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Abstract: Academic research regarding polymeric materials has been of great interest. Likewise,
polymer industries are considered as the most familiar petrochemical industries. Despite the valuable
and continuous advancements in various polymeric material technologies over the last century, many
varieties and advances related to the field of polymer science and engineering still promise a great
potential for exciting new applications. Research, development, and industrial support have been the
key factors behind the great progress in the field of polymer applications. This work provides insight
into the recent energy applications of polymers, including energy storage and production. The study
of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be
presented and evaluated. In addition, in this review, we wish to emphasize the great importance of
various functional polymers as effective adsorbents of organic pollutants from industrial wastewater.
Furthermore, recent advances in biomedical applications are reviewed and discussed.

Keywords: polymer/functional polymer applications; batteries; solar cells; water treatment;
enhanced oil recovery; biomedical

1. Introduction

An increasing interest in the development of functional materials has led to the appear-
ance of so-called smart polymers, which have demonstrated their practical performance
in a wide range of application fields. These technical polymers are successfully gaining
a growing number of recipients in the field of renewable energies, medical diagnostics,
water treatment, pollution control, environmental protection, and food safety, thanks to
their high sensitivity, diversity, specificity, and capacity for analysis in real time [1–7].
Some polymers are active and functional in nature, but others need to be modified to
improve their impact and functionality. Several recent methods and techniques have been
developed for the functionalization of the surfaces of synthetic and natural polymers [8–12].
Indeed, the terminal groups of the surface of a polymer could be linked or modified by
reactive functional groups. Secondly, different molecules, oligomers, or active/bioactive
polymers can be grafted to the surface, thus offering new desired properties which match
the requirements of a targeted use [13–17]. Because of their inert character, polymeric
surfaces need to be pre-activated before proceeding to their functionalization. This pre-
treatment will give them an active surface for the immobilization of the various active
agents. This surface activation could be performed chemically by grafting different active
functions and branches, or physically, via different techniques, such as plasma treatment,
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laser treatment, UV irradiation, ozonolysis, electron beams, etc. [18–24]. Functionalization
of polymeric surfaces is generally provided chemically either via covalent bonds and low
energy interactions [25–27], or by non-covalent physical attraction, such as the adsorption
of pollutants [28,29], antibacterial biomaterials [30–32], and drug delivery systems [33–35].
Covalent chemical functionalization remains the most interesting and the most advanta-
geous. Indeed, it ensures a good durability of the active ingredients and a good stability
of the active principle before and after its applied action. The chemical grafting of poly-
functional molecules or macromolecules and the functionalization via spacer compounds
increases the efficiency of the polymeric surfaces by conferring them more active and
spaced functions, therefore making them more effective and relevant.

Below is an overview of recent advances in polymers and functional polymeric mate-
rials and their exploration in the development of various applicative fields and industrial
equipment (Figure 1).
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2. Energy Applications of Polymers

Currently, energy and sustainable energy have increasingly gained a leading position
as the most important global concerns in view of the increased depletion of fossil fuels.
Material and nanomaterial-based polymers and their composites are investigated in many
various applications related to energy storage and production (Figure 2), including batter-
ies, solar cells, super-capacitors, domestic tools, vehicles, fuel cells, biomedical equipment,
and surgical appliances [36–44]. Conducting polymers are organic polymers that can
conduct electricity, and they also may be used as semiconductors. Generally, the class of
polymers known as characteristically conducting polymers, or electroactive conjugated
polymers, were developed about 20 years ago, and their ability to conduct electricity is
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due to the occurrence of delocalized molecular orbitals. In addition to their conduction
properties, they also exhibit interesting characteristics, such as electronic, magnetic, wet-
ting, optical, mechanical, and microwave absorption properties. Conducting polymers
(CPs) have received a lot of attention due to their economic importance, good environ-
mental stability, and electrical conductivity, as well as their useful mechanical, optical,
and electronic properties. Generally, conducting polymers have different nanostructures
with a higher specific capacitance and may constitute an alternative in the development
of new-generation energy storage devices [45–50]. There are many types of conducting
polymers that have the ability to conduct electrical current. These conducting polymers
generally are classified into three principal groups: ionic conducting polymers [51–53],
intrinsically conducting polymers (ICPs), which also are known as synthetic metals [54–56]
and conducting polymer composites [57–60].
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This distinctive type of polymer has been used in many important applications in the
fields of the production and storage of energy, such as in energy assembly, energy storage,
solar cells, batteries, photocatalysis materials, electrode materials, electrochromic devices,
dye-sensitized electric cells, light emitting and sensing devices, and perovskite electric cells.
They also have been used in other important applications, including as p-type conducting
parts in thermoelectric generators, as well as being the polymer composites that are used
in thermoelectric generators, piezoelectric materials, triboelectric generators, and super
capacitors [61–74]. Figure 2 shows the general applications of these conducting polymers.

Polyacetylene, polypyrrole, polythiophene, and polyaniline are examples of intrin-
sically conducting polymer ICPs. Among the existing conducting polymers, polyaniline
has attracted considerably more attention than other types of polymers in recent years be-
cause of its superior properties, which include its ease of synthesis, unvarying conduction
mechanism, and superior resistance to the effects of oxygen and water [75–77].

Recently, new types of conducting polymers have appeared and have proven to be
effective in several fields and applications.

2.1. Batteries as an Energy Storage Application of Polymers

Many organic polymers can retain and store energy when they charged with electric
current, and this energy can be used when it is needed, making it a general area for con-
tinuous and sustainable investment in both the short term and the long term. Currently,
the most common battery systems are based on the Li-ion technology. This technology
was proposed by M. S. Whittingham in 1976, and it was commercialized by SONY in 1990.
Additionally, in the 1980s, conducting polymers were extolled as promising materials for
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the next generation of environmentally benign and efficient batteries. In the late 1980s,
Bridgestone-Seiko and VARTA/BASF initiated their sales of commercial batteries that
were based on polypyrrole and polyaniline, respectively [78]. One of the most intensively
studied conjugated polymers for energy storage applications is polypyrrole, which also
was used as an anode material to manufacture an aqueous Li-ion battery in conjunction
with a LiCoO2 cathode [79,80]. Polythiophene has been of interest to electrochemists for
decades. The first battery with polythiophene as an active material was produced and
described in 1983. Recently, poly(3′-styryl-4,4′′-didecyloxyterthiophene), with a maximum
capacity of 45 Ah kg−1, and poly(4,4”-didecyloxyterthiophene), with a maximum capacity
of 95 Ah kg−1, were used as anode materials in combination with a polypyrrole cathode.
Another type of polymer that was used in an earlier period consisted of polyaniline (PANI)
pellet electrodes with different redox states. In addition, polyacetylene usage for anodes
and cathodes and a PEO-based electrolyte were presented in 1981. Also, as recently shown
by Zhu et al. [81], the bipolar active material known as poly(para-phenylene) can act as
both a cathode and an anode. Many organic polymers can retain and store energy when
charged with electric current, and the energy can be used when needed, making it a general
area for continuous and sustainable investment in the short and long term. The ultrafast
high energy density, long-term stability, and charge–discharge behavior are unique features
of supercapacitors, which have attracted considerable attention recently. Different superca-
pacitors have emerged as efficient energy storage devices, showing wide applications in
several fields, including electric vehicles and continuously automatic production power
supplies, etc. [82–86]. These supercapacitors exhibit a higher specific power when com-
pared to lithium-ion batteries. The electrodes of these supercapacitors are materials that
are based on metal oxides but mainly on conductive polymers [87–90]. These conductive
polymers have shown an excellent specific capacity and their low cyclic stability has been
lately overstated by the investigation of nanocomposites which was based on conducting
polymers [91–93].

2.2. Solar and Fuel Cells as an Energy Production Application of Polymers

Natural resources will be exploited for a clean environment and a good life in different
countries. The importance of solar cells in the production of clean and sustainable electric
power is attributed to places that government services do not reach or when the production
of energy from the sun becomes cheaper than other sources. Silicon solar cells are widely
used, but there is considerable research being done with the aim of providing less expensive
solar cells, such as polymer solar cells and perovskite solar cells. [94–97].

Polymer solar cells, also known as plastic solar cells, use conjugated polymers as light
absorbers, electron donors, electron acceptors, and/or hole transport materials, and these
solar cells have been investigated for twenty years. A typical polymer solar cell contains a
donor/acceptor bulk-heterojunction, a light-harvesting layer that is sandwiched between
the electron and hole extraction layer, then the anode and the cathode. When polymer
solar cells were first developed, their structure was similar to a conventional silicon-based
solar cell with a planar junction. People believe that this device works as a P-N junction
solar cell, based simply on its organic p-type and n-type semiconductor material coatings.
At this point, the polymer functions as a photoactive layer for light absorption, charge
generation, and transport [98,99].

Nowadays, various electrochemical reactions have been investigated in the direct
conversion of chemical energy into electricity, in the context of fuel cells. These fuel
cells have recently experienced great progress in their application for the production of
electric vehicles [100,101]. Indeed, direct methanol fuel cells (DMFCs) have shown great
potential in various energy applications, due to their energy conversion performance,
high fuel portability, and eco-friendly aspects [102–104]. Several parameters influencing
the efficiency of DMFCs have been reported, and the effects of the electrocatalysts used
have been widely studied. These electrocatalysts are mainly conducting polymers, having
primarily 1D and 2D nanostructures [105–110].
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3. Oil and Gas Applications

Enhanced oil recovery (EOR), also known as tertiary recovery, is the most commonly
used method to extract crude oil from an oil field when it cannot be extracted other-
wise [111,112]. EOR can extract 30 to 60% or more of the oil from a reservoir. Due to the
decrease in the discoveries of oil over the past few years, it is believed that enhanced oil
recovery technologies will be vitally important, by ensuring the extended use of oil to
generate energy. One of the reasons for this is due to the shortage of current oil resources
and the difficulty associated with identifying new oil fields. Polymers have an important
role in the application of enhanced oil recovery technology, especially surfactant and hydro-
gel polymers. Surfactant polymers are injected into the reservoir to reduce the interfacial
tension between oil and water, which allows recovery of the oil that is trapped by the
rocks in the reservoir, thereby increasing the production of oil. A hydrogel polymer is
injected into the reservoir to increase the viscosity of the fluid that contains water, making
that fluid more difficult to flow than the oil, thereby increasing the production of oil. The
most common polymer that is used for this application is one or more of the polyacry-
lamide group [113,114]. A typical polymer flood project involves the mixing and injecting
of polymer over an extended period of time until about 30 to 50% of the pore volume
of the reservoir has been injected. The addition of polymer into the reservoir increases
the viscosity of water and reduces the relative permeability of the water in the reservoir,
thereby increasing the recovery of oil due to the increase in the fractional flow.

Hydrogel polymers have been used for many years to control the mobility of the
injected water during enhanced oil recovery applications. These polymers are non-
Newtonian (also called pseudoplastic) fluids because their viscosities are a function of the
shear rate. They usually are used with surfactants and alkali agents to increase the sweep
efficiency of the tertiary recovery floods [115–117]. It is important to select the appropriate
polymer for a given area. Thus, the permeability of the reservoir and the viscosity of the oil
are used to determine which polymer has the optimum molecular weight. The composition
of the rock and the extent of adsorption of the polymer are used to determine the best
degree of hydrolysis.

3.1. Polyacrylamides

The synthetic polymer used in enhanced oil recovery applications is almost always one
of the polyacrylamides. A variety of these products is available from several manufacturers.
In general, the performance of a polyacrylamide depends on its molecular weight and
its degree of hydrolysis [113,114,118]. Partially hydrolyzed polyacrylamide (HPAM) is
one of the polyacrylamide group, and it has the shape of a straight chain polymer of
acrylamide monomers, some of which have been hydrolyzed. The HPAM is the polymer
most often used in enhanced oil recovery applications, due to its relatively low price and
good viscosifying properties [119].

3.2. Xanthan Gum/Biopolymer

Xanthan gum is a manufactured polysaccharide that is generally referred to as a
biopolymer. It is produced by the microbial action of xanthomonascampestris on a substrate
of carbohydrate media, with a protein supplement and an inorganic source of nitrogen. It
is well known that xanthan gum has an excellent performance in high salinity brine. It is
relatively compatible with most surfactants and the other injection fluid additives which are
used in tertiary oil recovery formulations. The biopolymer is usually injected along with an
effective biocide, to prevent microbial degradation [120]. Recently, a supramolecular system
by self-assembly of xanthan gum with anionic or cationic surfactants and β-cyclodextrin
has been developed. This composite polymer system has shown thermal and bio-stability,
and greater viscoelasticity in brines, and thus confirmed its potential as a promising tool
for enhanced oil recovery applications [121].
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3.3. Superabsorbent Polymer Composites for Enhanced Oil Recovery

Superabsorbent polymer composites are three-dimensionally crosslinked hydrophilic
polymers reinforced by clay, and they are capable of swelling and retaining huge volumes
of water in this swollen state [122,123]. Superabsorbent polymer composites have been
used as plugging agents in some oil fields in China to meet the need of enhanced oil
recovery [124]. After operating for a year, in which water flooding was a perpetual problem,
the water content in the crude oil increased, and this decreased the oil output. The high
water content in crude oil can cause many problems, such as increased corrosion, increased
amounts of sand, and the formation of emulsions that must be disposed of. Based on the
results of this research, it was concluded that, when compared to the existing polymer,
the superabsorbent polymer composite had good mechanical, thermal, and rheological
properties. Recently, pH-sensitive poly (acrylamide-co-methylenebisacrylamide-co-acrylic
acid) hydrogel microspheres immobilizing silica nanoparticles have been synthesized
by reverse suspension polymerization. The prepared hybridized polymeric composite
exhibited a significant improvement in the swelling property as a function of the change
in pH and showed a 23% increase in the oil recovery factor [125]. Even so, additional
advanced studies should be done to determine whether these different polymers could be
used effectively for enhanced oil recovery [126].

4. Advances in Biomedical Applications

The biomedical sector is a very specific field of applications for polymeric materials.
Indeed, it exploits, or attempts to exploit, various compounds by controlling their different
chemical, physical, and mechanical properties while ensuring an effective therapeutic
function towards complex biological systems and phenomena, whose parameterization
is almost impossible. For a long time, man has tried to exploit the macromolecular com-
pounds he has invented and developed over the years for various therapeutic purposes.
Thus, since the Second World War, the biomedical field, comprising a surgical compo-
nent involving prosthetic systems, and a pharmacological component, implying drug
substances, was a booming scientific and economic sector. Polymers and functionalized
polymeric materials are widely studied in many biomedical applications mainly due to
their relevant properties, excellent biocompatibility, and the diversity of their technical
characteristics. Many polymers and functional polymeric materials have been developed
to improve the performance of medical diagnostics through various approaches, including
the enhancement of the contrast in imaging technologies and the promotion of molecular
recognition in advanced diagnostic assessments. Polymers for diagnostics have attracted
the attention of researchers and manufacturers considerably, due to their reliability in offer-
ing both simple and rapid diagnostics, as well as in the transport and protection of drugs
immobilized in their structures. Vallejos et al. have prepared a polymeric chemosensory
membrane-based vinyl copolymer, grafted with 6-methoxyquinoline groups as chloride
responsive fluorescent moieties. This sensory material revealed an excellent efficacy for the
detection and quantification of chloride in human sweat and has thus shown its promising
capacity for the diagnosis of cystic fibrosis [127]. Polydimethylsiloxane (PDMS) was the
more investigated material in the preparation of different organ-on-a-chip devices and
microphysiological systems (MPSs). PDMS has shown an efficient and versatile perfor-
mance in various medical applications. However, many deficiencies have lowered its
importance, and applicative improvements still remain. Recently, various alternative poly-
meric materials (Figure 3), including hydrogels, elastomers, glass polymers, resins, paper,
thermoplastic polymers, and nanocomposites, were applied as organ-on-a-chip devices and
microphysiological systems providing more functionalities, such as enhanced inhibition of
absorption, leaching, and auto-fluorescence, as well as affording more capacity for rapid
prototyping [128–130].
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These materials were thus promising in personalized medicine, modeling, drug dis-
covery, in vitro pharmacokinetic/pharmacodynamics, and in the investigation of cellular
responses to drugs. Indeed, advances in preparation technologies, such as 3D bioprinting,
have led to an effective use of different hydrogel-based devices. Various hydrogel-based
natural polymers (alginate, gelatine, silk fibroin, hyaluronic acid, collagen, fibrin, decellu-
larized extracellular matrix, and agarose) and synthetic polymers (mainly polyethylene
glycol and polysiloxane) have been used as bioinks in the preparation of different ma-
terials for building 3D cell-laden structures by bioprinting technologies. Hydrogels can
also be used in complex structures and topographies to better mimic the natural extra-
cellular environment. In a recent study, Gebeyehu et al. [131] prepared a polysaccharide
hydrogel ink-based 3D bioprinted tumor model for chemotherapeutic drug screening.
The fabricated cell-laden scaffolds using the different bioinks (H4 and H4-RGD) exhibited
excellent mechanical properties. Bioinks showed a good printability at relatively low
temperatures, and without a UV curing step. Xenograft cells (PDC), derived from 3D
printed non-small cell lung cancer (NSCLC) patients, exhibited a relatively rapid spheroid
growing and the creation of a tumor microenvironment after 7 days. The half maximal
inhibitory concentration (IC50) evaluation revealed a greater resistance of 3D spheroids
to docetaxel, doxorubicin, and erlotinib to untamed type triple-negative breast cancer
(MDA-MB-231-WT) and pulmonary adenocarcinoma (HCC-827) cells. Different results of
the shape fidelity, flow property, biocompatibility, and scaffold stability of the H4-RGD
hydrogel system confirmed the ability of this natural bioink polymer to be effective in the
fabrication of different 3D cell bioprinting models, as well as in the development of in-vitro
tumor microenvironments for the high-throughput screening of diverse anticancer drugs.
Lin et al. [132] developed 3D bioprinted proximal vascularized tubule models, featuring ad-
jacent ducts lined with a confluent epithelium and endothelium, continuous in a polymeric
permeable ECM. Three-dimensional fabricated kidney tissue ensured the timely quantifica-
tion of glucose reabsorption and albumin uptake over time. The three-dimensional renal
tissue, through the different assessments, could provide a valuable platform for various
in vitro investigations of renal function, disease modeling and pharmacology.

Currently, functional polymers and are experiencing a rapid and continuous progress
as drug delivery and protein purification systems. Due to their diversity, surface and
bulk properties, polymers are the most effective biomaterials applied in drug formulations
and in drug delivery devices such as implants [133–135]. Recent drug delivery systems
involve dendrimers, micelles, polymeric nanoparticles, liposomes, microcapsules, cell
ghosts, and lipoproteins. These advanced polymeric systems provide a promising tool in
the improvement of the intrinsic bioavailability, the safe carrying, the controlled release,
and the targeting properties via various mechanisms [136]. Dendrimers are water-soluble,
highly structured, designed polymer macromolecules. They are widely investigated as
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carriers for anti-tumor drugs [137]. PAMAM (polyamidoamine) dendrimers are being
studied as efficient carriers (vectors) in gene therapy [138–140]. They are synthesized in
different sizes and shapes, thus providing well-shaped carriers designed with nanometric
sizes. These dendrimers can contain various polymeric ligands, such as PEG, allowing
the protection of the ingredients and others, ensuring the targeting of the cells via specific
bonds to the cellular receptors, those being essentially via the sugars [141,142]. Linear and
branched polyethylenimine (PEI) polymers have shown an excellent performance in DNA
encapsulation and complex transfection in gene therapy applications [143]. Adamantane
or histidine moieties could be grafted to the polyketal (pADK) polymer to obtain stable
DNA complexes and by the inclusion of these moieties in cyclodextrin cavities which are
linked to PEI polymer [144]. This modified polymer could be linked to a PEG-sugar-carrier-
targeting polymer to finally obtain an efficient star-shaped vector, applied in gene therapy
(Figure 4).
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A novel gene vector, PEG-GO-PEI-FA-based graphene oxide (GO), was synthesized,
in which folic acid (FA) can specifically bind to the folate receptor. Well-condensed and
stable nanocomplexes of siRNA were obtained, exhibiting a mild cytotoxicity with a high
uptake efficiency in ovarian cancer cells [145].

Smart polymers display chemical, physical, or structural changes based on changes
in the environmental conditions. In biology applications, stimuli-responsive polymers
undergo a change in their intrinsic properties in response to the change in biological
conditions [146–155]. The different stimuli can be pH, temperature, pressure, electric or
magnetic fields, concentration, light, ionic force, redox potential, etc. [156–166]. During
the GI (gastrointestinal) process, the pH changes, which is taken into consideration in the
design of different oral drug delivery systems [167,168]. Swollen tissue and cancerous
tissue exhibits a significant change in pH. Due to this change in pH, the polymers coating
the drugs release their active ingredients. Thanks to this release mechanism, polymers such
as the PEI-PEG copolymer release complexed DNA once inside the cell. Similarly, poly
(methacrylic acid), linked to the PEG polymer, protects and then releases the proteins that
are administered orally. Likewise, polymers which are sensitive to temperature variation,
revealing a change in the hydrophilicity/hydrophobicity balance, thus induce a more
improved membrane permeation. Among the thermo-responsive polymers, PNIPAAm has
been well reported [169–171]. The change in temperature causes it to experience an abrupt
phase transition. In fact, this polymer has a typical lower critical solution temperature
(LCST), below which it exists in the form of a hydrophilic coil; exceeding this temperature,
its chain structure suddenly turns into a hydrophobic globule. Recently, a wide range of
functional and well-designed polymers were investigated as effective and novel nanocarri-
ers for drug delivery systems in the loading of various natural active metabolites. Besides,
lignin nanoparticles (LNPs) were used as nanocarriers of curcumin ingredients, applied as
a novel oral drug delivery system. In vitro and in vivo results of their ingredient stability,
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bioavailability, cell viability, cellular uptake, and intestinal permeation were efficient and
promising [172]. By increasing drug solubilization in the stomach and reducing first-pass
metabolism via drug diffusion through the lymphatic to the circulatory system, lipids, load-
ing natural ingredients, thereby promote the penetration of these drugs into the digestive
tract [173]. Currently, lipid nanoparticles are widely investigated as efficient nanocarriers in
different drug delivery applications (Figure 5). Among those lipids used as drug nanocarri-
ers, we find the solid lipid nanoparticle (SLN) which is a colloidal drug nanocarrier, and is
generally treated with an emulsifier to improve the stabilization of the prepared dispersion
comprising the solid lipid that is melted in water [174]. The SLN, loaded with puerarin, is
the most studied complexed nanocarrier. The in vivo assessments on rats revealed its good
bioavailability, rapid absorption, and increased tissue concentrations in the heart and brain
as targeted organs [175,176]. Zhang et al. developed a new triptolide-loaded SLN nanocar-
rier system. This organic nanocarrier showed solubility and bioavailability improvements
as well as excellent antioxidant and anti-inflammatory effects via the reduction recorded in
glutathione (GSH) and myeloperoxidase (MPO) metabolism [177].

Nanostructured lipid carrier (NLC) is a second-generation lipid nano-sized particle,
comprising a blend of various solid and liquid lipids [178–181]. Thymoquinone (from
Nigella sativa)-loaded NLC nanocarriers showed an improved bioavailability and oral de-
livery behavior in 4T1 bearing Balb/C mice. Furthermore, measurements of liver biomark-
ers and anti-oxidant capacity revealed significant enhancements [182]. Currently, different
innovative NLC lipids have been investigated as effective nanocarriers for anticancer pur-
poses. Indeed, citral (from Cymbopogon citratus) [183] and zerumbone (from Zingiber
zerumbet L. Smith) [184], as a valuable drug, considerably increased the antitumor activity
in lymphoblastic leukemia and breast tumor cells after in vitro and in vivo assessments.
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Nanocarrier-based nanoparticles linked to different polymeric ligands were investi-
gated as drug delivery across the blood-brain barrier [186].

Today, oxidative stress is implicated in most brain diseases, and intensifies the impact
of tumor tissue. The bioactive polymer mPEG has recently shown its ability to respond
to a stimulus of reactive oxygen species (ROS) with a ROS-cleavable moiety (thioketal)
connecting the medical ingredient to the polymer [187]. This would increase the ability
to target drugs, especially for those sites showing significant oxidative stress. Nanogels
that are based on protective polymers have been effective in inhibiting amyloid β (Aβ)
fibril formulations [188,189], resulting in a reduced Aβ cell toxicity in vitro [190]. In vivo
inoculation of zinc-loaded polymeric poly(lactic-co-glycolic acid) (PLGA) nanoparticles
with g7 ligand (g7 is a glycopeptide used for its ability to cross the BBB) for BBB (blood-
brain barrier) crossing revealed a significant reduction of plaque size recently [191,192].

The role of functional polymers and diverse forms of particles in drug delivery will
expand considerably in the future to treat various unresolved issues (Figure 6). These
problems may involve site-specific drug delivery in subcellular organelles, exploiting
effectively the chemical, physical, and biological properties with the aim to optimize
drug delivery behavior. Nanocomposites have been shown to penetrate deep blood-brain-
barriers [193,194]. Nowadays, more knowledge is still needed regarding the biology of
cell–polymer interactions, nano-safety, and industrial manufacturing.

Actually, bioactive natural polymers, such as chitosan, alginate, carrageenan, and
various polysaccharide extracts from plants were grafted onto various textile biomaterials,
including implants and wound dressings. Successful chemical grafting without altering
the different mechanical, swelling, and microbiological properties of the grafted biopoly-
mers afforded excellent and promising functionalized textile biomaterials with enhanced
physical, bacterial, and biological performance [195–208].

Recently, nanofibrous materials via electrospinning technology were widely reported
and shown to be effective in various biomedical applications, including tissue engineer-
ing, wound dressing, drug delivery, regenerative medicine, disease modeling, and sens-
ing/biosensing [209–220] (Figure 7). These sustainable electrospun composite materials
were efficient due to their ease of operation, nanoscale diameter, wide specific surface, high
porosity, cost-effectiveness, and the large adaptability for engineering eco-friendly bioactive
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nanomaterials [221–225]. Electrospenning technology has been widely investigated in the
field of drug delivery system thanks to its versatility in terms of producing nanofibers
which combine several types of products in their initial composition. These nanofibers
could be in different morphologies and structures, such as core-sheath [226] and janus [227];
this allows one to control the release rate of the incorporated biological ingredients. In-
deed, a wide range of bioactive agents, such as anticancer drugs [228], antibiotics [229],
RNA [230], and therapeutic proteins [231], have been successfully immobilized into elec-
trospun polymeric nanomaterials of multiple designs that provide various drug release
profiles, including sequential release [232], zero-order release [233], biphasic release [234],
spatiotemporal release [235], and stimuli-triggered release [236]. Nowadays, nanofiber
delivery systems based on stimuli-sensitive polymers have gained considerable attention
in the field of drug delivery systems. These systems were designed to trigger the release of
drugs spatiotemporally through chemical or physical stimuli. Several types of stimuli have
been explored, including endogenous stimuli such as redox gradient, change in pH, and
sensitivity to enzymes, in addition to exogenous stimuli such as magnetic or electric fields,
temperature, and light [236–238]. Singh et al. [239] prepared a poly(N-isopropylacrylamide)
(PNIPAM) composite, stimuli-responsive nanofiber, comprising gold nanorods (GNRs), as
an on-demand drug delivery system. Following the near-infrared (NIR) irradiation, the
GNRs generate heat, which stimulates a thermal response of the PNIPAM, manifested by
the shrinking of the nanofibers and thus the controlled release of the active principle. Cell
studies have confirmed the performance of this light-sensitive nanomaterial in revealing
its biocompatibility and the efficiency of its swelling and deswelling ability, as well as a
controlled release with an efficient on–off behavior. Furthermore, the system has shown its
potential in the successful combination of chemotherapy with several drugs to improve the
effectiveness of complex cancer treatments. Mamidi et al. [240] designed a pH-responsive
composite nanomaterial based on PCL/mercaptophenyl methacrylate grafted carbon nano-
onions (f-CNOs), delivering doxorubicin (DOX). Under selected physiological conditions,
interactions between DOX and the f-CNOs resulted in the prolonged and controlled release
of DOX. Moreover, the nanocomposite exhibits a good cytoxicity and biocompatibility
when in contact with human fibroblast cells.
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Simultaneously, tissue engineering and regenerative medicine involve concepts bring-
ing together different fields, including chemistry, biology, and materials science engineering.
The development of technical and functional materials aimed at replacing or repairing
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diseased or damaged organs is a multiplex process that requires designed scaffold mate-
rials reminiscent of the cellular microenvironment with efficient cell metabolism, vitality,
adhesion, and tissue regeneration. Over the past two decades, electrospinning has shown
promise in the development of various effective fibrous scaffolds applied in different fields
of regenerative medicine, including in dressings, as well as in cartilage, bone, neural, and
cardiovascular tissue regeneration.

Indeed, for bone regeneration, many studies have focused on poly-caprolactone
(PCL)/hydroxyapatite (HAp), based on nanofibers, and additives which have been studied
for scaffold enhancement [241–243]. Liu et al. [244] developed a new hybrid bilayer scaffold
based on electrospun PCL/gelatine (Gel) nano fibrous material, combined with a 3D printed
PCL/Gel/nano-hydroxyapatite (n-HA) scaffold. Promising cell proliferation and adhe-
sion results using L929 fibroblasts were obtained with the heparin-conjugated PCL/Gel
nanofibrous material. The hybrid bilayer scaffolding revealed an excellent rate of new bone
regeneration. Hashemi et al. [245] designed a 3D polylactic acid/polycaprolactone/gelatin
electrospun scaffold with high porosity (80%), and functionalized with ascorbic acid as a
bone healing additive. Using a rat calvaria defect model, in vitro and in vivo evaluations
of cell proliferation and bone healing were promising, and afford a valuable potential in
osteogenesis and cell culture growth. Electrospinning technology was also the most effec-
tive strategy for producing nanofiber scaffolds for cartilage regeneration [246–248]. A wide
range of bioactive molecules, including corticosteroids, drugs, and growth factors have
been immobilized in electrospun nanofiber materials for the control of the inflammatory
response and the regeneration of new cartilage tissue. Shen et al. [249] prepared an electro-
spun porous PLA/gelatin nanofibrous scaffold functionalized with chondroitin sulfate (CS),
known to be used in the clinical treatment of cartilage disorders. The designed nanocompos-
ite scaffold has demonstrated good mechanical and biocompatible properties, excellent cell
proliferation, and crucial inflammatory inhibition. An in vivo study of rabbit cartilage de-
fects revealed clear cartilage repair and a highly anti-inflammatory effect via the reduction
of iNOS and PGES, enzymes producing NO and PGE2, respectively, by immunohistology.
Chen et al. [250] fabricated a 2D poly (L-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF)
(2DS) electrospun scaffold crosslinked with hyaluronic acid (HA) to further mimic the
microarchitecture of native articular cartilage. The in vitro and in vivo evaluation of the 3D
HAS biomimetic scaffold was promising and confirmed its ability as a potent candidate for
cartilage tissue regeneration applications. To date, electrospinning has gained prominence
in the production of innovative scaffolds for the regeneration of myocardial, valve, and
vascular tissue. Eom et al. [251] has developed a multi-layered anisotropic scaffold with a
3D anisotropy comparable to that of native heart tissue, based on a polycaprolactone (PCL)
nanofiber mat. In vitro cell culture of cardiomyocytes showed the spontaneous contraction
of the prepared scaffold mat and demonstrated cell alignment and subsequent uniaxial
contraction with aligned nanofibers. The stacked triple layers also exhibited multiaxial
contraction, which potentially simulates the compressive force of the heart tissue. Numer-
ous studies have reported the production of various electrospun nanofibrous scaffolds to
be applied as skin substitutes and wound dressings [252–254]. Choi et al. [255] designed
an electrospun polycaprolactone (PCL)/keratin scaffold as a multi-layered skin substitute,
mimicking the real multi-layered skin anatomy. The PCL/keratin scaffold revealed good
cell adhesion and proliferation on contact with a co-culture of keratinocytes and fibrob-
lasts. In addition, in vivo assays showed the rapid regeneration of new skin without scar
formation. Hivechi et al. [256] prepared an exopolysaccharide/PCL/gelatin electrospun
nanofibrous material as a skin substitute. The nanocomposite scaffold showed good bio-
compatibility and cell viability behaviors. The in vivo implantation of the electrospun
nanofiber on the full-thickness wound on rat models exhibited rapid healing efficiency.

5. Industrial Water Treatment Applications

Polymers play an important role in the water sector. They could be used as chemical
additives (as soluble polymers) in water treatment and desalination plants to reduce scale
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formations and increase water productivity, as coating material to protect water tanks and
transmission lines from corrosion, or as materials for membrane manufacturing for water
treatment and desalination applications. Another recent investigation of polymers and
functional polymers concerns their use in the adsorption of different organic and metallic
pollutants from industrial wastewater. Below is a brief overview of the global market value
and some examples of polymeric materials that can be used in the water sector (Figure 8).
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5.1. Chemical Additives

Chemical additives are used in many water applications, such as water treatment,
water desalination, and in oil field activities [257]. The global market of scale inhibitors was
worth USD 2.26 billion in 2014 and was projected to increase by 4.73% between 2015 and
2020 [258]. There are increasing demands on the use of soluble polymeric additives that
are effective, safe to use, and environmentally friendly. Many soluble polymer additives
are available in the market, some of which are used in the water treatment and desali-
nation process as scale coagulant aids and scale inhibitors [259–261]. The most effective
and famous additives are poly(acrylic acid), poly(methacrylic acid), and poly(Maleic acid)
which are widely used as scale inhibitors in thermal plants [262–264] for reducing scale
formation and increasing process performance. Another kind of polymeric additives for
water desalination using membrane processes is polyamino polyether methylenephospho-
nate (PAPEMP), which is an ideal additive as it controls calcium carbonate and calcium
sulfate scale formation and deposition [265,266]. Addition of this chemical could reduce
or eliminate acid feed, therefore reducing hazardous risk and increasing water produc-
tion. Recently, a zero generation (0G) polyamidoamine (0G means a dendrimer with only
the central core), as an amine-terminated dendrimer (PAMAM) with a reactive core of
1,3-diaminopropane, has been synthesized for the inhibition of silica scale contaminant.
This polymeric membrane has shown excellent scale-inhibiting properties and has shown
its effectiveness as a novel water treatment membrane [267].

5.2. Polymeric Membranes

Polymeric membrane technologies that have been explored in the treatment and
desalination of water are continuously developed and widely studied, with the aim of
meeting the global challenges of water security and supply. The relevant polymer-based
membranes have today become one of the most interesting materials, exploited in many
fields such as water treatment, water desalination, and food processing [268–270]. The
global membrane filtration market size is expected to reach USD 24.4 billion by 2026 [271].
There are many polymeric materials that can be used for membrane filtration which
depends on the application area. They can be used as microfiltration (MF) or ultrafiltration
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(UF) devices for the removal of suspended solids and microorganisms, or large chemical
molecules and colloidal particles. Those membranes are mainly made by polypropylene
(PP), poly(vinylidene fluoride) (PVDF) and polytetrafluoroethylene (PTFE), due to their
durability and availability, as well as their excellent thermal and mechanical stability.

Other useful applications are nanofiltration (NF) and reverse osmosis (RO) membranes
for the removal of dissolved salts from water. Polysulphone (PS) and poly(ethersulphone)
(PES) and polyacrylonitrile (PAN) are some examples of the materials that are used as a
membranes or membrane substrate for NF or RO applications [272–274]. Polyamide or
cellulose acetate are examples of polymeric materials that are used for fabricating composite
membrane for reverse osmosis or nanofiltration [275–277].

5.3. Polymers in the Treatment of Industrial Wastewaters

Water pollution by organic matter is a global problem, whose aspects and scope are
obviously different according to the level of development of the countries involved. It is
important today to work and make every effort to reduce the concentrations of pollutants
from industrial wastewater. Pollution by toxic organic waste is more insidious than a direct
pollution (odor, cloudiness) because it is less remarkable. The health of living organisms
is slowly deteriorating, their lives are shortened, their descendants may be affected by
malformations, their probability of being reached by cancer will increase, and the aquatic
fauna is not the only one concerned. We ingest these same toxic pollutants without having
them in our proximity, through the food chain, by consuming the flesh of these living
organisms, vegetables, fruits, vegetables, etc.

Dyes are among the most dangerous organic pollutants, and they are often found in the
environment as a result of their wide industrial use. These industrial pollutants are common
contaminants in wastewater. The textile, paper-making, cosmetic, pharmaceuticals, food
coloring, and pulp industries are reported to be the source of large amounts of pollutant
dye discharged into wastewater. These colored wastewater pollutants are toxic and even
carcinogenic, posing a serious danger to living aquatic organisms [278,279]. This interesting
topic requires the development of various technologies to treat colored waters. Biological
treatment and coagulation/flocculation processes are viewed as ineffective to treat soluble
dyes [280–282]. Adsorption using polymeric materials has appeared to be more effective,
as it is simple and economic and it is especially used to remove pollutants, which are
not easily biodegradable. Thus, a specific attention is devoted to explore new polymeric
adsorbents, which could be cheaper, more proficient, and easily regenerated [283–285].

In this sense, several synthetic polymeric adsorbents have been used for the removal
of organic dyes from contaminated matters [286–288]. Among these synthetic polymers
investigated as adsorbents of organic dyestuffs, we can mention the use of PVA, and
various composite materials based on PVA [289–293]. Conductive polymers have also
been investigated to be effective adsorbents. Indeed, the polyaniline and polypyrrole
polymers, as well as their related materials and composites, have revealed in the liter-
ature excellent adsorption capacities of various dyes and organic pollutants. [294–296].
Synthesized polymers based on cyclodextrins macromolecules have been studied as ad-
sorbents for different basic dyes in aqueous solution. These adsorbents exhibited high
sorption capacities [297–299]. Magnetic nanoparticles which were modified by different
polymers (3-aminopropyltriethoxysilane) and copolymers of acrylic acid, or crotonic acid,
have shown promising performances for removing various aqueous pollutants [300,301].
Silver-based coordination polymers were developed and demonstrated good adsorptive
performances toward a series of organic dyes with sulfonic groups [302].

In recent years, natural polymeric bio-sorbents are gaining more interest over syn-
thetic classical adsorbents, due to their tunable physicochemical properties, structural
diversity, reusability, and environmental benefits [303–305]. Indeed, several low-cost poly-
meric adsorbents have been prepared through the valorization and the functionalization of
wastes from different sources, such as plants, fish shells, marine algae (green, brown and
red species), vegetables, etc. [306–309]. These materials are sources of cellulose, chitosan,
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sodium alginate, carrageenan, lignin, etc. These natural polymers have been exploited
either directly after extraction or by mixing them in polymeric composites for more com-
pactness and especially efficiency [310–317]. The adsorption results of various organic
pollutants have been very promising in terms of their absorption capacity, simplicity of
operation designs, cost-effective aspects, and reuse. [318,319]. Very recently, a new proce-
dure for exploring natural polymers as effective adsorbent materials has been investigated.
Thus, certain biodegradable textile polymeric materials, such as cellulose, have been func-
tionalized by different extracted natural polymers (chitosan, carrageenan, alginate, etc.).
This is a simple and economical method offering permanent and stable natural adsorbents
with high adsorption capacities [320,321].

Hereafter, we present an overview of the various natural adsorbent materials studied
in the adsorption of organic waste pollutants (Table 1).

Table 1. A synthesis of the various recent natural polymeric bio-sorbents and their composites studied for the adsorption of
anionic and cationic dyes from industrial wastewater.

Adsorbent Adsorbate qt (mg·g−1) Adsorption Efficiency
(%) References

Luffa Cylindrica fibers Malachite green/MB 63/52 96.72/94.40 [322]

Bean peel Cibaron Blue 5.72 95.31 [323]

Eichhornia crassipes roots 4B red reactive 43.28 95 [324]

Dead Typha angustifolia (L.) leaves MB 106.75 89.83 [325]

Almond shell MB 84.9 [326]

Salix babylonica leaves MB 60.97 [327]

Prickly (peel) bark of cactus fruit MB 222 [328]

k-carrageenan/alginate/cellulose
PEM MB 522.4 98.6 [329]

Coconut mesocarp
Remazol golden yellow 6.8 94.9

[330]Reactive gray BF-2R 4.8 100
Reactive turquoise Q-G125 4.1 96.6

Banana peels
Remazol golden yellow 2.5 70.2

[330]Reactive gray BF-2R 1.2 75.4
Reactive turquoise Q-G125 1.6 100

Typha australis Leaves Malachite green 85.21 - [331]

white pine (Pinus durangensis)
sawdust MB 87 86 [332]

pineapple (Ananas comosus) leaf Remazol Brilliant Blue R 9.66 96.20 [333]

Lime (Citrus aurantifolia) peel Remazol Brilliant Blue R 9.58 95.89 [333]

Coconut bunch Remazol Brilliant Blue R 9.48 94.76 [333]

Coconut fiber Remazol Brilliant Blue R 9.55 95.48 [333]

Chili seeds Remazol Brilliant Blue R 9.40 93.97 [333]

Guava leaves Remazol Brilliant Blue R 9.41 94.09 [333]

Coconut residue Remazol Brilliant Blue R 9.38 93.85 [333]

Jackfruit peels Remazol Brilliant Blue R 9.23 92.26 [333]

Orange peel Remazol Brilliant Blue R - 11.4 [334,335]

Spent tea leaves Remazol Brilliant Blue R 9.7 - [334]

Salvinia natans Remazol Brilliant Blue R 61.9 - [336]

Durian peel Remazol Brilliant Blue R - 14.9 [336]

watermelon rind

MB 200 99 [337]
Brilliant green 188.6 98 [338]

Remazol Brilliant Blue R 333.33 92–97 [339,340]
Congo red CR 17 100 [341]

Orange G 27 85 [342]
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Table 1. Cont.

Adsorbent Adsorbate qt (mg·g−1) Adsorption Efficiency
(%) References

Cyanthilium cinereum L. H. Rob weeds MB 76.336 95 [343]

Paspalum maritimum (PMT) MB 56.179 97 [343]

Carica papaya wood MB 32.25 [344]

pupunha palm MB 78.989 [345]

Potato shell MB 48.7 [346]

Scenedesmus MB 61.69 [346]

Maize silk powder MB 132.1 [347]

Lignin sulfonate polymer Malachite green 27.4 60 [348]

Lignin sulfonate-g-poly(acrylic
acid-r-acrylamide) Malachite green 97 97 [349]

Microalgae Scenedesmus MB 87.69 - [350]

activated carbon prepared from Date Press
Cake MB 613.8 83.3 [351]

Karanj fruit hulls MB 239.4 94.4 [352]

Rattan (Lacosperma secundiflorum) MB 359 96 [353]

Fox nutshell MB 968.7 99.96 [354]

chitosan-epichlorohydrin/zeolite
composite

MB 44.2 90 [355]Reactive red 120 45.25 88

chitosan/carboxymethyl cellulose capsules
MB 64.6 4.4

[356]Methyl orange 334.8 37.5
Acid blue-113 526.8 59

Polyacrylamide-chitosan magnetic
nanoparticles MB 1044.06 76.1 [357]

chitosan-epichlorohydrin/TiO2
nanocomposite Reactive red 120 46.3 99.3 [358]

polypyrrole-chitosan composites Acid red 18 285.71 98.93 [359]

Chitosan-Activated Charcoal Composite Thionine cationic dye 60.9 92.9 [360]

chitosan-glyoxal/TiO2 nanocomposite Methyl orange 374.8 75.9 [361]

chitosan/polyamide nanofibers Ponceau 4R 482.2 - [362]Reactive Black 5 352.5 -

Chitosan/alginate composite sponge Acid red B14 1486.9 - [363]

fibrous chitosan/alginate composite foam MB 1488.1 -
[364]Acid Black-172 817 -

Sodium alginate nanofiber membranes MB 2230 - [365]

Sodium alginate/gelatin/graphene oxide
composite aerogel

MB 322.6 - [366]Congo red 196.8 -

Lignin/cellulose nanocrystals/alginate
beads MB 1181 - [367]

Cladodes of Tacinga palmadora Crystal violet 228.74 - [368]

Palm cactus Crystal violet 220 - [369]

O. ficus indica cladodes Acid orange 198.9 - [370]

Cactus pear seed cake MB 260 56.48
[371]Methyl orange 336.12 100

Fruit peels (O. ficus indica)

Indigo carmine 294 76–99

[372]
Solophenyl blue 909 76–99

MB 416 76–99
Crystal violet 312 76–99

Carboxymethyl chitosan-modified
magnetic-cored dendrimers

MB 20.85 -
[373]Methyl orange 96.31 -
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Table 1. Cont.

Adsorbent Adsorbate qt (mg·g−1) Adsorption Efficiency
(%) References

Gelatin-based magnetic beads MB 465 - [374]Direct Red 380 -

Glutaraldehyde cross-linked
chitosan-coated Fe3O4 nanoparticles Methyl orange 758 - [375]

Magnetic hydrogel beads with gum
tragacanth Congo Red 94 - [376]

Fe3O4–κ-carrageenan cross-linked with
chitosan MB 123 [377]

Fe3O4@SiO2–κ-carrageenan MB 530 - [378]

Potamogeton crispus RR198 44.2 - [379]

O-carboxymethylchitosan-N-lauryl/γ-
Fe2O3 magnetic

nanoparticles
RR198 216 - [380]

Pistachio hull wastes RR198 253.67 95.13 [381]

Al2O3/MWCNTs Carbon nanotube RR198 424 91.54 [382]

Polyaniline/Fe3O4 RR198 45.45 92.1 [383]

Eggshell biocomposite beads RR198 46.9 92 [384]

Activated Carbon (Walnut Shells) RR198 79.15 87.17 [385]

Pistachio nut shell RR198 108.15 88 [386]

Chitosan RR198 310.4 95.11 [387]

Chitosan/cellulose PEM RR198 819 99.77 [388]

Cellulose/chitosan aerogels Congo Red 381.7 95 [389]

Chitosan/Zeolite composite MB 19.23 84.85 [390]

Chitosan/PVA composite Methyl orange
Eosin Yellow Dye

9.34
52.91

92.42
86.70

[391]
[392]

Chitosan/ZnO Malachite Green Dye - 98.50 [393]

Furthermore, some novel adsorbent designs based on polyelectrolyte multilayered
(PEM) bio-polymeric materials as potent bio-sorbents were studied [329,388]. These ad-
sorbents were prepared by an alternation of layers of two polyelectrolyte biopolymers
via a layer-by-layer grafting method. Different layers were grafted to a natural cellu-
losic non-woven material and providing thereby many practical advantages (Figure 9).
Various natural polymers were investigated and combined, such as chitosan, alginate,
carrageenan, etc. Polyanionic polymers were effective in adsorbing positively charged
molecules (Figure 10) and grafted polycationic polymers demonstrated an excellent perfor-
mance in removing negatively charged molecules and dye wastes. Overall, the covalent
immobilization of the biopolymer on the surface of the material has been beneficial in
ensuring the successful recycling and reuse of bio-sorbents without significant loss in
adsorption performance. The adsorption capacity results were therefore very interesting,
in addition to their low cost and easy reuse.

Finally, due to the specific selectivity of polymeric materials, which are functionalized
via a wide variety of polymers having various active groups, such as amines, hydroxyl,
carboxylic, phosphonic, and sulfonic, towards the target pollutant, particular attention will
be given to these.
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5.4. Other Applications in Water Sector

Protecting water tanks and transmission pipelines with a properly coated material,
to avoid or minimize corrosion, is essential for extending the lifetime of storage tanks
and pipes, as well as for maintaining water quality. Nowadays, there are many coating
materials, such as acrylic, polyurethane, epoxy, etc. that are used for many industrial and
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marine works. The market size is estimated at USD 8.7 billion in 2018 and is projected to
reach USD 12.5 billion by 2023 [394]. Polyurea is also perfect for water tank lining, due to
its elasticity, thermal stability, and ease of use. Polyurea can be effective in protecting steel,
aluminium, and fiberglass in a variety of water activities and commercial marine appli-
cations [395,396]. These chemicals, or other alternative chemicals with similar properties
and usage, could be formulated and manufactured to cover industrial demands and to
increase the business in the local contents of these materials. Functional polymers and their
composites were also applied for water treatment and desalination. Different polymeric
composites were thus prepared and studied, such as polymer-carbon composites [397],
polymer graphene composites [398], polymer-based activated carbon composites [399],
and polymer anionic/cationic clay composites [400].

The development of polymeric materials is becoming the most promising future
alternative to meet environmental water standards and to grant the water needs of
growing populations.

6. Conclusions

As shown in this review, synthetic and natural polymers exhibit excellent effective
performance in many areas of application. Recent continuous development in various
polymer functionalization technologies and nanotechnologies have endowed polymeric
materials with more interesting properties and tracing functionalities, promising to over-
come the various problems and shortcomings downgrading the impact and the efficiency
of polymers in their applications. Therefore, the simple combination of various native
polymers cannot fulfill all the required properties, and thus, surface functionalization
represents an efficient alternative and a crucial strategy that grants new a performance
with added value. In this perspective, the functionalization methods emerge as a basic line
for the obvious improvement of the functionalities of these applied materials. Despite the
significant progress in recent years and the high level of success of polymer functionaliza-
tion in different fields, several challenges still remain, and there is room yet for various
improvements. First of all, a comprehensive and precise knowledge of the biological mech-
anisms of cell–polymer interactions could guarantee better design improvement. Indeed,
many pathways related to cell uptake, cell adhesion kinetics, cytotoxicity, etc., are still
under study and a common theory should be established. Concerning energy applications,
as discussed, various studies have indeed confirmed the great potential of functional poly-
mer materials for the production and storage of sustainable energy. However, their use
for such applications has encountered greater challenges in their commercial adoption,
due to the lack of strategies that converge manufacturing speed and precision to produce
cost-effective, efficient, and selective devices. In addition, further studies are still needed to
assess the long term stability of such polymer systems.

Furthermore, the passage from the laboratory scale for the various polymer appli-
cations in industrial production is not evident, and still has many deficiencies and gaps.
In addition, there is typically the problem of a large delay, of great requirements, and
complicated laws for a finished product to be industrialized and commercially available.

In summary, by solving all these problems and overcoming the various obstacles, we
can affirm that natural and synthetic functional polymers and their composites represent
a milestone for diverse energy, environmental, and biomedical applications and they
guarantee an optimistic and promising future.
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