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Abstract
Context: Multiple myeloma and extensive lytic skeletal metastases may appear similar on 
positron‑emission tomography and computed tomography  (PET‑CT) in the absence of an obvious 
primary site or occult malignancy. Radiomic analysis extracts a large number of quantitative features 
from medical images with the potential to uncover disease characteristics below the human visual 
threshold. Aim: This study aimed to evaluate the diagnostic capability of PET and CT radiomic 
features to differentiate skeletal metastases from multiple myeloma. Settings and Design: Forty 
patients (20 histopathologically proven cases of multiple myeloma and 20 cases of a variety of bone 
metastases) underwent staging 18F‑fluorodeoxyglucose PET‑CT at our institute. Methodology: A total 
of 138 PET and 138 CT radiomic features were extracted by manual semi‑automatic segmentation 
and standardized. The original dataset was subject separately to receiver operating curve analysis and 
correlation matrix filtering. The former showed 16 CT and 19 PET parameters to be significantly 
related to the outcome at 5%, whereas the latter resulted in 16 CT and 14 PET features. Feature 
selection was done with 7 evaluators with stratified 10‑fold cross‑validation. The selected features 
of each evaluator were subject to 14 machine‑learning algorithms. In view of small sample size, two 
approaches for model performance were adopted: The first using 10‑fold stratified cross‑validation 
and the second using independent random training and test samples (26:14). In both approaches, the 
highest area under the curve  (AUC) values were selected for 5 CT and 5 PET features. These 10 
features were combined and the same process was repeated. Statistical Analysis Used: The quality 
of the performance of the models was assessed by MSE, RMSE, kappa statistic, AUC, area under 
the precision‑recall curve, F‑measure, and Matthews correlation coefficient. Results: In the first 
approach, the highest AUC  =  0.945 was seen with 5 CT parameters. In the second approach, the 
highest AUC  =  0.9538 was seen with 4 CT and one PET parameter. CT neighborhood gray‑level 
different matrix coarseness and CT gray‑level run‑length matrix LGRE were common 
parameters in both approaches. Comparison of AUC of the above models showed no significant 
difference (P = 0.9845). Feature selection by principal components analysis and feature classification 
by the multilayer perceptron machine‑learning model using independent training and test samples 
yielded the overall highest AUC. Conclusions: Machine‑learning models using CT parameters 
were found to differentiate bone metastases from multiple myeloma better than models using PET 
parameters. Combined models using PET and CECT data showed better overall performance than 
models using only either PET or CECT data. Machine‑learning models using independent training 
and test sets were performed on par with those using 10‑fold stratified cross‑validation with the 
former incorporating slightly more PET features. Certain first‑ and second‑order CT and PET texture 
features contributed in differentiating these two conditions. Our findings suggested that, in general, 
metastases were finer in CT and PET texture and myelomas were more compact.
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Introduction
Radiomics is a field of medical study 
that aims to extract a large number of 
quantitative features from medical images 
using data characterization algorithms. 
It has the potential to uncover disease 

characteristics that are difficult to identify 
by human vision alone and uses a process 
of image processing, segmentation, feature 
extraction, and model validation.[1]

Multiple myeloma is the most common 
primary malignant bone neoplasm in 
adults. It presents most commonly as 
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multiple lytic bone lesions and less commonly as diffuse 
osteopenia, solitary plasmacytoma, and an Osteo-sclerosing 
variant  (3%).[2] Skeletal metastases account for 70% of all 
malignant bone tumors and are seen in a vast number of 
primary cancers although primaries from the lung, breast, 
kidney, and prostate account for approximately 80% of all 
skeletal metastases.[3] They can present as lytic, sclerotic, or 
mixed lesions. Myeloma tends to spare the vertebral pedicles 
and involve the mandible, whereas metastatic carcinoma 
does the reverse. Multiple myeloma and extensive lytic 
skeletal metastases may appear similar on positron‑emission 
tomography and computed tomography  (PET‑CT) in the 
absence of an obvious primary site or occult malignancy 
and in such cases, histopathology remains the gold standard 
supplemented by biochemical, immunohistochemical, and 
molecular data. 18F‑fluorodeoxyglucose  (FDG) PET is 
used to detect the distribution  (including extraskeletal), 
activity, complications, and response evaluation of minimal 
residual disease in line with International Myeloma 
Working Group guidelines.[4] High FDG uptake in the bone 
may be considered a positive lesion even in the absence of 
osteolysis. The differential for both is benign and malignant 
tumors, infection, trauma, and osteonecrosis.

Methodology
Patients

This retrospective analytical study was conducted in June 
2021 in the Department of Radiology and Imaging Sciences 
in our institute utilizing the database of PET‑CT cases from 
March 2017 to May 2021. The study was approved by the 
Institutional Ethics Committee with a waiver for patient 
consent.

A total of 40 patients were selected, each of whose PET‑CT 
reports diagnosed a differential of skeletal metastases 
or multiple myeloma based on multiple focal or diffuse 
FDG avid lytic bone lesions with or without soft tissue 
components. All of them underwent histopathological 
examination. 20  patients were diagnosed with multiple 
myeloma and the rest with metastases from a variety of 
malignancies.

Inclusion criteria included patients referred to PET‑CT to 
differentiate multiple myeloma from metastatic lesions and 
were subsequently biopsied based on the findings.

Exclusion criteria were PET‑CT data incompatible with 
feature extraction software, unavailable histopathology 
data, and patients whose biopsy depicted benign lesions, 
infection, or inflammation.

Positron‑emission tomography and computed 
tomography examination

18F‑FDG PET‑CT was performed on a 16‑slice Biograph 
Horizon clinical PET‑CT system with TrueV‑4 Ring (Siemens 
Healthcare Erlangen Germany) and a Siemens  (VJ21B) 
PETsyngo acquisition workplace user interface. All cases 

were injected with 5–10 mCi (1 mCi/7–10 kg) of 18F‑FDG 
approximately 40 min before the examination. The patients’ 
blood glucose level was below 150  mg/dL at the time of 
FDG administration.

The examination started with a contrast‑enhanced routine 
spiral CT scan from the vertex to the mid‑thigh for attenuation 
correction using 60–80  ml of nonionic iodinated contrast 
material  (OMNIPAQUE™ Iohexol injection, solution GE 
Healthcare Inc.) at 1.5–2  mL/s. The venous phase images 
were acquired 65 s post injection. The parameters of the CT 
scan were 130 kV, 80–150 mAs (CAREDose4D auto mAs), 
slice thickness of 5  mm, 512  ×  512 reconstruction matrix, 
display matrix of 1024  ×  1024, scan length  –  1024  mm, 
transverse FOV  –  700  mm, pitch of 0.95, 0.6  mm slice 
collimation, gantry rotation time of 0.6 s, and kernel B20s 
for reconstruction. Then, PET imaging was performed at 
1  min/bed position for 7 beds, 4  mm slice thickness, 256 
matrix and covering the same field of view using a Gaussian 
filter with FWHM of 5 mm and reconstructed with iterative 
plus Time of Flight method  (attenuation‑weighted, three 
iterations and 10 subsets, matrix size of 256, zoom of 1, 
isotropic CT resolution of 24 lp/mm with 0.21 mm uniform 
resolution throughout the Field of View) and temporal 
resolution up to 105 ms.

Whole‑body PET and CT images in DICOM 3.0 format 
were loaded on three‑dimensional workstations for visual 
evaluation and data analysis  (Siemens Syngo. via VB10, 
Siemens AG, Healthcare Sector, Erlangen, Germany). On 
CECT, disease sites were identified in the presence of 
lytic or sclerotic bony lesions with or without associated 
soft tissue mass, abnormal postcontrast enhancement. In 
PET, abnormality was detected if there was increased 
FDG uptake with SUVmax higher than physiologic 
hepatic background activity  (SUVmax). Interpretation was 
conducted by three experienced radiologists blinded to 
histology results.

Radiomics pipeline

Radiomic feature extraction

LifeX software v7.0[5] was used to segment and extract 
radiomic features from unfiltered PET and CT  (1.5  mm 
slice thickness, venous phase reconstructed with B20s 
filter) images. Semi‑automated segmentation of attenuation 
corrected PET images was done by selecting an absolute 
SUVmax threshold of 2.2. Bin size was 0.7936508 and the 
number of gray levels was 64 in intensity discretization for 
PET images. An absolute intensity rescaling of minimum 
bounds of zero and maximum of 50 was selected. For CT 
images, bin size was 10, and the number of gray levels 
was 400 for intensity discretization. Kernel 3 was used 
and an intensity rescaling of minimum bound of  −1000 
and maximum bound of 3000 was used. A  circular 3D 
region of interest  (ROI) in the area of most FDG avid 
bone lesion was chosen [Figure  1] and a total of 138 
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imaging biomarker standardization initiative‑compliant 
first‑  and second‑order texture features were extracted 
under first‑order features  –  conventional PET/CT 
parameters (SUV and TLG), histogram (HISTO), and shape 
value and second‑order features – gray‑level co‑occurrence 
matrix  (GLCM), gray‑level run‑length matrix  (GLRLM), 
neighborhood gray‑level different matrix  (NGLDM), and 
gray‑level zone length matrix  (GLZLM) [Supplementary 
Table 1]. A  similar process was followed for CT 
images  (1.5  mm slice thickness venous phase images) 
where 3D ROIs were manually drawn in the area of the 
most visually  (independent) destructive lytic bone lesions 
or soft tissue mass. The PET and CT ROIs did not always 
correspond to the same lesion and were kept at nearly 
equal sizes for uniformity.

Feature preprocessing and dimension reduction

Receiver operating curve  (ROC) analysis was done using 
MedCalc® statistical software[6] for the 138 texture parameters 
extracted for both PET and CT selecting those most significantly 
correlated to the outcome  (P  <  0.05) in both groups. 19 PET 
and 16 CT parameters were found to be significant. The data 
obtained for all 138 parameters were of different ranges and 
hence were standardized  (n‑1) resulting in a matrix with values 
ranging from  −1 to  +1. A  correlation matrix using Karl Pearson 
coefficient of correlation  (r) between all the variables showed 
two clusters of significant correlation  [Figure  2a and b]. Highly 
correlated parameters were removed to yield a final matrix of 
16 CT and 14 PET parameters with majority of the parameters 
having an r  <  0.5 and VIF  (variation inflation fFactor) of  <10, 
thus mitigating the issue of multicollinearity [Figure 3a‑c]. While 
pruning the correlation matrix, parameters with P  >  0.05 on 
ROC curve analysis were preferentially discarded. Multivariate 
analysis of features is more reliable than bivariate analysis. 
Features selected after filtering the correlation matrix were given 
precedence over features with a significance of 5% in ROC 
analysis. [Supplementary Table 2].

Radiomic feature and selection

The final set of 16 CT and 14 PET parameters was 
individually subjected to 6 feature selection algorithms 

using Weka Data Mining v3.8.5[7] and XLSTAT statistical 
software v2021.2 with 10‑fold stratified cross‑validation. 
A seventh method employed all the values (no selection).

Machine learning and model validation

Up to 5 of the most relevant features in each of the resulting 
PET and CT selections were subject to 14 machine‑learning 
classifiers via two approaches  –  the first using 10‑fold 
cross‑validation and the second using independent random 
training and test samples  (26:14). This was done instead 
of a hold‑out strategy in view of the small dataset. This 
yielded a total of 588 confusion matrices and AUC outputs. 
Machine‑learning algorithms were performed in Weka Data 
Mining v3.8.5 and XLSTAT software with randomization 
with random seed of 1  [Table  1]. The highest AUC values 
were selected for 5 CT, PET, and combined parameters with 
each approach. From these, the feature selector‑classifier 
combination with the highest AUC was selected and those 
5 CT and 5 PET parameters were then subject to the same 
selection and classification process. The selector‑classifier 
combination with the highest AUC was selected as the most 
appropriate and the parameters used in building the model 
were denoted as the most significant ones in each approach to 
differentiate skeletal metastases from multiple myeloma.

Statistical analysis

T‑test for independent samples was done to assess 
variability in the distribution of sexes between both 
groups. Mann–Whitney U‑test was done to compare the 
ages of both groups. Histopathology was regarded as the 
gold standard according to which metastases and myeloma 
groups were divided.

The feature selection methods employed 10‑fold stratified 
cross‑validation for increased robustness.

In view of the small sample size, a hold‑out three‑step 
training, validation, and independent testing were 
not feasible. Hence, two approaches were adopted 
and compared: 10‑fold stratified cross‑validation 
and independent training and test sets  (26:14). 
When the dataset is too small to employ a hold‑out 

Figure 1: Radiomics pipeline utilized in the study
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strategy with train/validation/test splits, cross‑validation 
can be used to replace the inner train/validation split of 
model selection and also outer  (train/test) split of model 
evaluation which we have employed in the first approach.[8]

The quality of the performance of the models was assessed 
by MSE, RMSE, kappa statistic, AUC, area under the 
precision‑recall curve, F‑measure, and Matthews correlation 
coefficient.

Results
Demographic analysis

Fourteen patients were male and 6  females in the 

metastases group, whereas the myeloma group had 12 male 
and 8  female patients. T‑test for independent samples was 
not significant at 5% (P = 1.0)

The mean age in the metastases group was 
52.2  ±  19.48  years and in the myeloma group was 
61.95  ±  8.47  years. Mann–Whitney test U‑value was 
126.5 for age. The critical value of U at P < 0.05 was 127. 
Therefore, it was a significant result at P < 0.05. According 
to data from various population‑based cancer registries 
under the National Cancer Registry Programme, majority 
of the newly diagnosed MM cases (31.1%, 95% confidence 
interval  [CI]: 29.1%–33.2%) in India belonged to the 

Figure 2: Pearson’s correlation matrix of all parameter values. (a) Absolute values before and (b) after standardizing (n = 1) and centering

a b

Figure 3: Pearson’s correlation matrix of absolute r values after filtering redundant and multicollinear features for combined positron‑emission tomography 
and computed tomography (a), C (b) and positron‑emission tomography (c) data

c

b

a
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60–69  years age group.[9] However, more recent studies 
show that the younger patients are increasingly being 
affected with a median age of 55 years.[10]

Advancing age is the most important risk factor for cancer 
overall and India exhibits heterogeneity in cancer with 
lung, oral, stomach, and nasopharyngeal cancers being 
the most common in men and breast and uterine cervical 
cancers the most common in women.[11] The risk of 
developing cancer before the age of 75 years was 10.4% in 
India (International Agency for Research on Cancer, WHO, 
March 2021), and bone metastases usually present at an 
advanced stage. The most common cancers that spread to 
the bone are cancers of the breast, prostate, lung, kidney, 
and thyroid. The mean age seen in our sample could be a 
combination of the chosen sample, aggressive malignancies, 
delay in diagnosis, or treatment failures.

The metastases group included two cases of lung carcinoma, 
four cases of non‑Hodgkin’s lymphoma (ALK +  large cell, 
T‑cell, high grade, and DLBCL), one case of secondary 
Hodgkin’s lymphoma, four cases of leukemia  (two 
B‑cell acute lymphoid leukemia, one small lymphocytic 
leukemia, one acute myeloid leukemia  [AML] coexisting 
with metastatic rhabdomyosarcoma, and one AML 
coexisting with adenocarcinoma colon), one case each 
of adenocarcinoma breast and pancreas, two cases 
of adenocarcinoma prostate, one case of squamous 
cell carcinoma of esophagus, one case of high‑grade 

transitional cell carcinoma of urinary bladder, and one case 
of metastatic carcinomatous deposits from an unknown 
epithelial primary site.

Receiver operating curve analysis results

ROC analysis revealed 19 PET and 16 CT parameters 
which were significantly correlated to outcome  (P  <  0.05) 
with the highest significance for Discretized HU_min and 
NGLDM_Coarseness  (P = 0.007) in CT and for GLZLM_
ZP  (P  =  0.009) for PET. Most features in the original 
dataset were redundant due to multicollinearity and were 
removed by pruning the correlation matrix so that majority 
of features had r  <  0.5 while preferentially preserving 
the parameters with P  <  0.05 in the ROC analysis. This 
resulted in a feature set of 16 CT and 14 PET parameters.

Two‑tailed t‑test for independent samples at 5% 
significance for these parameters with significant ROC and 
those obtained after correlation matrix filtering revealed 
that the metastases group showed significantly higher 
mean CT conventional HU_min  (t  =  2.30, P  =  0.0268), 
discretized HU_min  (t  =  2.27, P  =  0.0286), CT NGLDM_
Coarseness  (t = −2.52, P  =  0.0158), CONVENTIONAL_
SUVbwQ1  (t  =  2.02, P  =  0.0496), PET GLRLM_
SRE  (t  =  2.14, P  =  0.0381), PET GLZLM_SZE  (t  =  2.35, 
P = 0.0240), and PET GLZLM_ZP (t = 2.14, P = 0.0383). 
CT Shape_Compacity  (t  =  2.78, P  =  0.0084), PET 
SHAPE_Compacity  (t = −2.26, P  =  0.0294), PET 

Table 1: Attribute selection and machine‑learning classification methods along with the protocol used in the study
Attribute evaluator + search method Classifier
1. CFS subset evaluator + greedy stepwise
2. Information gain attribute evaluator + ranker
3. Principal components analysis + ranker*
4. ReliefF attribute evaluator + ranker ‑ number 
of nearest neighbors (k): 10
Equal influence nearest neighbors
5. OneRules attribute evaluator + ranker
6. Mann–Whitney U‑test with P<0.05
7. No selection

1. Naive Bayes updateable
2. OneRules
3. Multinomial logistic regression using a ridge estimator ‑ logistic 
regression with ridge parameter of 1.0E‑8
4. Simple logistic regression
5. Multilayer perceptron using sigmoid nodes
6. Logistic model tree – LM_1: 6/6 (40)
Number of leaves: 1, size of the tree: 1
7. Random forest ‑ bagging with 100 iterations and base learner
8. AdaBoostM1, weight: 0.25
Number of performed iterations: 10
9. Bagging – bagging with 10 iterations and base learner
10. Iterative classifier optimizer
11. Randomizable filtered classifier ‑ IB1 instance‑based classifier using 
1 nearest neighbor (s) for classification
12. K‑Nearest neighbors – IB1 instance‑based classifier using 1 nearest 
neighbour (s) for classification
13. Support vector machine using sequential minimal optimization ‑ IB1 
instance‑based classifier using 1 nearest neighbor (s) for classification
14. LogitBoost – number of performed iterations: 10

*All feature selection and classification methods were 10‑fold cross‑validated (stratified) with seed value=1 except for principal 
components analysis + ranker. Confusion matrices were obtained for each classifier along with performance metrics. CFS: 
Correlation‑based feature selection
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GLRLM_LRE (t = −2.18, P = 0.0353), and PET GLRLM_
RP  (t  =  2.40, P  =  0.0214) were higher in the myeloma 
group. Hence, the majority of the parameters suggested 
that metastases were finer textured on CT and PET and had 
lower minimum HU than myelomas. On the other hand, 
myelomas had a more compact shape relative to a sphere.

Parameters

Computed tomography

In the first approach, highest AUC of 0.945 for 5 CT 
parameters  (CT NGLDM_Coarseness, CT GLZLM_
LGZE, CT GLCM_Dissimilarity, CT GLRLM_LRE and 
CT GLRLM_LGRE) was obtained using OneR selector 
and AdaBoostM1 classifier  (κ = 0.75, MSE  =  0.1996, 
RMSE  =  0.3106, F  =  0.875, MCC  =  0.751 and 
PRC  =  0.943). The highest combined AUC was the same 
as the AUC for the CT parameters.

In the second approach, highest AUC of 0.9063 for 5 
CT parameters  (CT NGLDM_Coarseness, CT Shape_
Compacity for 3D ROI, CT GLCM_Correlation, CT 
GLCM_Homogeneity  [=InverseDifference and CT 
GLRLM_LGRE] was obtained using Information Gain 
Evaluation selector and AdaBoostM1 classifier  (κ =0.5714, 
MSE = 0.2175, RMSE = 0.3601, F = 0.786, MCC = 0.577 
and PRC = 0.914).

Comparison of AUCs showed a difference 
of  −0.0387  (SE  =  0.476, Z statistic = −0.0814, and 
P = 0.9351).

Positron‑emission tomography

In the first approach, highest AUC of 0.7075 for 5 PET 
parameters  (Shape_Compacity for 3D ROI, GLRLM_RP, 
GLZLM_SZLGE, GLZLM_SZE and GLZLM_LZLGE) 
was obtained using RelieF selector and Logistic Model 
Tree classifier  (κ = 0.15, MSE = 0.4125, RMSE = 0.4852, 
F = 0.605, MCC = 0.152 and PRC = 0.782).

In the second approach, highest AUC of 0.75 for 5 PET 
parameters  (Shape_Compacity for 3D ROI, GLRLM_RP, 
GLRLM_LRLGE, GLZLM_LZHGE and GLZLM_LZLGE) 
was obtained using Mann–Whitney U‑test as selector and 
logistic model tree/simple logistic regression analysis as 
classifier  (κ =0.075, MSE  =  0.4591, RMSE  =  0.5461, 
F = 0. 5, MCC = 0.101, and PRC = 0.761).

Comparison of AUCs showed a difference 
of  −  0.0425  (SE  =  0.731, Z statistic = −0.0582 and 
P = 0.9536).

Combined

In the approach utilizing cross‑validation for machine 
learning, highest AUC of 0.945 for 5 parameters  (CT 
NGLDM_Coarseness, CT GLZLM_LGZE, CT GLCM_
Dissimilarity, CT GLRLM_LRE and CT GLRLM_LGRE) 
was obtained using OneR selector and AdaBoostM1 
classifier  (TP  =  0.875, FP  =  0.125, Precision  =  0.876, 

Recall = 0.875, κ =0.75, MSE = 0.1996, RMSE = 0.3106, 
F = 0.875, MCC = 0.751, and PRC = 0.943).

In the approach utilizing independent training 
and test sets, highest AUC of 0.9538 for 5 
parameters  (CT NGLDM_Coarseness, CT GLCM_
Homogeneity  [=InverseDifference], CT GLRLM_
LGRE, CT SHAPE_Compacity  [onlyFor3DROI], and 
PET GLRLM_LRGLE) was obtained using principal 
components analysis selector  +  multilayered perceptron 
classifier  (TP  =  0.857, FP  =  0.107, Precision  =  0.893, 
Recall = 0.857, κ =0.72, MSE = 0.2532, RMSE = 0.3282, 
F = 0.857, MCC = 0.75, and PRC = 0.965).

Comparison of AUCs showed a difference 
of  −0.0088  (SE  =  0.452, Z statistic = −0.0195 and 
P = 0.9845).

AUC values of the models created from CT and combined 
PET and CT parameters in both approaches are represented 
as heat maps  [Figure  4a and b]. The ROCs for the 
highest performing models are plotted  [Figure  5a and b]. 
Standardized PET [Figure 6] and CT [Figure 7] parameters 
used to train the models are represented as box plots.

CT SHAPE_Compacity  (onlyFor3DROI), CT GLZLM_
LGZE, CT GLCM_Dissimilarity, CT GLRLM_LGRE, 
and PET GLRLM_LRGLE were all higher for the 
myeloma group. CT NGLDM_Coarseness and CT 
GLCM_Homogeneity  (=InverseDifference) were higher 
in the metastases group. CT GLRLM_LRE was higher in 
the metastases group owing to two outliers  (one case of 
prostate carcinoma and one of T‑cell NHL).

Discussion
Texture is a repeating pattern of local variations in 
image intensity and is undefinable for a point. A  GLCM 
contains information about the positions of pixels having 
similar gray‑level values. Correlation is a measure of 
image linearity. Correlation is high if an image contains a 
considerable amount of linear structure. A  run length is a 
set of constant intensity pixels located in a line. Run‑length 
statistics are calculated by counting the number of runs 
of a given length  (from 1 to n) for each gray level. In 
a coarse texture, it is expected that long runs will occur 
relatively often, whereas a fine texture will contain a higher 
proportion of short runs.[12]

Neighboring gray‑level dependence matrix  (NGLDM) for 
texture classification was presented by Sun et  al.[13] The 
major properties of this approach were as follows:  (a) 
texture features can be easily computed for the overall 
texture;  (b) they are essentially invariant under spatial 
rotation; and  (c) they are invariant under linear gray‑level 
transformation and can be made insensitive to monotonic 
gray‑level transformation.[14] It was suggested as an 
alternative to the gray‑level co‑occurrence matrix. 
Coarseness is a measure of average difference between the 
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center voxel and its neighborhood and is an indication of 
the spatial rate of change. A higher value indicates a lower 
spatial change rate and a locally more uniform texture.

Multiple myeloma is a genetically complex entity 
evolving from premalignant MGUS to smoldering MM 
and symptomatic disease. Owing to this, fewer studies 
have been performed in AI Radiomics and most of 
the available studies are new.[15] A recent study by Fiz 
et al.[16] radiomics in MM showed that radiomics improved 
the accuracy of diagnosis and characterization of focal 
and diffuse myeloma on CT by improving the area under 
the curve  (AUC) of radiologists from 64% to 79%. In a 
study by Ripani et  al.,[17] PET texture features, especially 
second‑  and higher‑order texture features, showed a 
significant association with disease progression in areas 
of subtle distribution in the axial and peripheral bone 

marrow. Parameters extracted from VOIs placed on T5‑T7 
and L2‑L4 did not significantly differ among the patients 
with regard to progression to symptomatic MM and length 
of time to progression, except for the GLZLM–short‑zone 
low‑gray‑level emphasis  (GLZLM_SZLGRE) and 
GLZLM–low gray‑level zone emphasis (GLZLM_LGLZE). 
Yildirim and Baykara[18] reported minimum, median, and 
maximum gray‑level parameters to be significantly higher 
in lytic bone metastases than multiple myeloma on HISTO 
analysis.

In a study by Xiong et  al.,[19] T1 and T2 MRI feature 
extraction and machine‑learning validation of 60 MM 
and 118 metastatic lesions revealed that the most 
discriminatory features derived from GLCM indicating 
intralesional heterogeneity. The study found that the 
entropy of metastases from T2WI images was higher 

Figure 5: Area under curve for five most predictive parameters in the a. first and b. second approaches

Figure 4: Heat map of the area under the curve values of positron‑emission tomography, computed tomography, and combined parameters in the (a) first 
approach and (b) second approach

ba
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than that of myelomas signaling a higher heterogeneity 
in the former. Multiple myeloma is classified as a small 
cell round tumor of bone. It is usually composed of 
uniform, round, or oval‑shaped cells with highly packed 
arrangement with small interstitial spaces and high 
nuclear cytoplasmic ratio. Our study shows that while 
myelomas are more compact texturally, metastases were 
finer textured on CT and PET images. This may be due 
to intratumoral heterogeneity in the former. Since the 
sample size was small, tumors were at various stages 
of presentation in both groups and ROI selection bias, 
these findings must be substantiated in further large‑scale 
radiomic‑molecular correlation studies.

In a study by Schenone et  al.,[20] preliminary results showed 
that MM is associated with extension of the intrabone volume 
for the whole body and that machine learning can identify CT 
image features mostly correlating with the disease evolution.

In a study by Tagliafico et  al.,[21] 22 diffuse and 39 focal 
multiple myeloma cases found that 9 features were 
different (P < 0.05) in the diffuse and focal patterns (n = 2/9 
features were shape‑based: major axis length and sphericity; 
n = 7/9 were gray‑level run‑length matrix (GLRLM) based.

In a study by Mesguich et  al.,[22] radiomics analysis of 
18‑FDG PET/CT images in 30  patients was done after 
visual analysis by MRI. A  machine‑learning model 
employing 5 radiomic features overcame the limitations of 

visual analysis by MRI yielding a highly accurate and more 
reliable diagnosis of diffuse bone marrow infiltration in 
multiple myeloma. A  study by Morvan et  al.[23] confirmed 
the predictive value of radiomics for MM patients, 
demonstrating that quantitative/heterogeneity image‑based 
features reduce the error of the predicted progression.

A CT radiomics‑based random forest model was more 
accurate in differentiating bone islands from osteoblastic 
metastases compared to an inexperienced radiologist in a 
study by Hong et al.[24] In a study by Mayerhoefer et al.,[25] 
18F FDG‑PET texture features improved SUV‑based 
prediction of bone marrow involvement in mantle cell 
lymphoma.

In a study by Li and et  al.,[26] 18F‑FDG PET/CT radiomic 
analysis with a random forest machine‑learning model 
provided a quantitative, objective, and efficient mechanism 
for identifying bone marrow infiltration in suspected 
relapsed AL. The authors suggested it particularly for 
diagnosis in cases with 18F‑FDG diffuse uptake patterns.

In a study by Fan et  al.[27] for the differential diagnosis 
of spinal metastases by 18F‑FDG PETCT, there were 51 
texture parameters that differed meaningfully between 
benign and malignant lesions, of which four had higher 
AUC than SUVmax. The texture parameters were input 
to build a classification model using logistic regression, 
support vector machine, and decision tree. The accuracy of 

Figure  6: Boxplot of the myeloma group standardized computed 
tomography and positron‑emission tomography parameter values used in 
models in both approaches yielding the highest area under the curve values

Figure  7: Boxplot of the metastases group standardized computed 
tomography and positron‑emission tomography parameter values used in 
models in both approaches yielding the highest area under the curve values
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classification was 87.5, 83.34, and 75%, respectively. The 
accuracy of the manual diagnosis was 84.27%.

A study by Shin et al.[28] inferred that there was a significant 
difference in SUVmax between benign and malignant 
musculoskeletal tumors in total  (P  <  0.002), soft tissue 
tumors (P < 0.05), and bone tumors (P < 0.02). Sensitivity, 
specificity, and diagnostic accuracy were 80%, 65.2%, and 
73% in total with cutoff SUV (max) 3.8; 80%, 68.4%, and 
75% in the soft tissue tumors with cutoff SUV  (max) 3.8; 
and 80%, 63%, and 70% in the bone tumors with cutoff 
SUV (max) 3.7.

18F‑FDG PET can also show false‑positive findings 
in Schmorl’s nodes,[29] fractures,[30] and discontinuous 
degenerative disease and spinal tuberculosis; therefore; 
clinical and ancillary investigative data are needed for 
diagnosis.[31,32]

In a study by Kenawy et  al.,[33] 44  patients with 
pathologically proven lymphoma analysis of ROC curves 
from PET radiomic images showed that high‑intensity 
long‑run emphasis 4 bin, high‑intensity large zone 
emphasis 64 bin, long‑run emphasis  (LRE) 64 bin, 
large‑zone emphasis 64 bin, max spectrum 8 bin, busyness 
64 bin, and code similarity 32 and 64 bin were significant 
discriminators of bone marrow infiltration among other 
features  (area under curve  >0.682, P  <  0.05). Univariate 
analyses of texture features showed that code similarity and 
long‑run emphasis (both 64 bin) were significant predictors 
of bone marrow involvement. Multivariate analyses 
revealed that LRE  (64 bin, P  =  0.031) with an odds ratio 
of 1.022 and 95% CI of  (1.002–1.043) were independent 
variables for bone marrow involvement, hence concluding 
that 18F‑FDG PET‑CT radiomic features are synergistic to 
visual assessment of bone marrow infiltration in lymphoma.

In a study by Eary et  al.,[34] 18F‑FDG PET tumor image 
heterogeneity analysis method was validated for the 
ability to predict patient outcome in a clinical population 
of patients with sarcoma. They indicated that this method 
can be extended to other PET image datasets in which 
heterogeneity in tissue uptake of a radiotracer may predict 
patient outcome.

This is a retrospective study of a small sample. One of the 
challenges of radiomic studies is high dimensionality and 
low sample size which leads to sparsity of data, overfitting, 
high probability of a false‑positive result. This can affect 
the reproducibility and generalizability of the findings.[35] 
Tumor heterogeneity influencing PET and CECT metrics, 
choice of ROI, and sampling bias in histopathology are 
limiting factors.

Texture analysis has shown positive predictive and 
prognostic value in studies on many tumor types but 
is complicated by the definitions of what constitutes a 
parameter, number of parameters, and the number of ways 
in which they can be calculated. Variability can occur 

due to acquisition protocol, scanner type, quantitative 
corrections, voxels in the ROI, type of reconstruction 
algorithm and parameters, post‑reconstruction processing, 
etc., These need to be reduced by statistical validation to 
remove redundant parameters, introducing process and 
parameter standardization, and robust machine‑learning 
algorithms in the future.

Conclusions
This study aimed to evaluate the diagnostic capability of 
models based on first‑  and second‑order texture features 
of PET and CT images in the differentiation of skeletal 
metastases and multiple myeloma. The most distinguishing 
features suggested that metastases were finer textured on 
CT and MRI with a lower minimum HU and myelomas 
had a more compact shape.

A larger multi‑institutional study with standardized 
protocols and performance analysis of models in real‑world 
scenarios would further modify the findings of this study. 
In addition, clinical‑stage, hematological, molecular, 
genomic, and biochemical parameters could be added to 
strengthen the relationship between imaging, pathology, 
and laboratory data as they tend to be interrelated.

Integrated big data from the omics disciplines such as 
radiomics have the potential to development of models 
that predict intratumoral heterogeneity, complement and 
substantiate invasive tissue diagnosis, and pave the way for 
personalized medicine.
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Table S1. List of first and second order unfiltered parameters extracted from PET and CT images on LifeX software
First order Second order
1.Conventional/Discretized
CONV/DISCRET_min, mean, max, std)
CONV/DISCRET_peak 0.5 mL
CONV/DISCRET_peak 1 mL
CONV/DISCRET_CAS
CONV/DISCRET_TLG (for TP, MN)
CONV/DISCRET_RIM_(min, mean, sd, max)
CONV/DISCRET_(Q1, Q2, Q3)
2. Histogram (HISTO): The histogram 
features consist of simple statistics that are 
asso‑ ciated with pixel values in images while 
the spatial patterns of the pixel values are not 
included. Entropy and energy are calculated.
HISTO_Skewness
HISTO_Kurtosis
HISTO_Entropy_log10
HISTO_Entropy log2
HISTO_Energy
AUC_CSH
3.Shape value
Shape_Sphericity
Shape_Compacity
Shape_Volume_mL
Shape_Volume_vx
Shape_SurfaceArea

1.Gray Level Co‑occurrence Matrix (GLCM)
GLCM_Homogeneity
GLCM_Energy
GLCM_Contrast
GLCM_Correlation
GLCM_Entropy
GLCM_Dissimilarity
2.Gray‑Level Run Length Matrix (GLRLM)‑ The GLRLM describes 
the number of the consecutive pixels of the same gray‑level value for 4 
directions in 2D or 13 directions in 3D
GLRLM_SRE (Short run emphasis)
GLRLM_LRE (Long run emphasis)
GLRLM_LGRE (Low gray‑level run emphasis)
GLRLM_HGRE (High gray‑level run emphasis)
GLRLM_SRLGE (Short run low gray‑level emphasis)
GLRLM_SRHGE (Short run high gray‑level emphasis)
GLRLM_LRGLE (Long run low gray‑level emphasis)
GLRLM_LRHGE (Long run high gray‑level emphasis)
GLRLM_GLNU (Gray‑level non‑uniformity)
GLRLM_RLNU (Run length non‑uniformity)
GLRLM_RP (Run percentage)
3.Neighborhood Gray‑Level Different Matrix (NGDLM): Described the 
difference of grey levels between adjacent voxels in 2D and 26 in 3D
NGLDM_Coarseness
NGLDM_Contrast
NGLDM_Busyness
4. Gray‑Level Zone Length Matrix (GLZLM) : Describes the number 
of homogenous zones of the same grey level value in 2D or 3D
GLZLM_SZE (Short‑zone emphasis)
GLZLM_LZE (Long‑zone emphasis)
GLZLM_LGZE (Low gray‑level zone emphasis)
GLZLM_HGZE (High gray‑level zone emphasis)
GLZLM_SZLGE (Short‑zone low gray‑level emphasis)
GLZLM_SZHGE (Short‑zone high gray‑level emphasis)
GLZLM_LZGLE (Long‑zone low gray‑level emphasis)
GLZLM_LZHGE (Long‑zone high gray‑level emphasis)
GLZLM_GLNU (Gray‑level non‑uniformity for zone)
GLZLM_ZLNU (Zone length non‑uniformity)
GLZLM_ZP (Zone percentage)

HISTO: Histogram, GLCM: Gray level co‑occurrence matrix, GLRLM: Gray‑level run‑length matrix, SRE: Short‑run emphasis, LRE: 
Long‑run emphasis, LGRE: Low gray‑level run emphasis, HGRE: High gray‑level run emphasis, SRLGE: Short‑run low gray‑level emphasis, 
SRHGE: Short‑run high gray‑level emphasis, LRGLE: Long‑run low gray‑level emphasis, LRHGE: Long‑run high gray‑level emphasis, 
GLNU: Gray‑level nonuniformity, RLNU: Run‑length nonuniformity, RP: Run percentage, NGDLM: Neighborhood gray‑level different 
matrix, GLZLM: Gray‑level zone length matrix, SZE: Short‑zone emphasis, LZE: Long‑zone emphasis, LGZE: Low gray‑level zone emphasis, 
HGZE: High gray‑level zone emphasis, SZLGE: Short‑zone low gray‑level emphasis, SZHGE: Short‑zone high gray‑level emphasis, LZGLE: 
Long‑zone low gray‑level emphasis, LZHGE: Long‑zone high gray‑level emphasis, ZLNU: Zone length nonuniformity, ZP: Zone percentage, 
AUC: Area under the curve, PET: Positron‑emission tomography, CT: Computed tomography, CSH: : Cumulative standardized uptake value 
(SUV)-volume histogram , CAS: Calcium Agatston Score, TLG: Total Lesion Glycolysis, RIM: Radial Intensity Mean



Table S2. Features in PET and CT images selected with high area under ROC (significance of 5%) versus features 
selected after filtering Pearson correlation matrix

Features with high area under ROC (significance of 5%) Features selected after filtering Pearson correlation matrix 
PET

CONVENTIONAL_SUVbwmean
CONVENTIONAL_SUVbwQ1
CONVENTIONAL_SUVbwQ2
CONVENTIONAL_SUVbwQ3
DISCRETIZED_AUC_CSH
SHAPE_Compacity[onlyFor3DROI]
GLCM_Homogeneity[=InverseDifference]
GLRLM_SRE
GLRLM_LRE
GLRLM_LRLGE
GLRLM_RP
NGLDM_Contrast
GLZLM_SZE
GLZLM_LZE
GLZLM_LGZE
GLZLM_SZHGE
GLZLM_LZLGE
GLZLM_LZHGE
GLZLM_ZP

CT
CONVENTIONAL_HUmin
DISCRETIZED_HUmin
SHAPE_Volume (mL)
SHAPE_Volume (vx)
SHAPE_Compacity[onlyFor3DROI]
GLRLM_LRHGE
GLRLM_GLNU
GLRLM_RLNU
NGLDM_Coarseness
NGLDM_Busyness
GLZLM_LGZE
GLZLM_HGZE
GLZLM_SZLGE
CT GLRLM_LGRE
GLRLM_SRLGE
GLRLM_SRE

PET
CONVENTIONAL_SUVbwmin
CONVENTIONAL_SUVbwKurtosis
CONVENTIONAL_TLG (mL)[onlyForPETorNM]
SHAPE_Sphericity[onlyFor3DROI])
SHAPE_Compacity[onlyFor3DROI]
GLCM_Correlation
GLRLM_LRLGE
GLRLM_RP
NGLDM_Coarseness
GLZLM_SZE
GLZLM_SZLGE
GLZLM_LZLGE
GLZLM_LZHGE
GLZLM_GLNU

CT
CT CONVENTIONAL_HUmin
CT CONVENTIONAL_HUmean
CT CONVENTIONAL_HUpeakSphere0.5mL: discretized 
volume sought[onlyFor3D]
CT SHAPE_Sphericity[onlyFor3DROI])
CT SHAPE_Compacity[onlyFor3DROI]
CT GLCM_Homogeneity[=InverseDifference]
CT GLCM_Correlation
CT GLRLM_LRHGE
CT NGLDM_Coarseness
CT NGLDM_Contrast
CT NGLDM_Busyness
CT GLZLM_SZE
CT GLZLM_LGZE
CT GLCM_Dissimilarity
CT GLRLM_LRE
CT GLRLM_LGRE

GLCM: Gray level co‑occurrence matrix, GLRLM: Gray‑level run‑length matrix, SRE: Short‑run emphasis, LRE: Long‑run emphasis, LGRE: 
Low gray‑level run emphasis, SRLGE: Short‑run low gray‑level emphasis, LRLGE: Long‑run low gray‑level emphasis, LRHGE: Long‑run 
high gray‑level emphasis, GLNU: Gray‑level nonuniformity, RLNU: Run‑length nonuniformity, RP: Run percentage, NGLDM: Neighborhood 
gray‑level different matrix, GLZLM: Gray‑level zone length matrix, SZE: Short‑zone emphasis, LZE: Long‑zone emphasis, LGZE: Low 
gray‑level zone emphasis, HGZE: High gray‑level zone emphasis, SZLGE: Short‑zone low gray‑level emphasis, SZHGE: Short‑zone high 
gray‑level emphasis, LZGLE: Long‑zone low gray‑level emphasis, LZHGE: Long‑zone high gray‑level emphasis, ZLNU: Zone length 
nonuniformity, ZP: Zone percentage, AUC: Area under the curve, ROC: Receiver operating curve, PET: Positron‑emission tomography, CT: 
Computed tomography, CSH: Cumulative standardized uptake value (SUV)‑volume histogram, SUV: Standardised Uptake Value




