

ensuring quality control and cell annotation for scRNA-seq data from 8 samples and filtering cells based on copy number variations,

yielding 21,370 tumor cells (Figures 3B and S7A–S7G). Subsequently, we identified subtypes for these 8 samples using a previously

developed RNA classifier (Figure 3A) and only retained the tumor cells for subsequent analysis. It should be noted that significant het-

erogeneity existed among tumor cells from different subtypes (Figures 3E and S7G). Although limited coverage of methylation sites in

single-cell reduced representation bisulfite sequencing (scRRBS-seq) prevented identification of regulatory patterns for some triplets,

consistent with previous results, oCGI_direct and enhancer_direct modes still primarily regulated both subtypes (Figure 3C). To

further characterize the heterogeneity between tumor cells from the two subtypes, we assessed the proliferative potential of tumor

cells. Tumor cells in C2 exhibited a significantly higher cytotrace score and a lower degree of differentiation (Figure 3D) (mean cytotrace
4 iScience 27, 110946, October 18, 2024



Figure 3. The cis-regulatory networks in which oCGIs or enhancers play a dominant role in glioma cells

(A) Identification of glioma subtypes using the oCGI RNA classifier with 10 models on 8 glioma samples.

(B) Uniform Manifold Approximation and Projection (UMAP) plot depicting the cell types of 8 glioma samples form Verhaak cohort.

(C) Composition of the cis-regulatory models in which oCGIs or enhancers play a dominant role in glioma cells (top: cluster 1; bottom: cluster 2).

(D) Cytotrace scores in glioma cells, where 0 indicates higher differentiation, and 1 indicates lower differentiation.

(E) (Left) Differentiation trajectory of tumor cells, with 1 representing the starting point of differentiation. (Right) The connection between cluster 1 and cluster 2

glioma cells with the differentiation trajectory.

(F) Changes in the expression of target genes of cis-regulatory models in two glioma subtypes along the differentiation trajectory (top: cluster 1; bottom:

cluster 2).

(G) Cell communication in the tumor microenvironment of the two glioma subtypes. Top: quantity of ligand-receptor pairs between cell types in cluster 1

compared with cluster 2. Bottom: strength of the ligand-receptor pairs between cell types in cluster 1 compared with cluster 2.
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score: C1: 0.146; C2: 0.637). In line with the results of pseudotime analysis, the tumor cells from C2 primarily aggregated at the initiation

of the differentiation trajectory. As cells progressed along the differentiation trajectory, the composition of tumor cells transitioned from

C2 cells to C1. Additionally, the upregulated genes in C2 exhibited a significant negative correlation with differentiation time

(Figures 3E, 3F, S8A, and S8B; Table S2).
iScience 27, 110946, October 18, 2024 5
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The mechanism by which the cis-regulatory network acts in glioma cells

We initially focused on the communication between various components in the glioma microenvironment to elucidate the precise mecha-

nisms by which the cis-regulatory network is involved in glioma cells. Therefore, we needed a more detailed identification of tumor cells.

All non-tumor cells were classified into oligodendrocytes, microglia, macrophages, T cells, endothelial cells, and pericytes cells

(Figures S8C and S8D). The results of cell communication in the tumor microenvironment showed that interactions between tumor

cells and other cells in the tumor microenvironment were stronger in C2 than in C1 (Figure 3G). Many signals favoring tumor cells were signif-

icantly activated in C2, such as integrin-related signals (COL9A3 � (ITGA2+ITGB1), JAM3 � (ITGAM+ITGB2), COL6A1 � (ITGA1+ITGB1)),

immune suppression signals (CD99 � PILRA), etc. (Figure S8E; Table S3). Furthermore, we explored TFs binding to oCGIs or enhancers.

Initially, we scanned the DNA sequences of oCGIs or enhancers, preliminarily selecting TF motifs with binding potential. Subsequently,

we identified the upregulated TFs in the two subtypes of tumor cells (Figure S8F; Table S4). By combining the two strategies mentioned pre-

viously, we identified TFs potentially regulating different triplets in different subtypes of glioma cells. Based on univariate cox regression and

co-expression analysis between oCGIs/enhancers-related TFs and their target genes, we identified key TFs related to the survival of glioma

patients (Figure S9A and S9B).
The effects of the cis-network regulatory in different niches of gliomas

Using spatial transcriptomics sequencing (stRNA-seq), we explored the regulatory roles of oCGIs and enhancers in different niches. We first

identified the subtypes of glioma (Figure S10A). The necrotic and infiltrating niches of the two subtypes of glioma were analyzed and

confirmed by pathologists. The necrotic niche surrounding both subtypes exhibited evident hypoxia and differentiation features. Addition-

ally, genes regulated by oCGIs and enhancers in both clusters were significantly downregulated in this region. Differences in the necrotic

niche between the two subtypes were reflected in the copy number variation (CNV) of spots in C2, gradually increasing from the necrotic

center toward the outer layer. C1 showed the opposite trend (Figures 4A–4D, S11A, and S11B). To elucidate the reasons leading to this dif-

ference, we integrated the 8 scRNA-seq datasets from the aforementioned studies with the respective stRNA-seq dataset for each subtype.

Glioma cells mainly co-localized with microglia and endothelial cells, showing stronger colocalization with microglia in regions closer to the

necrotic center (Figure S10B and S10C). The necrotic niche in C2 contained a higher proportion of tumor cells, increasing its CNV (Fig-

ure S10D). Gene Ontology (GO) analysis showed that MHC-related functions were significantly activated near the necrotic center (layer 1),

while membrane protein activity and extracellular matrix activation were more prominent in the outer layer (layer 2), with both subtypes ex-

hibiting similar results (Figure S10E). Cell communication in the necrotic niche revealed a significant overactivity of various chemokines and

other immune-related receptor-ligand pairs in C1 (CCL3L3-ACKR2, JAM2-JAM2, CCL2-CCR10, etc.). Similarly, various signals promoting tu-

mor cell activation were more pronounced in C2 (S100A4-EGFR, SPP1-ITGB1, SPP1-ITGAV, etc.) (Figures 4E and S10F; Table S5).

In the infiltrating niche, the CNV, hypoxia, cytotrace score, and cis score exhibited similar distributions (cis score: the mean expression

levels of oCGI/enhancer-related genes upregulated in C1/C2) (Figures 4F, 4G, S11C, and S11D). In the tumor component of the infiltrating

niche, tumor cells were predominantly co-localized with oligodendrocytes and endothelial cells, and this distribution pattern was consistent

between the two subtypes (Figures S12A and S12B). The tumor region comprised more tumor cells and fewer immune cells compared with

the infiltrating region (Figure S12C). The tumor region in C1 activated additional immune-related molecular functions compared with C2

(Figures S12D and S12E). The communication between glioma cells and components of the tumor microenvironment revealed abundant tu-

mor-promoting signals in the infiltrating niches of both subtypes. Immune-related signals were more abundant in C1 compared with C2

(JAM2 � JAM2, CCL3L3 � CCR1, CCL2 � CCR10) (Figures 4H and S12F; Table S6). The gene POLR2L, regulated by oCGI Chr11:728884-

729383 in our study, played a significant role in cell communication in C2 glioma cells, although it was not the most significantly acti-

vated gene.
The upregulation of oCGI/enhancer-related genes in C2 is associated with treatment resistance in gliomas

To elucidate the impact of the cis-regulatory role of oCGI/enhancers on the clinical treatment of glioma patients, we stratified glioma patients

from TCGA into high and low groups based on the mean expression levels of 1,055 oCGI/enhancer-related genes upregulated in C2 (C2 cis

score). The prognosis of patients with higher C2 cis scores was significantly worse under different treatment conditions (untreated, chemo-

therapy, radiotherapy, and chemotherapy + radiotherapy) (Figure 5A). This pattern of treatment resistance was further validated in the Chi-

nese GliomaGenome Atlas (CGGA) cohorts, including the 325 cohort and 693 cohort (Figure 5B). Clustering results based on drug sensitivity

of tumor cells from two subtypes, as shownby beyondcell, revealed significant heterogeneity between the two subtypes (Figure 5C). C2 tumor

cells showed higher sensitivity to ingenol mebutate, while C1 tumor cells were more sensitive to marinopyrrole A (Figures 5D–5F).
Validation of the cis-regulatory role of oCGIs

As the POLR2L gene plays a crucial role in cell communication between tumor cells and other components of the tumor microenvironment, we

selected oCGI (Chr11:728884-729383) and its target, POLR2L gene, for validation. Additionally, we identified TF E2F7 as a potential regulatory

target based on prognosis analysis and co-expression analysis from the aforementioned studies. First, we identified the subtypes of 49 glioma

cell lines based on theDNAmethylation data (Figure 6A). Two cell lines from each subtype were chosen for subsequent validation (C1: A172 and

SF126; C2: LN229 and U251). The results of chromatin immunoprecipitation (ChIP) combined with qPCR indicated that E2F7 was significantly

enriched in the region of oCGI Chr11:728884-729383 in LN229 and U251 cell lines. Additionally, this enrichment disappeared upon the knockout
6 iScience 27, 110946, October 18, 2024



Figure 4. Spatial transcriptomic features of glioma oCGIs-based subtypes

(A and C) CNV levels in the necrotic niche of UKF313_T (cluster 2) and DMG5 (cluster 1).

(B andD) Expression of hypoxia, CNV, cytotrace score, and cis score in the necrotic niche of UKF313_T (cluster 2) andDMG5 (cluster 1) based on the distance from

the necrotic center.

(E) Cell communication in the necrotic niche of cluster 1 and cluster 2.

(F and G) The CNV levels in the infiltrating niche of UKF269_T (cluster 2) and DMG4 (cluster 1).

(H) Cell communication in the infiltrating niche of cluster 1 and cluster 2.
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of oCGI Chr11:728884-729383 (the control group is without the knockout of Chr1:728884-729383) (Figure 6B). oCGI Chr11:728884-729383

knockout in LN229 and U251 cell lines markedly decreased the expression of POLR2L gene and glioma stem cell-related genes, CD133 and

SOX2. However, such a regulatory relationship was not observed in A172 and SF126 cell lines (Figures 6C and 6D). The effect of oCGI

Chr11:728884-729383 on cell proliferation was validated in different glioma subtypes through MTT assay and immunofluorescence assay. After

oCGI Chr11:728884-729383 knockout, LN229 and U251 cell viability significantly decreased, and the Ki67 fluorescence signal became noticeably

weaker comparedwith the control group (Figures 6E, 6G, and 6H). The effect of oCGIChr11:728884-729383 knockout on the viability of A172 and
iScience 27, 110946, October 18, 2024 7



Figure 5. oCGIs/Enhancer-related genes contribute to treatment resistance in glioma patients

(A and B) Higher C2 cis scores result in shorter overall survival in patients, based on TCGA and CGGA datasets.

(C) UMAP plot illustrating the bcscore of glioma cells for two subtypes.

(D) Sensitivity of the two subtypes to specific drugs. Data are presented as means or medians of cluster 2 cells.

(E and F) UMAP plots of bcscores for ingenol mebutate and marinopyrrole A in the two subtypes (top) and the distribution of bcscores in tumor cells (bottom).
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SF126 cells was not significant (Figure 6F). To provide better guidance for clinical treatment, we filtered drugs effective for each subtype of gli-

oma. Combining drug sensitivity data from 49 glioma cell lines, we compared the area under the curve (AUC) values for the two glioma subtypes.

Apart from JNK inhibitor VIII and XAV939, most anti-tumor drugs were more effective on cell lines from C1 (Figure 6I).
DISCUSSION

Recent studies have increasingly investigated the regulatory effect of classic enhancers on critical targets in cancer. It is now widely acknowl-

edged that enhancers accelerate oncogenesis.22 As such, many researchers paid attention to the pairing of classic enhancers with critical no-

des in cancer. However, for highly heterogeneous tumors like glioma, the complexity of the transcriptional regulatory network provides the
8 iScience 27, 110946, October 18, 2024



Figure 6. Validation of the cis-regulatory effects in which oCGIs play a dominant role

(A) Application of the oCGI DNA methylation classifier to 49 glioma cell lines.

(B) ChIP qPCR showing significant enrichment of E2F7 in the oCGI Chr11:728884-729383 region in cluster 2 cell lines (LN229 and U251). This enrichment

disappeared after oCGI knockout. No such enrichment was observed in cluster 1 cell lines (A172 and SF126). Data are presented as means G SEM of three

independent experiments.

(C) In LN229 and U251 cell lines, knockout of oCGI Chr11:728884-729383 decreased the expression of POLR2L, CD133, and SOX2 compared with the control

group. Data are presented as means G SEM of three independent experiments.

(D) In A172 and SF126 cell lines, knockout of oCGI Chr11:728884-729383 did not significantly affect the expression of POLR2L, CD133, and SOX2 compared with

the control group. Data are presented as means G SEM of three independent experiments.

(E) In LN229 and U251 cell lines, knockout of oCGI Chr11:728884-729383 decreased cell viability compared with the control group. Data are presented as

means G SEM of three independent experiments.

(F) In A172 and SF126 cell lines, knockout of oCGI Chr11:728884-729383 did not significantly change cell viability compared with the control group. Data are

presented as means G SEM of three independent experiments.

(G and H) In LN229 and U251 cell lines, knockout of oCGI Chr11:728884-729383 resulted in a noticeable attenuation of KI67 (green) compared to the control

group. (Blue: nucleus.) Data are presented as means G SEM of three independent experiments. Scale bar: 100 mm.

(I) Drug sensitivity screening of two glioma subtypes cell lines (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, p was calculated by unpaired t test).
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potential for a broader definition of enhancers. The coordinated transcription-enhancing function of oCGIs establishes a foundation for their

non-classical enhancer function.19 We constructed the oCGI-enhancer-gene regulatory models to illuminate the importance of oCGIs, which

have long been overlooked. We revealed the role of oCGIs as non-classical enhancers in the intricate regulatory network of glioma.

First, the comparative genomic analysis highlighted that oCGIs exhibit DNA methylation characteristics similar to classical enhancers, sug-

gesting that oCGIs can exert transcriptional enhancer functions, either through a mechanism akin to that of classical enhancers or by collabo-

rating with classical enhancers. Furthermore, to elucidate the precise regulatory functions of oCGIs across different glioma samples, we applied

the 9 possible models of regulation, encompassing oCGIs-enhancer-gene triplets, based on the DNA methylation features of oCGIs in glioma

subtypes. Throughmutual information analysis andBayesian networks, wedelineated the regulatory patterns of each triplet. As expected, oCGIs

directly or indirectly regulated the target genes. Notably, they exhibited regulatory characteristics similar to classical enhancers, enabling themto

regulate several target genes and exert long-range regulation within the same TAD. Although oCGIs and enhancers were primarily engaged in

the direct regulation of target genes within the cis-regulatory network of glioma, many more complex regulatory models were validated, sug-

gesting that enhancers are potential targets of oCGIs. It enhances our understanding of the cis-regulatory network.

The predictivemodels based on 11machine-learning algorithms allowed us to accurately identify the glioma subtypes based on their DNA

methylation or RNA expression levels. These findings can help integrate data from various sources and comprehensively identify the charac-

teristics of the cis-regulatory network. Chromatin modifications serve as markers for identifying the functional states of enhancers or pro-

moters.20,21 The results of chromatin modifications in the two glioma subtypes indicated that tumor cells were more active in C2. In C2,

the regulatory models in which oCGIs or enhancers play a dominant role exerted stronger positive transcriptional control through lower

methylation levels and higher chromatin accessibility. Therefore, we focused on the major regulators of transcription in C2. Some key factors

that were previously overlooked have been revealed in our study, such as MLX, whose role in gliomas has never been addressed before

(Figures S9A and S9B). In our research, MLX, activated as a target gene of C2, emerged as significantly correlated with prognosis and ex-

hibited co-expression with various TFs. The oncogenic role ofMLX has been reported in osteosarcoma, where enhancer-drivenMLX expres-

sion is upregulated, contributing to metabolic reprogramming.23 The cis-activation effect in C2 renders patients unresponsive to various clin-

ical treatments, including chemotherapy, radiotherapy, or their combination.

We employed a high-resolution single-cell atlas to further characterize the details of the cis-regulatory network in tumor cells. Our findings

revealed that tumor cells from C2 typically exhibited higher rates of proliferation. Additionally, the regulatory effects of the regulatory triplets

in which oCGIs or enhancers play a dominant role on target genes gradually weakened after differentiation in C2, suggesting that the active

cis-regulatory network in C2 is a crucial factor for maintaining the heightened activity of tumor cells. Additionally, the communication between

tumor cells and the glioma microenvironment was more active in C2 compared with C1, exerting a more pronounced pro-tumor effect.

To elucidate the precise mechanisms by which the cis-regulatory network and oCGIs were involved in this complex glioma microenviron-

ment, we characterized different niches by analyzing stRNA-seq. Tumor cells in the center of the tumor exhibited stronger proliferation and

invasive capabilities compared with the infiltrating region.24 Additionally, due to the vigorous metabolic demands of tumor cells, the tumor

center was more susceptible to necrosis. Therefore, we selected the necrotic niche as the tumor center and the infiltrating niche as the tumor

periphery. In the necrotic niche of both subtypes, tumor cells were primarily co-localized with microglia and endothelial cells. However, in C2,

this co-localization was associatedwith significantly weaker immune cell infiltration and tumor-activating signals. An increase in co-localization

with oligodendrocytes was observed in the infiltrating niche, similar to the signal network in the necrotic niche. C2 showedmore pronounced

activation of pro-tumor signals. The cis activation in C2 is a crucial factor leading to patients’ resistance to various treatmentmodalities. The cis

activation in C2 renders patients unable to benefit from various clinical treatments and decreased sensitivity to various drugs.

To explore the regulatory role of oCGIs in the tumor center and periphery, we focused on the common downstream target in cell commu-

nication between the two niches, namely the POLR2L gene, for subsequent validation. The results indicated that oCGI Chr11:728884-729383

may regulates glioma proliferation by modulating the regulatory effect of TFs E2F7 on the target gene POLR2L. Clinical drugs were selected

based on distinct oCGIs-based glioma subtypes. Furthermore, our study provided a theoretical foundation for the subsequent development

of drugs targeting oCGIs-related targets.

Our study comprehensively explored the role of oCGIs as non-classical enhancers in the transcriptional regulatory network of glioma.

Generally, oCGIs directly regulate target genes similar to classical enhancers. In addition, we validated numerous, more intricate models,

underscoring the complexity of the regulatory mechanisms of oCGIs in cancer, enabling them to act in a coordinated or regulated manner

and significantly affecting glioma progression and treatment resistance. We provided in-depth insights into all potential scenarios within the

glioma cis-regulatory network, laying a foundation for unraveling the mechanisms behind glioma development.
Limitations of the study

Although we comprehensively analyzed the cis-regulatory network in which oCGIs or enhancers play a dominant role, limitations inherent to

single-cell technologies necessitate the validation of only a fraction of the identifiedmodels. With the continued advancement of sequencing

technologies, we anticipate a more comprehensive understanding of the cis-regulatory network based on oCGIs. In addition, our study has

the following limitations: First, we used TCGA 450K methylation data, which only covers about 1.5% of CpGs in the human genome. With the

popularization of sequencing technologies with higher coverage, such as the Infinium MethylationEPIC BeadChip, it will be beneficial to

explore the regulatory roles of oCGIs more comprehensively. Second, we referenced previous studies and used all the enhancers from

FANTOM5, which include enhancer information from 432 primary cell samples, 135 tissue samples, and 241 cell line samples from humans.

Undoubtedly, more robust conclusions could be drawn based on a comprehensive glioma enhancer atlas. However, currently, most
10 iScience 27, 110946, October 18, 2024
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enhancers in gliomas are identified through histone modification peaks rather than CAGE-seq. We believe that CAGE-seq, which identifies

eRNA produced by enhancer transcription, is a more accurate method for enhancer localization. Third, we used TADs identified from embry-

onic brain Hi-C data as the background instead of glioma Hi-C data. Due to different developmental stages, cell types, and even cell states,

the 3D chromosomal conformationsmay vary. Therefore, we conducted a preliminary exploration based on previous studies. In the future, the

popularization of high-precision data, such as single-cell Hi-C data, will facilitate further exploration of the regulatory relationships of oCGIs.

Finally, the hypermethylation phenomenon caused by the high mutation rate of IDH in LGG may also be a potential key reason for the dis-

tribution of oCGIs methylation in different glioma samples. As we discussed in our supplementary results, almost all samples with IDH mu-

tations cluster into one glioma subtype.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-E2F7 antibody Abcam Cat# ab245655; RRID: AB_3224407

Chemicals, peptides, and recombinant proteins

ChIP Assay Kit Beyotime Cat# P2078

MTT cell proliferation and cytotoxicity assay kit Beyotime Cat# C0009S

Ki67 Cell Proliferation Assay Kit Beyotime Cat# C2305S

Deposited data

RNA-seq and DNA methylation data from TCGA UCSC Xena https://xena.ucsc.edu/

ATAC-seq data from TCGA TCGA https://portal.gdc.cancer.gov/

325 RNA-seq cohort and 693 RNA-seq cohort CGGA http://www.cgga.org.cn/

RNA-seq, DNA methylation-seq,

and ChIP-seq from 24 samples

GEO GEO accession: GSE121719,

GSE121720, GSE121721,

GSE189859, GSE189860,

GSE189857

Hi-C data from human embryonic brain Won et al.25 GEO accession: GSE77565

scRNA-seq Verhaak et al.26 https://synapse.org/singlecellglioma

stRNA-seq GEO GEO accession: GSE194329

SNP data the 1000 Genomes

Project Phase 327
https://www.internationalgenome.org/

phase-3-structural-variant-dataset/

all enhancer information FANTOM528 https://fantom.gsc.riken.jp/5/datafiles/

latest/extra/Enhancers/

DNA methylation data for 49 glioma cell lines GEO GEO accession: GSE68379

Drug sensitivity data GDSC https://www.cancerrxgene.org/celllines

Experimental models: Cell lines

U251 the Second Affiliated Hospital

of Harbin Medical University

N/A

LN229 the Second Affiliated Hospital

of Harbin Medical University

N/A

A172 the Second Affiliated Hospital

of Harbin Medical University

N/A

SF126 Pricella Cat# CL-0435

Software and algorithms

R (4.2.3) R core team https://www.R-project.org/

R package ConsensusClusterPlus (1.62.0) Wilkerson et al.29 https://bioconductor.org/packages/

release/bioc/html/ConsensusClusterPlus.html

R package ggplot2 (3.5.0) Wickham et al.30 https://ggplot2.tidyverse.org/

R package mlr3 (0.17.0) Lang et al.31 https://mlr3.mlr-org.com/

R package Seurat (5.1.0) Satija et al.32 https://satijalab.org/seurat/

R package CytoTRACE (0.3.3) Gulati et al.33 https://cytotrace.stanford.edu/

R package infercnv (0.3.3) N/A https://github.com/broadinstitute/infercnv

R package Monocle3 (1.3.1) N/A https://github.com/cole-trapnell-lab/monocle3

R package beyondcell (2.2.0) Maria et al.34 https://github.com/cnio-bu/beyondcell

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

R package SCENIC (1.3.1) Sara et al.35 http://scenic.aertslab.org

R package SPATA2 (2.0.4) Ravi et al.4 https://github.com/theMILOlab/SPATA2

R package CellTrek (0.0.94) Wei et al.36 https://github.com/navinlabcode/CellTrek

R package nichenetr (2.0.4) Browaeys et al.37 https://github.com/saeyslab/nichenetr
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines

The glioma cell lines used in this study were obtained from different sources. U251 (originating from a 75-year-old male), LN229 (originating

from a 60-year-old female), and A172 (originating from a 53-year-oldmale) were all provided by the Department of Neurosurgery, the Second

Affiliated Hospital of Harbin Medical University. In contrast, the SF126 cell line (originating from a 50-year-old female) was acquired from Pri-

cella (Wuhan, China). Cell lines with oCGI (chr11:728884-729383) knockout were established using the CRISPR/Cas9 system. sgRNAs were

designed using Benchling’s CRISPR toolkit (sgRNA1: AGCCCCTTGGAAGAAACGGG; sgRNA2: GGAAGCCCCTTGGAAGAAAC). The

knockout process was based on the study byGong et al.38 All cell lines were authenticated by short tandem repeat PCR profiling.Mycoplasma

tests were conducted using the Mycoplasma PCR Detection Kit (Beyotime, China), and the results were negative.

METHOD DETAILS

Data collection and quality control

We obtained RNA-seq (703 samples), DNA methylation data (686 samples) and paired clinical information for LGG and GBM from TCGA

through the UCSC Xena platform and directly downloaded ATAC-seq data (42 samples) for LGG and GBM from the TCGA. The methylation

data we used is from TCGA 450K array, which includes 1.5–1.6% of CpGs in the human genome. The TCGA dataset, used as the primary bulk

dataset in this study, provides the basis for all conclusions derived frombulk data unless otherwise specified. The 325 RNA-seq cohort and 693

RNA-seq cohort from the Chinese Glioma Genome Atlas were utilized for the validation of treatment response. Additionally, for validation

purposes, we acquired data from 24 samples, including RNA-seq, DNAmethylation-seq, and ChIP-seq, from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/, GEO accession: GSE121719, GSE121720, GSE121721, GSE189859, GSE189860, and

GSE189857).39,40 For the identification of TADs, we referred to the study by Grabowicz et al., which used Hi-C data from human embryonic

brain.25,41 To validate our findings at the single-cell level, we utilized scRNA-seq and scRRBS-seq data from 8 glioma samples provided by

Verhaak et al.26 Additionally, stRNA-seq data from 29 glioma samples were obtained from the study of Schnell and GSE194329 dataset.4,42

Genomic single nucleotide polymorphism data were obtained from the 1000 Genomes Project Phase 3.27 Our study included all enhancer

information identified in phase 1 and 2 of FANTOM5.28 DNA methylation data for 49 glioma cell lines were obtained from GSE68379.

Drug sensitivity data for the cell lines were obtained from the Genomics of Drug Sensitivity in Cancer project (GDSC, https://www.

cancerrxgene.org/celllines). All data were analyzed based on the hg19.

Identifying glioma subtypes based on DNA methylation levels

Weapplied the following criteria to quality control TCGADNAmethylation data: (1) Exclusion of probes containing SNPs (99,788 probes were

excluded); (2) Exclusion of probes expressed in less than 20% of samples (no probes were excluded); and (3) Exclusion of samples with less

than 20% probe expression (44 samples were excluded). We utilized the k-nearest neighbors (KNN) method for imputing missing values in

TCGA DNA methylation data. Finally, approximately 0.027% of missing values in the methylation data were imputed. The imputation of

missing values using KNN was performed with the impute.knn function from the impute package. We used the default parameters of the

function, including K = 10, rowmax = 0.5, and colmax = 0.8. All CGIs are expanded into 500 bp regions (G250 bp), with the CGIs at the center

of these regions. If different CGIs have overlapping regions, the overlapping regions are merged into a single region. The region extending

1500 bp upstream and 500 bp downstream of the TSS was defined as the promoter region. CGIs overlapping with promoters and enhancers

were removed, and the remaining CGIs were defined as oCGIs.

We conducted consensus clustering of the sample’s oCGIs and enhancermethylation data (averagemethylation values of the correspond-

ing regions for oCGIs and enhancers). We used the ConsensusClusterPlus package for clustering, defining the number of clusters as 2–20,

using the hierarchical algorithm. Select the smallest K value that can effectively distinguish all samples.When clustering enhancermethylation

data, K = 7 effectively divided the samples into twomain clusters. For oCGIs methylation data, K = 11 effectively divided the samples into two

main clusters. Clusters with fewer than 10 samples were discarded to explore the main changes present in gliomas.29

Construction of the cis-regulatory network in which oCGIs or enhancer play a dominant role

Wemeasured the strength of the interaction between oCGIs or enhancers and target genes within the same TADs using mutual information

(MI).43 The following criteria were employed to construct oCGIs-enhancer-gene triplets targeting the samegene: theMI calculated for oCGIs-

gene or enhancer-gene pairs had an adjusted p-value of less than 0.05, and any pair with an adjusted p-value of greater than 0.05 in either
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oCGIs-gene or enhancer-gene relationship was filtered out. The preliminary selection of oCGIs-enhancer-gene triplets was analyzed to iden-

tify their regulatory patterns using Bayesian networks (https://www.bnlearn.com/). For each triplet, we computed joint probabilities for po-

tential regulatory patterns. For example, the oCGI direct model represented the direct oCGI regulation of target gene expression, while

the oCGI cascade model indicated that oCGI regulates the target gene by modulating enhancers. The joint probabilities were calculated

as follows:

oCGI-dominated.

oCGI direct: P (O, E, G) = P (O) *P (G |O) *P (E)

oCGI cascade: P (O, E, G) = P (O) *P (E |O) *P (G |E)

oCGI co-responsive: P (O, E, G) = P (O) *P (E |O) *P (G |O)

oCGI composite: P (O, E, G) = P(O) *P (E |O) *P (G |O: E)

Enhancer-dominated.

Enhancer direct: P (O, E, G) = P (O) *P (G |E) *P(E)

Enhancer cascade: P (O, E, G) = P (E) *P (O |E) *P (G |O)

Enhancer co-responsive: P (O, E, G) = P (E) *P (O |E) *P (G |E)

Enhancer composite: P (O, E, G) = P (E) *P (O |E) *P (G |O: E)

Co-dominated: P (O, E, G) = P (O) *P (E) *P (G |O: E)

Where P(O) and P(E) represent the probability distributions of DNA methylation in oCGIs and enhancers, respectively. P (G|O) indicates the

conditional probability of gene expression regulatedby oCGIs, and P (G|O: E) represents the conditional probability of gene expression regu-

lated simultaneously by both oCGIs and enhancers. The definitions of the other terms are similar to those mentioned above.

We selected themodel with the smallest Akaike Information Criterion (AIC) as the regulatory pattern for each triplet. Additionally, we con-

ducted independence testing for each triplet. For example, the p-value of independence testing between oCGI-enhancer and enhancer-

gene was less than 0.05 for the oCGI direct model of the triplet to be considered valid.

Consistent with conventional understanding, the agreement betweenDNAmethylation level and RNA expression is crucial for model vali-

dation. Initially, we defined hypomethylation as b< 0.32 and hypermethylation as b> 0.79 using the bdistribution of gliomamethylation probe

values. Hemimethylation was defined as b values falling within the range of 0.32–0.79 (https://github.com/koyelucd/betaclust). Triplets iden-

tified as the CGI direct model in C2, had an oCGI methylation level lower than that in C1 and a gene expression level higher than that in C1.

Enrichment analysis was conducted for all upregulated genes in C2.44 We employed FIMO to identify potential TF-binding motifs in oCGIs

and enhancers (p < 0.0001).45

Construction of glioma classifiers based on multi-omics data of oCGIs

We constructed the classifier using three different methods, which were cross-validated to enhance the credibility of the model. First, we em-

ployed the Partitioning AroundMedoids (PAM) algorithm to discern the sample allocations based on distance. Next, we incorporated 11ma-

chine learning algorithms, including cv_glmnet, featureless, kknn, lda, log_reg, naive_bayes, ranger, rpart, svm, xgboost, and debug, to

construct the models based on RNA and DNA methylation levels. The machine learning algorithms were implemented using the mlr3 pack-

age.31 RNA-seq and DNA methylation data from 545 TCGA samples were used as the training set, while 24 samples from GEO were em-

ployed as the validation dataset. We aligned ChIP-seq data from the validation dataset (H3K27ac, H3K4me3, H3K4me1, and H3K27me3)

and ATAC-seq data (42 samples) for LGG and GBM to the corresponding regions of oCGIs, enhancers, and promoters.

scRNA-seq and scRRBS-seq data

We applied the previously constructed RNA-seq-based classifier to the bulk data matching the scRNA-seq to identify the sample subtypes.

Then, we conducted quality control on 55,284 cells from the 11 glioma samples in the Verhaak cohort. Genes expressed in fewer than 3 cells,

cells expressing fewer than 200 genes, cells with a mitochondrial gene percentage exceeding 20% and doublets were filtered out. A total of

47,537 cells were used for the subsequent analysis. The samples were integrated using Harmony.46 Tumor cells were annotated using marker

genes in conjunction with copy number variations (https://github.com/broadinstitute/infercnv) (Glioma cells: SOX2, OLG1, GFAP;Oligoden-

drocytes: S100B, MBP; Immune cells: PTPRC, ITGAM, CD68, CD4;Other cells: VWF, PDGFRB). Cytotrace was employed to assess the differ-

entiation level of tumor cells.33Monocle3was used to identify the differentiation trajectories of glioma cells (https://github.com/cole-trapnell-

lab/monocle3). SCENIC was utilized to identify significantly upregulated TFs in glioma subtypes.35 We applied the same criteria to perform

quality control on the scRRBS data. Triplets were identified in tumor cells based on scRNA and scRRBS data. The difference in drug sensitivity

between two subtypes of glioma cells was analyzed using the beyondcell package.34

Spatial transcriptomics data

The stRNA-seq data from 29 glioma samples were initially used to identify glioma subtypes using pseudobulk analysis and then applied the

previously trained RNA-seq classifier to the pseudobulk data to identify the stRNA-seq sample subtypes. Subsequently, two pathologists

jointly divided the images of stRNA-seq into four regions: vascular, necrotic, cellular, and infiltrating. All stRNA-seq analyses were conducted

using SPATA2 package.4 Copy number variationwas assessed using the runCnvAnalysis function. Images representing different features were
16 iScience 27, 110946, October 18, 2024
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visualized using the plotSurfaceComparison function. The CellTrek package was employed to integrate scRNA-seq and stRNA-seq data.36

The communication between tumor cells and other components of the tumor microenvironment in different niches was identified using

the nichenetr package.37 The average expression values of target genes regulated by oCGIs in C1 and C2 are referred to as C1 score and

C2 score, respectively.
Quantitative PCR with reverse transcription

Total RNA was extracted from glioma cell lines using Trizol (Beyotime, China), and reverse transcription was performed using reverse tran-

scription reagents (RNase H-, RNase inhibitor, and dNTP Mix) (Beyotime, China) following the manufacturer’s instructions. All primers are

listed in Table S7 qPCR was performed in 3 times for each of the cell lines U251, LN229, A172, and SF126.
Chromatin immunoprecipitation (ChIP)

The ChIP assay was conducted following the protocol outlined in the ChIP assay kit (Beyotime, China). The ChIP assay begins with crosslinking

cells with formaldehyde, followedby cell lysis and sonication to shear DNA. The chromatin is then incubatedwith E2F7 antibody (Abcam,USA)

and Protein A + G agarose (ChIP assay kit) for immunoprecipitation. After washing the precipitates with a series of buffers, the crosslinks are

reversed and the DNA is purified for analysis. Subsequently, qPCR was employed to assess the immunoprecipitated DNA level. The primers

are listed in Table S7. This process was repeated 3 times.
MTT assay

In the control group and two oCGI knockout groups (chr11:728884-729383 KO1 and chr11:728884-729383 KO2), 10 mL of MTT (5 mg/mL) (Be-

yotime, China) was added to each well of a 96-well plate. After 4 h of incubation, 100 mL of formazan (Beyotime, China) was added, and the

absorbance was read at 490 nm. This process was repeated 3 times.
Immunofluorescence

In brief, coverslips with confluent cells were fixed with 4% paraformaldehyde. Then, immunostaining was performed using KI67 polyclonal

antibody (Beyotime, China) and incubated for 2 h. Subsequently, goat anti-rabbit fluorescent secondary antibody (Beyotime, China) was

added and incubated for another 2 h. Finally, counterstaining was conducted with DAPI, and the cells were observed under a fluorescence

microscope. This process was repeated 3 times.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics were computed with R software v4.2.2. If not otherwise specified, all referenced packages use default parameters. All molecular

experiments were analyzed using unpaired t-tests, with a significance level set at p < 0.05. The significance levels were denoted as follows:

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, P was calculated by unpaired t-test.
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