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Abstract: In this study, three novel magnetic nanocomposites based on carboxyl-functionalized
SBA-15 silica and magnetite nanoparticles were prepared through an effective and simple procedure
and applied for methylene blue (MB) and malachite green G (MG) adsorption from single and binary
solutions. Structure, composition, morphology, magnetic, and textural properties of the composites
were thoroughly investigated. The influence of the amount of carboxyl functional groups on the
physicochemical and adsorptive properties of the final materials was investigated. The capacity of
the synthesized composites to adsorb MB and MG from single and binary solutions and the factors
affecting the adsorption process, such as contact time, solution pH, and dye concentration, were
assessed. Kinetic modelling showed that the dye adsorption mechanism followed the pseudo-second-
order kinetic model, indicating that adsorption was a chemically controlled multilayer process.
The adsorption rate was simultaneously controlled by external film diffusion and intraparticle
diffusion. It was evidenced that the molecular geometry of the dye molecule plays a major role
in the adsorption process, with the planar geometry of the MB molecule favoring adsorption. The
analysis of equilibrium data revealed the best description of MB adsorption behavior by the Langmuir
isotherm model, whereas the Freundlich model described better the MG adsorption.

Keywords: magnetite; carboxyl-functionalized SBA-15; adsorption; methylene blue; malachite
green G

1. Introduction

One of the most serious environmental problems in modern society is water pollution,
mainly due to effluents from textile, leather, paints and pigments, plastics, paper, food,
and cosmetic industries [1]. Among the different pollutants, dyes represent one of the
most problematic groups of organic pollutants due to their toxicity, which causes serious
health effects on animals and human beings. Most of them are stable to biodegradation,
photodegradation, and oxidizing agents. Some studies revealed their carcinogenic effects
due to the changes induced in DNA synthesis [2,3]. The aquatic organisms are also
affected by the presence of dyes in water because they hinder light penetration through
the water surface decreasing the photosynthetic activity of phytoplankton. This causes
oxygen deficiency and disturbs the biological cycle of aquatic biota [4]. Moreover, dye
molecules in wastewater lead to mutagenicity, carcinogenicity, and the dysfunction of
human beings’ kidney, liver, brain, reproductive system, and central nervous system [5].
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The wastewater of dye industries is the maximum polluting place among all industrial
segments, producing a huge volume of effluents. Textile industries yield tons of dyes that
are discharged as wastewater every year throughout the dyeing procedures. Methylene
blue (MB) and malachite green G (MG) are two of the most common cationic dyes, usually
used in textiles, printing, leather, plastics, paints, pharmaceuticals, and food [6]. They are
commonly used as coloring agents and antiseptics for external treatments on wounds and
ulcers [6]. However, their oral consumption is poisonous and carcinogenic.

Therefore, the removal of dyes from water and wastewater is one of the most sig-
nificant environmental problems. Over the years, several methods for the treatment of
dye-containing wastewater have been studied: membrane separation, adsorption, pho-
tocatalysis, coagulation–flocculation, ion exchange, oxidation processes, electrochemical
processes, etc. [7–10]. Among these techniques, adsorption is the most commonly used
method owing to its high removal efficiency, versatility, simplicity, and low cost, using
inexpensive and eco-friendly materials [11,12]. Various materials, such as activated carbon,
zeolites, clays, nanoparticles, biomaterials, and metal oxides have been investigated for
the removal of dyes from water [13]. In recent years, mesoporous silica particles have
received a great interest in this field due to their special physicochemical properties, such
as high surface areas and pore volumes, defined pore sizes, and ease of functionalization.
SBA-15 is one of the most known examples of mesoporous silica. Its efficiency in adsorption
processes is due to its large internal surface and mesoporous structure which allows facile
access of molecules. Moreover, in order to increase its adsorption capacity and specificity
for certain pollutants, SBA-15 can be easily functionalized due to the high reactivity and
concentration of silanol groups (Si–OH) on its surface. The literature data showed that
various functional groups, including NH2, Cl, SH, CN, SO3H, phenyl, vinyl, etc., may be
grafted on the surface of SBA-15 [14–16].

Despite the advantages offered by SBA-15 mesoporous silica, it has the disadvantage
of the difficulty of separation from the suspension after the completion of the adsorption
process. The use of magnetic separation is an efficient and modern solution to counteract
this drawback. The magnetic adsorbents have gained significantly increased interest for
environmental applications owing to their high efficiency, ease of separation after adsorp-
tion by applying an appropriate magnetic field, high mechanical and chemical stability,
tunable chemical composition and morphology, and fast recovery. The modification of a
mesoporous silica-based adsorbent by inclusion of a magnetic component allows easier
separation after adsorption, compared to centrifugation or filtration. This type of magnetic
mesoporous silica structure offers a large accessible surface area and pore volume for
the fast adsorption of various molecules. Several groups have reported the synthesis of
mesoporous silica microspheres embedding magnetic particles utilizing various template
agents and used these materials as magnetically separable adsorbents for specific dissolved
pollutants [17,18]. Among the organic functionalities that can be attached to the silica
surface, carboxyl groups are particularly interesting for adsorbing contaminants. This
exceptional adsorption capacity is owing to an increase in their negative charge density
in neutral or basic aqueous conditions, which leads to the formation of particular binding
sites for adsorbates via deprotonation [19]. To the best of our knowledge, there are only
very few studies regarding the adsorption of cationic dyes on magnetic mesoporous silica
functionalized with carboxylic groups. Fu et al. reported superparamagnetic mesoporous
silica microspheres embedded with iron oxide particle cores uniformly functionalized with
carboxylic groups for removing methylene blue and acridine orange from water. They
used stearyl trimethyl ammonium bromide as a surfactant template [20]. The obtaining of
carboxyl-functionalized mesoporous silica materials is usually based on the hydrolysis of
cyanide-modified silica with sulfuric acid [21,22]. These conditions of hydrolysis severely
limit the obtaining of carboxyl-functionalized mesoporous silica materials embedded with
iron oxide particles’ magnetic core.

The aim of this paper was to obtain magnetic nanocomposites based on carboxyl-
functionalized SBA-15 silica and magnetite nanoparticles through a convenient and ef-
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fective procedure and to evaluate their effectiveness as adsorbents for cationic dyes. The
influence of the amount of carboxyl functional groups on the physicochemical and ad-
sorptive properties of the final nanomaterials was investigated. All the nanocomposites
were characterized by nitrogen adsorption–desorption analysis, Fourier-transform infrared
(FT-IR) spectroscopy, thermogravimetric (TGA) and elemental analysis, zeta potential,
X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), and the
vibrating-sample magnetometer technique (VSM). Methylene blue (MB) and malachite
green G (MG) (Figure 1) were used as model pollutants in the adsorption tests. The ad-
sorption process was investigated as a function of solution pH, contact time, and initial
concentration of dye. The characteristics of the adsorption isotherms and kinetics were also
studied in single and binary solutions.
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Figure 1. Chemical structure of (a) Methylene Blue and (b) Malachite Green G.

2. Materials and Methods
2.1. Materials

Triblock copolymer Pluronic P-123 (Poly(ethylene glycol)-block-poly(propylene glycol)-
block-poly(ethylene glycol)) average Mn ~5800 (Sigma-Aldrich, Steinheim, Germany),
(2-Cyanoethyl)triethoxysilane 97% (CTES) (Alfa Aesar, Karlsruhe, Germany), tetraethoxysi-
lane > 99% (TEOS), ferric chloride hexahydrate > 99% (FeCl3·6H2O), ferrous chloride
tetrahydrate > 98% (FeCl2·4H2O), sulfuric acid 95–97% (H2SO4), hydrochloric acid 2 M
(HCl) (Merck, Darmstadt, Germany), ammonia solution (NH4OH 25 wt.%) (Chimreactiv,
Bucharest, Romania), Methylene Blue Reag. Ph Eur (C16H18ClN3S·3H2O), and Malachite
Green G analytical standard (C27H34N2O4S) (Sigma-Aldrich, Steinheim, Germany) were
commercial reagent grade.

2.2. Synthesis of Magnetic Nanocomposites Based on Carboxyl-Functionalized SBA-15 Silica

3.0 g of P-123 was dissolved in 93 mL hydrochloric acid 2M solution until the solution
became clear. 2-Cyanoethyltriethoxysilane was then added and the solution was stirred at
40 ◦C for 30 min. The mixture was transferred to a polypropylene bottle, then TEOS was
slowly added and the mixture was kept under stirring at 40 ◦C for 22 h, followed by aging
in an oven at 100 ◦C for 45 h, under static conditions. The solid product was separated by
centrifugation, washed several times with distilled water and then dried at 90 ◦C in oven.

The molar composition of the mixture was (1 − x) TEOS: x CTES: 6 HCl: 167 H2O:
0.017 P123, where x = 0, 0.05, and 0.1. For the hydrolysis of the –CN groups, the product
was treated with 150 mL 48 wt.% H2SO4 at 95 ◦C for 24 h [21,22]. Subsequently, the
mixture was filtered on a G4 fritted filter funnel and the solid product was washed with
a copious amount of water until the eluent became neutral, then several times with hot
ethanol. The obtained carboxyl-functionalized mesoporous silica samples were denoted:
SBA15-COOH-x, where x = 0, 0.05, and 0.1.
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The magnetite particles were prepared according to a previous paper [23]. To an
aqueous solution of 2.77 mmol FeCl3·6H2O and 1.38 mmol FeCl2·4H2O in 60 mL deionized
water, 30 mL of 25% NH4OH solution was added under vigorous stirring. After heating
at 80 ◦C for one hour, the resulting black precipitate was separated with the aid of a
neodymium magnet and washed with distilled water until the pH of the runoff was neutral.
The as-prepared magnetite particles were dispersed in water/ethanol mixture (volume
ratio 4:3) by sonication; then, 1.2 mL of 25% NH4OH solution and 0.3 mL TEOS were
consecutively added to the suspension; then, the mixture was sonicated 20 min. To this
mixture, a certain amount of SBA15-COOHx dispersed in water/ethanol (volume ratio
4:3) was added under strong stirring. The mixture was sonicated for 45 min, then stirred
continuously for 20 h at room temperature. The obtained solid materials were separated
by centrifugation, washed three times with water, and dried in air. The final magnetic
nanocomposites were denoted Fe3O4-SBA15, Fe3O4-SBA15-COOH-0.05, and Fe3O4-SBA15-
COOH-0.1.

2.3. Characterization Methods

The nitrogen adsorption–desorption isotherms at −196 ◦C were measured using a
Micromeritics ASAP 2020 analyzer (Norcross, GA, USA). The samples were degassed
at 100 ◦C for 6 h under vacuum before analysis. Specific surface areas (SBET) were es-
timated according to Brunauer–Emmett–Teller (BET) method, using adsorption data in
the relative pressure range 0.05–0.30. The total pore volume (Vtotal) was calculated from
the amount adsorbed at the relative pressure of 0.99. The average pore diameter and
pore size distribution curves were obtained using Barrett–Joyner–Halenda (BJH) method
using the desorption branch. FT-IR spectra were obtained on a Jasco FT/IR-4700 spec-
trophotometer (Tokyo, Japan) using KBr pellets. Thermogravimetric analyses (TGA) were
performed using a Mettler Toledo TGA/SDTA851e thermogravimeter (Mettler Toledo,
Greifensee, Switzerland), using a heating rate of 10 ◦C min−1, open alumina crucibles, and a
20 mL min−1 synthetic air flow. The content of C, H, and N was determined through ele-
mental analysis on a EuroEA elemental analyzer (HEKAtech GmbH, Wegberg, Germany).
Zeta potential was measured by electrophoretic light scattering using a Backman Coulter
Delsa Nano C particle analyzer (Brea, CA, USA) with 100 µg/mL sample dispersed in
distilled water. Samples were ultrasonicated for 15 min before measurement. The powder
X-Ray diffraction (XRD) analysis was performed on a Rigaku Ultima IV diffractometer
(Rigaku Co., Tokyo, Japan) using a monochromatic Cu Kα (λ = 1.5418 Å) radiation source
operated at 40 kV and 30 mA. The wide-angle diffractograms were recorded in the 2θ range
10–80◦, with 2◦ min−1 scan speed and 0.02◦ step width, while the low-angle diffractograms
were recorded between 0.6 and 5◦, with 1◦ min−1 scan speed and 0.02◦ step width. XRD
data were analyzed using Rigaku’s PDXL software connected to ICDD PDF-2 database.
The average crystallite size was calculated using the Williamson–Hall method. Microstruc-
tural analysis was performed on a TESCAN LYRA 3 XMU scanning electron microscope
(SEM) (Tescan Orsay Holding, Brno-Kohoutovice, Czech Republic). JEOL 2100 electron
microscope equipped with LaB6 filament and high-resolution polar piece (JEOL GmbH,
Freising, Germany) was used for transmission electron microscopy (TEM) investigations.
The magnetic properties were measured at room temperature on a Lake Shore’s fully inte-
grated Vibrating-Sample Magnetometer system 7404 (VSM) (Westerville, OH, USA). The
experimental data were analyzed by fitting to the Langevin function.

2.4. Adsorption Experiments

The effect of pH, time, and concentration of dye solution on the adsorption capac-
ity of the samples was studied via batch experiments in 100 mL conical flasks contain-
ing 5 mg adsorbent/20 mL of each of the dye solutions. All mixtures were stirred at
150 rpm on a GFL 3015 orbital shaker (Burgwedel, Germany). Stock solutions of dyes
were obtained by dissolving 1 g of the respective dye in 1 L of distilled water, followed by
dilution to obtain the desired concentration: between 5 and 100 mg/L. HCl and NH4OH
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solutions of various concentrations were used for dye solution’s pH changing. The pH of
the dye solution was determined at room temperature using an Agilent 3200 laboratory
pH meter (Agilent Technologies, Shanghai, China). After achieving equilibrium, the dye-
loaded adsorbents were separated using a hand-held magnet and the dye concentration
in the remaining solutions was determined. MB and MG analysis was performed on an
Agilent 1200 series HPLC (Tokyo, Japan) system equipped with: semipermeable membrane
degasser, quaternary pump, autosampler with variable injection volume (0.1–100 µL),
thermostatted column compartment, and a diode array detector (DAD) with the ability to
record simultaneously UV-VIS spectra (190–900 nm) and up to 8 discrete wavelengths in
this range. All chromatographic runs were carried out on an Acclaim Surfactant Plus col-
umn (150 × 3.0 mm, 3.0 µm) from Thermo Scientific. The detection of the target compounds
was performed at the absorption maximum of λ = 665 nm (MB) and λ = 610 nm (MG) which
were observed in the UV-Vis spectrum obtained by HPLC-DAD. Agilent ChemStation
software was used for data acquisition, processing, and reporting.

The adsorption capacity was calculated using the following formula:

Qe =
(Ci − Ce)·V

m
(1)

where Qe—the amount of dye adsorbed at equilibrium (mg g−1), Ci—the initial concentra-
tion of dye solution (mg L−1), Ce—the equilibrium concentration of dye solution (mg L−1),
V—total volume of dye solution (L), and m—mass of adsorbent used (g).

All the adsorption tests were performed in triplicate with a maximum experimental
error of 5%.

3. Results and Discussion
3.1. Materials Characterization

The FTIR spectra of magnetite-containing samples are shown in Figure 2. The band cor-
responding to the stretching vibration of the C=O bond of carboxyl groups, at 1721 cm−1, is
clearly evidenced in the spectra of Fe3O4-SBA15-COOH-0.05 and Fe3O4-SBA15-COOH-0.1
and is absent in the spectrum of Fe3O4-SBA15. The appearance of this band and the absence
of that corresponding to CN-stretching vibration (2252 cm−1) confirms the hydrolysis of all
cyano groups [21,22]. A close inspection of this band revealed that its intensity increases
with the content of CTES in the silica source. This confirms that the amount of carboxyl
groups in Fe3O4-SBA15-COOH-0.1 is higher than in Fe3O4-SBA15-COOH-0.05. This as-
pect is much more evident in the spectra of carboxyl-functionalized SBA-15 silica samples
without magnetite content (Figure S1). Moreover, a slight displacement of this band from
1717 to 1721 cm−1 is observed in the case of magnetic nanocomposites compared to the
corresponding samples of carboxyl-functionalized silica. This shift could be attributed
to the interactions of carboxyl groups with the surface of magnetite nanoparticles. The
bands at 1084 and 800 cm−1 correspond to asymmetric and symmetric stretching vibration
of Si-O-Si, while that at 465 cm−1 to asymmetric deformation vibration of O-Si-O [24].
The stretching vibrations of hydroxyl groups on the silica surface and those of adsorbed
water appear at 1632 and 3435 cm−1. The bands at 2923 and 2856 cm−1 are assigned to
asymmetric and symmetric vibrations of C-H bonds in the ethyl chain anchored on the
silica surface. The presence of magnetite nanoparticles was confirmed by the absorption
band at 580 cm−1 which corresponds to the Fe–O bond [25].

Figure 3 shows the nitrogen adsorption–desorption isotherms and pore size distribu-
tion curves of the magnetic nanocomposites. All these samples exhibit type IV isotherms
with an H1 type hysteresis characteristic for materials with ordered mesoporous structure,
according to IUPAC classification [26]. One can notice that the CTES molar content in the
total silica source has a deep effect on the formation of SBA-15 ordered mesostructure. As
the CTES content increases, the hysteresis closure point shifts slightly to lower p/p◦ values,
while the desorption branch becomes less steep, indicating a decrease in average pore
diameters. This observation is also confirmed by the pore size distribution (PSD) calculated
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by the BJH method (Figure 3, right side). The increasing of CTES content also leads to the
decrease in specific surface area of the carboxylated-SBA-15 samples compared with pure
SBA15, which proves the immobilization of carboxyl functional groups on the internal sur-
face of mesoporous silica channels (Table 1). Judging from the shape of the hysteresis loop,
it is clear that the introduction of a larger amount of CTES into the synthesis will lead to
the destruction of the uniform mesoporous structure. The magnetic nanocomposites have
lower surface areas and pore volumes than carboxylated-SBA15 samples, but close to each
other, while the PSD curves are similar to those of the corresponding carboxylated-SBA15
materials (Figure S2). This is an indication that the mesoporous silica interacted with the
magnetite nanoparticles mainly on the external surface through the carboxyl groups which
facilitated the interaction and to a lesser extent at the entrance of the pores.
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Figure 3. Nitrogen adsorption–desorption isotherms (a) and pore size distribution curves (b) of
Fe3O4-SBA15 (black line), Fe3O4-SBA15-COOH-0.05 (red line), and Fe3O4-SBA15-COOH-0.1 (blue line).

Figure 4a shows the low-angle XRD powder diffraction patterns of the samples.
Three well-resolved peaks which can be indexed as (100), (110), and (200) diffraction
peaks associated with P6mm hexagonal symmetry of SBA-15 can be observed for Fe3O4-
SBA15 and Fe3O4-SBA15-COOH-0.05 [27]. This suggests a highly ordered hexagonal
structure of the SBA15 silica in these two samples. For the sample Fe3O4-SBA15-COOH-
0.1, the intensity of the diffraction peaks decreased compared with the other two samples,
indicating that the increasing of the content of COOH functional groups induces a deviation
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from the relatively ordered structure of the SBA15. Figure 4b shows the wide-angle XRD
powder diffraction patterns of the samples. The reflections at 2theta: 29.98(220), 35.58(311),
43.05(400), 53.48(442), 57.14(511), 62.92(440), and 74.30(533) values, confirm the presence
of magnetite with an inverse cubic spinel structure in the investigated samples [28]. The
crystallite size of the magnetite was calculated to be ~6 nm.

Table 1. Textural parameters (SBET, total pore volume, average pore size) of the samples.

Sample SBET
(m2 g−1)

Total Pore Volume
(cm3 g−1)

Average
Pore Size (nm)

SBA-15 689.9 1.333 7.1
SBA15-COOH-0.05 581.3 1.060 6.4
SBA15-COOH-0.1 559.3 1.294 8.4

Fe3O4-SBA15 442.1 1.072 8.4
Fe3O4-SBA15-COOH-0.05 471.1 1.025 7.7
Fe3O4-SBA15-COOH-0.1 469.0 1.032 8.5
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Figure 4. Low-angle (a) and wide-angle (b) XRD patterns of the samples Fe3O4-SBA15 (1), Fe3O4-
SBA15-COOH-0.05 (2), and Fe3O4-SBA15-COOH-0.1 (3).

SEM micrographs of Fe3O4-SBA15, Fe3O4-SBA15-COOH-0.05, and Fe3O4-SBA15-
COOH-0.1 (Figure 5a–c) show quasi-spherical magnetite nanoparticles anchored on the
surface of carboxyl-modified worm-like SBA-15 particles. Comparing the morphology of
carboxyl-functionalized SBA-15 particles in magnetic composites with that of bare SBA-
15 (Figure 5d), one can notice an elongation and a thinning of the filaments with the
increase in -COOH content. The most pronounced morphological change is observed in
the case of Fe3O4-SBA15-COOH-0.1 in which the amount of -COOH groups is the highest
(Figure 5c). However, the worm-like SBA-15 particles included in the magnetic composites
have shorter one-dimensional pore channels which could facilitate mass diffusion within
the pore channels.

Transmission electron microscopy (TEM) images of the magnetic composites and bare
SBA-15 are shown in Figure 6. All TEM images clearly display the parallel arrangement of
hexagonal pore channels of ~8 nm, characteristic of SBA-15 silica. It can be noticed that the
highly ordered mesoporous structure of SBA-15 was preserved regardless of the COOH
content. The dark small spots of ~8 nm represent the magnetite nanoparticles, randomly
distributed on the SBA-15 surface. The elemental mapping shown in Figure 7 only for
Fe3O4-SBA15 shows the homogeneous distribution of Fe3O4 nanoparticles onto the surface
of SBA-15.
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Thermogravimetric analyses (TGA) were carried out in order to investigate the thermal
behavior and composition of the magnetic nanocomposites. The loss of physisorbed
water can be noticed for all materials on heating up from 25 to 140 ◦C (Figure 8). Two
superimposed mass loss events can be noticed in the temperature range 140–650 ◦C for all
the samples. These two thermal events roughly centered at 300 and 500 ◦C correspond to
the combustion of organic groups and the oxidation of magnetite to Fe2O3. The oxidation
of Fe3O4 to Fe2O3 after the heat treatment was confirmed visually, as the materials changed
color from brown-black before the TG analysis to the characteristic red color of Fe2O3. The
mass decrease up to 650 ◦C corresponds to 4.1, 6.6, and 8.5% wt. for the Fe3O4-SBA15, Fe3O4-
SBA15-COOH-0.05, and Fe3O4-SBA15-COOH-0.1 samples, respectively. All three samples
exhibit a gradual, 1.1% mass loss above 650 ◦C, which can be ascribed to the dehydration
of silanol groups [29]. The percent of organic material was calculated by subtracting the
data obtained by TGA for the carboxyl-containing samples and Fe3O4-SBA15. The values
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obtained showed a percentage of organic component of 1.8% for Fe3O4-SBA15-COOH-0.05
and 4.2% for Fe3O4-SBA15-COOH-0.1. Both values agree well with those obtained by
elemental analysis (Fe3O4-SBA15 exp. H 3.48%; Fe3O4-SBA15-COOH-0.05 exp. C 2.74%,
H 4.49%; Fe3O4-SBA15-COOH-0.1 exp. C 3.59%, H 4.72%).
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The magnetic properties of the samples were investigated using a vibrating-sample
magnetometer (VSM) at room temperature. The magnetization curves (Figure 9) indicate a
superparamagnetic behavior of all samples. The calculated saturation magnetization values
are similar: 13.3 emu/g for Fe3O4-SBA15, 13.0 emu/g for Fe3O4-SBA15-COOH-0.05, and
12.5 emu/g for Fe3O4-SBA15-COOH-0.1. The Ms values are smaller than that of bulk Fe3O4
(88–94 emu/g) due to the presence of the diamagnetic silica particles. However, these values
indicate that the investigated nanocomposites can be isolated quickly and efficiently from
solution under the influence of an external magnetic field. For the adsorption processes of
pollutants from aqueous solutions, this property is particularly important.
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ing elemental mapping of Si, Fe, and O, respectively.
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COOH-0.1 at room temperature.

3.2. Adsorption Studies
3.2.1. Effect of pH on Dye Adsorption

The solution pH is a crucial factor for the adsorption process because it affects both
the surface of the adsorbent and the adsorbate structural changes. The effect of pH on dye
adsorption was studied in the range 2–11. According to the obtained results (Figure 10), in
both cases the adsorption capacities increase by increasing the pH and reach a maximum
at pH 10.6. Consequently, this value was selected for the following investigations. Low
removal efficiency in acidic solutions can be explained by the fact that at low pH values,
the carboxyl groups are protonated; hence, the interaction with the cationic dyes’ molecules
is lower. As the pH increases, more and more carboxyl functional groups dissociate and
the surface of the adsorbent becomes more negative; therefore, the electrostatic attraction
between the adsorbent and dye molecules increases.
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Figure 10. Effect of pH on adsorption capacity of the samples for MB (a) and MG (b) from single
solutions.

3.2.2. Effect of Contact Time on Dye Adsorption

The adsorption of MB onto all three adsorbents is a rapid process, with the adsorption
rate increasing quickly during the first 30 min, then slowing down gradually with time
until reaching the equilibrium (after 240 min) (Figure 11). This behavior can be explained
as follows: during the early stage of adsorption, the number of active sites available on the
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external and internal surface of the adsorbent and the adsorbate concentration gradient is
high, leading to a fast adsorption rate. In the second stage, when the most accessible surface
sites tend to saturate, MB gradually diffuses to the active sites located on the internal surface
of the mesoporous silica, in the smallest pores; hence, the adsorption rate decreases. After
240 min, the concentration of the MB solution remains almost unchanged, indicating that
all the adsorption sites were saturated. In the case of MG, Fe3O4-SBA15-COOH-0.1 behaves
similar as for MB, while for Fe3O4-SBA15 and Fe3O4-SBA15-COOH-0.05, the adsorption
rate increases monotonically from the beginning of the process until the equilibrium (after
300 min).
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Figure 11. Variation in adsorption capacity versus contact time at pH = 10.6 for MB (a) and MG (b).

3.2.3. Adsorption Kinetics

The kinetics of the adsorption process is essential to understand the adsorption mech-
anism and for optimization of the operating conditions in full-scale batch processes. The
nonlinear forms of all these kinetic models are described by the following equations:

- Pseudo-first-order model:

Qt = Qe

(
1 − e−k1t

)
(2)

- Pseudo-second-order model:

Qt =
Q2

e k2t
1 + Qek2t

(3)

- Intraparticle diffusion model:

Qt = kidt0.5 + C (4)

where Qe and Qt are the amount of dye adsorbed at equilibrium and at time t (mg g−1),
k1 is the rate constant of pseudo-first-order kinetics (min−1), k2 is the rate constant of
pseudo-second-order kinetics (g mg−1 min−1), kid is the intraparticle diffusion rate constant
(g mg−1 min−1) and the intercept of the plot, and C reflects the boundary layer effect.

Figures 12–14 show the PFO and PSO kinetic models fitting the data for MB and MG
adsorption onto magnetic composites in single and binary solutions, while Tables 2 and 3
display the values of the calculated kinetic parameters using the PFO and PSO nonlinear
models. As can be seen, the values of adjusted R2 are higher for the PSO model than for
the PFO model in all the cases, indicating that the PSO model is more suitable to describe
the adsorption process of MB and MG, respectively, onto the magnetic nanocomposites.
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In addition, the theoretical values of Qe (Qe cal) correlate better with the experimental
ones (Qe exp), confirming that the adsorption process follows a PSO kinetic model and
chemisorption is the rate-limiting step [30].
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Figure 12. Graphical representation of the PFO (a) and PSO (b) kinetic models for adsorption of MB
onto magnetic nanocomposites from single solutions (nonlinear regression).
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Figure 13. Graphical representation of the PFO (a) and PSO (b) kinetic models for adsorption of MG
onto magnetic nanocomposites from single solutions (nonlinear regression).

The phenomena that limit the sorption mechanism are usually determined using
the Weber and Morris kinetic intraparticle diffusion model. According to this model, if a
straight line passing through the origin is generated from the plot of Equation (4), it can
be said that the adsorption mechanism involves intraparticle diffusion of the species [31].
The slope of the linear curve is the rate constant of the intraparticle diffusion process. In
our study, when the kinetic data obtained for MB adsorption onto the magnetic composites
were analyzed using the Weber and Morris intraparticle diffusion model, it was observed
that the plot did not pass through the origin, indicating that intraparticle diffusion was not
the only rate-limiting step. According to this model, the adsorption of MB occurs in three
stages revealed through a multilinear curve composed of three segments (Figure 15). In this
case, a piecewise linear regression was applied to the experimental data using a Microsoft
Excel worksheet developed by Malash and El-Khaiary [32]. The results are presented in
Figure 15 and Table 4. In the first stage, the adsorption is limited to the external diffusion
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of the adsorbate. The second stage consists of gradual adsorption of the adsorbate being
limited by intraparticle diffusion, while the third one corresponds to an equilibrium phase
during which the adsorption capacity remains stable [33]. This pattern shows that both
external mass transfer and intraparticle diffusion are involved in adsorption.
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Figure 14. Graphical representation of the PFO and PSO kinetic models for competitive adsorp-
tion of MB and MG onto Fe3O4−SBA15 (a), Fe3O4−SBA15−COOH−0.05 (b), and Fe3O4−SBA15-
COOH−0.1 (c) from binary solutions (nonlinear regression).
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Table 2. The kinetic parameters for dye adsorption onto magnetic nanocomposites from single
solutions (nonlinear regression).

Sample Fe3O4-SBA15 Fe3O4-SBA15-
COOH-0.05

Fe3O4-SBA15-
COOH-0.1

MB

Qe exp (mg g−1) 214.20 234.04 240.60
Pseudo-first-order model

Qe cal (mg g−1) 202.03 ± 5.90 226.58 ± 5.23 230.96 ± 6.37
k1 (min−1) 0.0636 ± 0.0080 0.0607 ± 0.0060 0.0699 ± 0.0085
R2

adjusted 0.9587 0.9744 0.9606
Pseudo-second-order model

Qe cal (mg g−1) 217.89 ± 3.06 243.46 ± 1.94 246.98 ± 2.96
k2 (10−4 g mg−1 min−1) 4.0081 ± 0.3314 3.5282 ± 0.1651 4.0973 ± 0.2987

R2
adjusted 0.9930 0.9977 0.9944

MG

Qe exp (mg g−1) 27.92 32.8 115.64
Pseudo-first-order model

Qe cal (mg g−1) 27.61 ± 1.34 30.89 ± 1.74 107.14 ± 4.02
k1 (min−1) 0.0108 ± 0.0016 0.0152 ± 0.0030 0.0200 ± 0.0028
R2

adjusted 0.9731 0.9390 0.9658
Pseudo-second-order model

Qe cal (mg g−1) 34.40 ± 1.80 36.43 ± 2.06 125.59 ± 4.55
k2 (10−4 g mg−1 min−1) 3.2858 ± 0.6712 5.0231 ± 1.2543 1.8146 ± 0.3050

R2
adjusted 0.9856 0.9694 0.9843

Table 3. The kinetic parameters for dye adsorption onto magnetic nanocomposites from binary
solutions (nonlinear regression).

Sample Fe3O4-SBA15 Fe3O4-SBA15-
COOH-0.05

Fe3O4-SBA15-
COOH-0.1

MB (MB + MG)

Qe exp (mg g−1) 174.48 193.16 201.84
Pseudo-first-order model

Qe cal (mg g−1) 168.43 ± 3.90 188.33 ± 2.79 196.20 ± 2.59
k1 (min−1) 0.0463 ± 0.0045 0.0747 ± 0.0049 0.1059 ± 0.0067
R2

adjusted 0.9780 0.9884 0.9893
Pseudo-second-order model

Qe cal (mg g−1) 183.91 ± 1.53 200.34 ± 1.79 206.57 ± 1.64
k2 (10−4 g mg−1 min−1) 3.3498 ± 0.1546 5.5057 ± 0.3057 8.0765 ± 0.4467

R2
adjusted 0.9980 0.9968 0.9969

MG (MB + MG)

Qe exp (mg g−1) 23.24 27.32 89.80
Pseudo-first-order model

Qe cal (mg g−1) 24.09 ± 0.50 27.20 ± 1.19 88.82 ± 2.18
k1 (min−1) 0.0111 ± 0.0072 0.0136 ± 0.0020 0.0178 ± 0.0016
R2

adjusted 0.9951 0.9687 0.9878
Pseudo-second-order model

Qe cal (mg g−1) 30.62 ± 0.20 32.76 ± 1.58 105.70 ± 3.35
k2 (10−4 g mg−1 min−1) 3.5855 ± 0.0981 4.6580 ± 0.9505 1.8420 ± 0.2619

R2
adjusted 0.9952 0.9821 0.9905
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In the case of MG adsorption, the variation in Qt versus t0.5 is shown in Figure 16.
The slope of the straight line (kid), the intercept (C), and the regression coefficients are
given in Table 4. It can be observed that the straight line did not pass through the origin
which means that intraparticle diffusion is not the only rate-limiting step and the intercept
has negative values. Previous studies that reported a negative value of C suggested that
external film diffusion, in addition to intraparticle diffusion, limited the adsorption rate [34].
Therefore, in our case, the negative values of C constant might be interpreted as an external
film diffusion resistance that led to the time lag for the MG adsorption [35].
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Figure 16. Intraparticle diffusion plots for the adsorption of MG onto magnetic nanocomposites.

3.2.4. Adsorption Isotherms

The Langmuir (Equation (5)) and Freundlich (Equation (6)) isotherm models are the
most known isotherm models that can describe the adsorption equilibrium between the
concentration of the dye in bulk solution and the quantity of the dye adsorbed on the ad-
sorbent surface at a given temperature. The Langmuir model assumes uniform adsorption
energies distributed on the adsorbent surface, whereas the Freundlich isotherm model
assumes multilayer adsorption on a heterogeneous surface with nonuniform affinities and
adsorption energies [36]. In our study, the equilibrium data were modelled using both
equilibrium isotherm models whose nonlinear equations are the following:

Qe =
QmaxKLCe

1 + KLCe
(5)

Qe = KF × C
1
n
e (6)

where Ce is the equilibrium concentration of the solute in solution (mg L−1), KL is the
equilibrium constant of the Langmuir model related to the adsorption energy (L mg−1),
Qe is the adsorption capacity at equilibrium (mg g−1), Qmax is the maximum adsorption
capacity (mg g−1), and KF and 1/n are Freundlich isotherm parameters (adsorption capacity
(mg g−1) and intensity).

Figures S3 and S4 and Table 5 illustrate the adsorption isotherms and the calculated
parameters. The correlation coefficient (R2) and the Akaike’s information criterion (AIC)
were used to confirm the goodness of fit. Lower AIC values imply that the respective model
is more likely than the alternative model to characterize the sorption process [37]. Based
on these parameters, it is clear that the Langmuir model fits better the experimental data
for MB adsorption, whereas the Freundlich model describes better the adsorption process
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of MG at equilibrium. The favorability of the adsorption process was estimated from the
values of the separation factor (RL), using the following equation:

RL =
1

1 + KLC0
(7)

where C0 (mg L−1) is the initial dye concentration, and KL is the Langmuir equilibrium
constant.

Table 5. Langmuir and Freundlich isotherm parameters for adsorption of MB and MG onto magnetic
nanocomposites.

Sample Fe3O4-SBA15 Fe3O4-SBA15-
COOH-0.05

Fe3O4-SBA15-
COOH-0.1

Dye MB

Langmuir parameters
Qmax (mg g−1) 239.17 254.58 256.09
KL (L mg−1) 0.2544 0.2574 0.3157

R2 0.9928 0.9964 09966
AIC 39.39 35.87 35.83
RL 0.440 0.437 0.387

Freundlich
parameters
KF (mg g−1) 65.33 68.02 74.89

1/n 0.3382 0.3523 0.3372
R2 0.8830 0.9244 0.9375

AIC 56.14 54.24 53.42

Dye MG

Langmuir parameters
Qmax (mg g−1) 30.73 39.28 126.55
KL (L mg−1) 0.0531 0.0423 0.0234

R2 0.9502 0.9848 0.9934
AIC 22.82 18.62 25.50
RL 0.790 0.825 0.895

Freundlich
parameters
KF (mg g−1) 4.11 4.16 6.41

1/n 0.4167 0.4588 0.5977
R2 0.9833 0.9866 0.9975

AIC 16.24 17.87 19.58

When RL is between 0 and 1 the adsorption process is considered as favorable, for
RL > 1 the adsorption is unfavorable, while for RL = 1 the process is linear [38]. In this
study, the calculated values of RL fall between 0 and 1, which shows the favorability of the
adsorption process.

The modified Langmuir isotherm model can be used to determine the competitive
adsorption capacity of dyes in binary solutions [39]. Equation (8) describes this model
mathematically.

Qe,D1 =
Qmax,D1KL,D1Ce,D1

1 + KL,D1Ce,D1 + KL,D2Ce,D2
(8)

The linearized form of Equation (8) is the following:

1
Qe,D1

=
1

Qmax,D1
+

1
Qmax,D1KL,D1

[
1

Ce,D1
+

KL,D2Ce,D2

Ce,D1

]
(9)



Nanomaterials 2022, 12, 2247 19 of 25

For dye 2 (D2), the linearized equation is:

1
Qe,D2

=
1

Qmax,D2
+

1
Qmax,D2KL,D2

[
1

Ce,D2
+

KL,D1Ce,D1

Ce,D2

]
(10)

where Ce,D1, Ce,D2, Qe,D1, and Qe,D2 are the equilibrium concentration and the equilibrium
adsorption capacity of dye 1 (D1) and dye 2 (D2) in binary solutions; KL,D1 and KL,D2 are
the Langmuir constants characteristics for the dye adsorption from single solutions; and
Qmax,D1 and Qmax,D2 are the maximum adsorption capacities of the magnetic composite for
D1 and D2 in binary solution.

Qmax,D1 and Qmax,D2 can be obtained by graphing Equations (9) and (10), respectively.

The ratio
Qmax,binary
Qmax,single

offers information about the dynamics of dye adsorption in binary
solutions [40]. The two adsorbates have a synergistic effect when this ratio is supraunitary,
with the mixture’s effect stronger than the individual adsorbates’ effect. When the ratio
is less than 1, the two adsorbates have an antagonistic effect, with the mixture having a
weaker effect than the individual adsorbates. When the ratio is equal to 1, the combination
has no influence on the dyes’ adsorption [40]. In Table 6, the values of Qmax,MB and Qmax,MG,
as well as the ratio Qmax,binary/Qmax,single for each magnetic nanocomposite investigated
in this study, are displayed. Only in the case of MB adsorption onto Fe3O4-SBA15 is the
Qmax,binary/Qmax,single ratio equal to 1, implying that the mixture has no influence on the
adsorption of each adsorbate. In all other cases, the ratio is subunitary, which means that
the adsorption of each dye is hindered by the presence of the other one.

Table 6. The maximum adsorption capacities determined using the modified Langmuir isotherm
model in binary solutions.

Adsorbent Dye Parameters Binary Solution
(mg g−1)

Qmax,binary
Qmax,single

Fe3O4-SBA15 MB Qmax,MB 239.23 1.00
MG Qmax,MG 24.33 0.79

Fe3O4-SBA15-COOH-0.05 MB Qmax,MB 181.48 0.71
MG Qmax,MG 36.58 0.93

Fe3O4-SBA15-COOH-0.1 MB Qmax,MB 154.32 0.60
MG Qmax,MG 81.10 0.23

3.2.5. Adsorption Mechanism

In general, a high adsorption capacity is linked to a large surface area and pore volume
of the adsorbent. For the magnetic nanocomposites investigated in this study, these two
parameters have close values (Table 1); therefore, the differences between their adsorption
capacities depend on other factors, such as the size of the adsorbate molecule and existing
functional groups that may cause weaker or stronger interactions with the adsorbent
surface. The structure and surface chemistry of the adsorbent also play a major role in
dye molecule adsorption. During the adsorption process, a variety of interactions could
occur such as hydrogen bonding, electrostatic interactions, van der Waals forces, and π-π
interactions [41]. The driving force of adsorption, according to some researchers, is the
molecular geometry and surface charge [42]. According to zeta potential measurements,
the magnetic nanocomposites investigated in our study have negative charges (−32.4 mV
for Fe3O4-SBA15, −38.5 mV for Fe3O4-SBA15-COOH-0.05, and −45.8 mV for Fe3O4-SBA15-
COOH-0.1), as expected, due to the presence of carboxyl and hydroxyl groups on their
surface (Table 1). It can be noted that zeta potential values increase as the content of
the COOH groups increases. These negative charges indicate that these nanocomposites
present more favorable adsorption for cationic dyes and a very good dispersibility in
water, which is very important for the adsorption of pollutants from aqueous solutions.
The electrostatic interaction seems to be the dominant mechanism of adsorption, but
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the hydrogen bonding could also be involved in the adsorption process. A schematic
representation of these interactions is shown in Figure 17. The analysis of equilibrium
data showed that MB dye is better adsorbed by the studied magnetic nanocomposites than
MG dye. These experimental results could be explained by the molecular geometry of the
dye molecule. The MB molecule, having a planar structure, favors the adsorption via a
face-to-face conformation. On the other hand, nonplanar molecules such as MG are kept
aside from the adsorbent surface due to the spatial constraint, resulting in low interactions
with the adsorbent surface. This behavior was also observed by other researchers who
investigated dye adsorption by modified multiwalled carbon nanotubes. They found that
molecules with a greater charge and planar structure have a higher adsorption affinity [42].

3.2.6. Comparison with Other Adsorbents

Table 7 shows a comparison of the performance of the magnetic nanocomposites
investigated in this study with other similar adsorbents reported in the literature. As
can be seen, their adsorption capacity is comparable to or even superior to that of the
other adsorbents. Therefore, these novel magnetic nanocomposites might be considered as
effective adsorbents to remove cationic dyes and other contaminants from wastewater.

Table 7. Comparison of adsorption capacity of various adsorbents for MB and MG.

Adsorbent Adsorption Capacity
for MB (mg g−1)

Adsorption Capacity
for MG (mg g−1) Reference

Fe3O4@SiO2-EDA-COOH 43.15 - [43]
γ-Fe2O3/SiO2
nanocomposite 116.10 - [44]

Mesoporous Fe3O4@SiO2 33.12 - [45]
Fe3O4@SiO2-CR 31.44 - [46]
Fe2O3@mSiO2 208.31 - [47]

Carboxylic-functionalized
superparamagnetic
mesoporous silica

microspheres

109.80 - [20]

CoFe2O4-SiO2 - 75.50 [48]
Fe3O4@SiO2-CPTS

magnetic NPs - 25.50 [49]

GO - 27.16 [50]
SWCNT-COOH - 19.84 [51]

Fe3O4-SBA15 239.17 30.73 This work
Fe3O4-SBA15-COOH-0.05 254.58 39.28 This work
Fe3O4-SBA15-COOH-0.1 256.09 126.55 This work

3.2.7. Desorption Studies

The desorption and regeneration capacity of the adsorbents are of crucial importance
when assessing their industrial applications. In our study ethanol 94% has been tested as
desorbing agent. As can be seen in Figure 18, after seven repeated adsorption–desorption
cycles, the adsorption capacity of the adsorbents exhibited insignificant decay. Therefore,
the nanocomposites exhibited superior recycling stability for the removal of organic dyes
MB and MG from aqueous solutions.
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Figure 17. Schematic illustration of the possible adsorption mechanism of MB and MG onto carboxyl-functionalized magnetic nanocomposites 
through hydrogen bondings or electrostatic interactions. 
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Figure 18. Reusability of the samples Fe3O4-SBA15 (black), Fe3O4-SBA15-COOH-0.05 (red), and
Fe3O4-SBA15-COOH-0.1 (blue) for MB (a) and MG (b).

4. Conclusions

In this study, three novel magnetic nanocomposites based on carboxyl-functionalized
SBA-15 silica and magnetite nanoparticles, with relatively high surface area and total
pore volume, were prepared through a simple method, and their adsorption capacity for
methylene blue and malachite green G from single and binary aqueous solutions was
investigated comparatively. An increase in the sorption capacity for both dyes by increas-
ing the amount of carboxyl groups on the adsorbent surface was observed. The results
showed that a pH value of 10.6 is the most favorable for dye adsorption. The kinetic studies
revealed that dye adsorption onto all three adsorbents followed a pseudo-second-order
kinetics model, the electrostatic interaction being the dominant mechanism of adsorp-
tion. The hydrogen bonding seems to be also involved in the adsorption process. The
results of the intraparticle diffusion model indicated that the adsorption process is signifi-
cantly influenced by external mass transfer and intraparticle diffusion. The equilibrium
adsorption data recorded for MB were best fitted by the Langmuir model, whereas for
MG, the Freundlich model described better the adsorption process at equilibrium. The
maximum adsorption capacities were determined to be 239.17/30.73 mg g−1 (MB/MG) for
Fe3O4-SBA15, 254.58/39.28 mg g−1 (MB/MG) for Fe3O4-SBA15-COOH-0.05, and 256.09/
126.55 mg g−1 (MB/MG) for Fe3O4-SBA15-COOH-0.1. These values are higher than most of
those reported in the literature for similar materials. The obtained nanocomposites proved
to be very good adsorbents for cationic dyes in single and binary solutions. Their high
recycling stability, regeneration capacity, and efficient reuse in multiple cycles, recommends
these nanocomposites as promising materials for wastewater treatment.
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Equilibrium adsorption isotherms of MB on the magnetic adsorbents at pH = 10.6 and 298 K; Figure S4:
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